| 13020 |      1 | 
 | 
|  |      2 | header {* \section{Operational Semantics} *}
 | 
|  |      3 | 
 | 
| 16417 |      4 | theory OG_Tran imports OG_Com begin
 | 
| 13020 |      5 | 
 | 
|  |      6 | types
 | 
|  |      7 |   'a ann_com_op = "('a ann_com) option"
 | 
|  |      8 |   'a ann_triple_op = "('a ann_com_op \<times> 'a assn)"
 | 
|  |      9 |   
 | 
|  |     10 | consts com :: "'a ann_triple_op \<Rightarrow> 'a ann_com_op"
 | 
|  |     11 | primrec "com (c, q) = c"
 | 
|  |     12 | 
 | 
|  |     13 | consts post :: "'a ann_triple_op \<Rightarrow> 'a assn"
 | 
|  |     14 | primrec "post (c, q) = q"
 | 
|  |     15 | 
 | 
|  |     16 | constdefs
 | 
|  |     17 |   All_None :: "'a ann_triple_op list \<Rightarrow> bool"
 | 
|  |     18 |   "All_None Ts \<equiv> \<forall>(c, q) \<in> set Ts. c = None"
 | 
|  |     19 | 
 | 
|  |     20 | subsection {* The Transition Relation *}
 | 
|  |     21 | 
 | 
|  |     22 | consts
 | 
|  |     23 |   ann_transition :: "(('a ann_com_op \<times> 'a) \<times> ('a ann_com_op \<times> 'a)) set"        
 | 
|  |     24 |   transition :: "(('a com \<times> 'a) \<times> ('a com \<times> 'a)) set"
 | 
|  |     25 |     
 | 
|  |     26 | syntax
 | 
|  |     27 |   "_ann_transition" :: "('a ann_com_op \<times> 'a) \<Rightarrow> ('a ann_com_op \<times> 'a) \<Rightarrow> bool"
 | 
|  |     28 |                            ("_ -1\<rightarrow> _"[81,81] 100)
 | 
|  |     29 |   "_ann_transition_n" :: "('a ann_com_op \<times> 'a) \<Rightarrow> nat \<Rightarrow> ('a ann_com_op \<times> 'a) 
 | 
|  |     30 |                            \<Rightarrow> bool"  ("_ -_\<rightarrow> _"[81,81] 100)
 | 
|  |     31 |   "_ann_transition_*" :: "('a ann_com_op \<times> 'a) \<Rightarrow> ('a ann_com_op \<times> 'a) \<Rightarrow> bool"
 | 
|  |     32 |                            ("_ -*\<rightarrow> _"[81,81] 100)
 | 
|  |     33 | 
 | 
|  |     34 |   "_transition" :: "('a com \<times> 'a) \<Rightarrow> ('a com \<times> 'a) \<Rightarrow> bool"  ("_ -P1\<rightarrow> _"[81,81] 100)
 | 
|  |     35 |   "_transition_n" :: "('a com \<times> 'a) \<Rightarrow> nat \<Rightarrow> ('a com \<times> 'a) \<Rightarrow> bool"  
 | 
|  |     36 |                           ("_ -P_\<rightarrow> _"[81,81,81] 100)  
 | 
|  |     37 |   "_transition_*" :: "('a com \<times> 'a) \<Rightarrow> ('a com \<times> 'a) \<Rightarrow> bool"  ("_ -P*\<rightarrow> _"[81,81] 100)
 | 
|  |     38 | 
 | 
|  |     39 | text {* The corresponding syntax translations are: *}
 | 
|  |     40 | 
 | 
|  |     41 | translations
 | 
|  |     42 |   "con_0 -1\<rightarrow> con_1" \<rightleftharpoons> "(con_0, con_1) \<in> ann_transition"
 | 
|  |     43 |   "con_0 -n\<rightarrow> con_1" \<rightleftharpoons> "(con_0, con_1) \<in> ann_transition^n"
 | 
|  |     44 |   "con_0 -*\<rightarrow> con_1" \<rightleftharpoons> "(con_0, con_1) \<in> ann_transition\<^sup>*"
 | 
|  |     45 |    
 | 
|  |     46 |   "con_0 -P1\<rightarrow> con_1" \<rightleftharpoons> "(con_0, con_1) \<in> transition"
 | 
|  |     47 |   "con_0 -Pn\<rightarrow> con_1" \<rightleftharpoons> "(con_0, con_1) \<in> transition^n"
 | 
|  |     48 |   "con_0 -P*\<rightarrow> con_1" \<rightleftharpoons> "(con_0, con_1) \<in> transition\<^sup>*"
 | 
|  |     49 | 
 | 
|  |     50 | inductive ann_transition  transition
 | 
|  |     51 | intros
 | 
|  |     52 |   AnnBasic:  "(Some (AnnBasic r f), s) -1\<rightarrow> (None, f s)"
 | 
|  |     53 | 
 | 
|  |     54 |   AnnSeq1: "(Some c0, s) -1\<rightarrow> (None, t) \<Longrightarrow> 
 | 
|  |     55 |                (Some (AnnSeq c0 c1), s) -1\<rightarrow> (Some c1, t)"
 | 
|  |     56 |   AnnSeq2: "(Some c0, s) -1\<rightarrow> (Some c2, t) \<Longrightarrow> 
 | 
|  |     57 |                (Some (AnnSeq c0 c1), s) -1\<rightarrow> (Some (AnnSeq c2 c1), t)"
 | 
|  |     58 | 
 | 
|  |     59 |   AnnCond1T: "s \<in> b  \<Longrightarrow> (Some (AnnCond1 r b c1 c2), s) -1\<rightarrow> (Some c1, s)"
 | 
|  |     60 |   AnnCond1F: "s \<notin> b \<Longrightarrow> (Some (AnnCond1 r b c1 c2), s) -1\<rightarrow> (Some c2, s)"
 | 
|  |     61 | 
 | 
|  |     62 |   AnnCond2T: "s \<in> b  \<Longrightarrow> (Some (AnnCond2 r b c), s) -1\<rightarrow> (Some c, s)"
 | 
|  |     63 |   AnnCond2F: "s \<notin> b \<Longrightarrow> (Some (AnnCond2 r b c), s) -1\<rightarrow> (None, s)"
 | 
|  |     64 | 
 | 
|  |     65 |   AnnWhileF: "s \<notin> b \<Longrightarrow> (Some (AnnWhile r b i c), s) -1\<rightarrow> (None, s)"
 | 
|  |     66 |   AnnWhileT: "s \<in> b  \<Longrightarrow> (Some (AnnWhile r b i c), s) -1\<rightarrow> 
 | 
|  |     67 |                          (Some (AnnSeq c (AnnWhile i b i c)), s)"
 | 
|  |     68 | 
 | 
|  |     69 |   AnnAwait: "\<lbrakk> s \<in> b; atom_com c; (c, s) -P*\<rightarrow> (Parallel [], t) \<rbrakk> \<Longrightarrow>
 | 
|  |     70 | 	           (Some (AnnAwait r b c), s) -1\<rightarrow> (None, t)" 
 | 
|  |     71 | 
 | 
|  |     72 |   Parallel: "\<lbrakk> i<length Ts; Ts!i = (Some c, q); (Some c, s) -1\<rightarrow> (r, t) \<rbrakk>
 | 
|  |     73 |               \<Longrightarrow> (Parallel Ts, s) -P1\<rightarrow> (Parallel (Ts [i:=(r, q)]), t)"
 | 
|  |     74 | 
 | 
|  |     75 |   Basic:  "(Basic f, s) -P1\<rightarrow> (Parallel [], f s)"
 | 
|  |     76 | 
 | 
|  |     77 |   Seq1:   "All_None Ts \<Longrightarrow> (Seq (Parallel Ts) c, s) -P1\<rightarrow> (c, s)"
 | 
|  |     78 |   Seq2:   "(c0, s) -P1\<rightarrow> (c2, t) \<Longrightarrow> (Seq c0 c1, s) -P1\<rightarrow> (Seq c2 c1, t)"
 | 
|  |     79 | 
 | 
|  |     80 |   CondT: "s \<in> b \<Longrightarrow> (Cond b c1 c2, s) -P1\<rightarrow> (c1, s)"
 | 
|  |     81 |   CondF: "s \<notin> b \<Longrightarrow> (Cond b c1 c2, s) -P1\<rightarrow> (c2, s)"
 | 
|  |     82 | 
 | 
|  |     83 |   WhileF: "s \<notin> b \<Longrightarrow> (While b i c, s) -P1\<rightarrow> (Parallel [], s)"
 | 
|  |     84 |   WhileT: "s \<in> b \<Longrightarrow> (While b i c, s) -P1\<rightarrow> (Seq c (While b i c), s)"
 | 
|  |     85 | 
 | 
|  |     86 | monos "rtrancl_mono"
 | 
|  |     87 | 
 | 
|  |     88 | subsection {* Definition of Semantics *}
 | 
|  |     89 | 
 | 
|  |     90 | constdefs
 | 
|  |     91 |   ann_sem :: "'a ann_com \<Rightarrow> 'a \<Rightarrow> 'a set"
 | 
|  |     92 |   "ann_sem c \<equiv> \<lambda>s. {t. (Some c, s) -*\<rightarrow> (None, t)}"
 | 
|  |     93 | 
 | 
|  |     94 |   ann_SEM :: "'a ann_com \<Rightarrow> 'a set \<Rightarrow> 'a set"
 | 
|  |     95 |   "ann_SEM c S \<equiv> \<Union>ann_sem c ` S"  
 | 
|  |     96 | 
 | 
|  |     97 |   sem :: "'a com \<Rightarrow> 'a \<Rightarrow> 'a set"
 | 
|  |     98 |   "sem c \<equiv> \<lambda>s. {t. \<exists>Ts. (c, s) -P*\<rightarrow> (Parallel Ts, t) \<and> All_None Ts}"
 | 
|  |     99 | 
 | 
|  |    100 |   SEM :: "'a com \<Rightarrow> 'a set \<Rightarrow> 'a set"
 | 
|  |    101 |   "SEM c S \<equiv> \<Union>sem c ` S "
 | 
|  |    102 | 
 | 
|  |    103 | syntax "_Omega" :: "'a com"    ("\<Omega>" 63)
 | 
|  |    104 | translations  "\<Omega>" \<rightleftharpoons> "While UNIV UNIV (Basic id)"
 | 
|  |    105 | 
 | 
|  |    106 | consts fwhile :: "'a bexp \<Rightarrow> 'a com \<Rightarrow> nat \<Rightarrow> 'a com"
 | 
|  |    107 | primrec 
 | 
|  |    108 |    "fwhile b c 0 = \<Omega>"
 | 
|  |    109 |    "fwhile b c (Suc n) = Cond b (Seq c (fwhile b c n)) (Basic id)"
 | 
|  |    110 | 
 | 
|  |    111 | subsubsection {* Proofs *}
 | 
|  |    112 | 
 | 
|  |    113 | declare ann_transition_transition.intros [intro]
 | 
|  |    114 | inductive_cases transition_cases: 
 | 
|  |    115 |     "(Parallel T,s) -P1\<rightarrow> t"  
 | 
|  |    116 |     "(Basic f, s) -P1\<rightarrow> t"
 | 
|  |    117 |     "(Seq c1 c2, s) -P1\<rightarrow> t" 
 | 
|  |    118 |     "(Cond b c1 c2, s) -P1\<rightarrow> t"
 | 
|  |    119 |     "(While b i c, s) -P1\<rightarrow> t"
 | 
|  |    120 | 
 | 
|  |    121 | lemma Parallel_empty_lemma [rule_format (no_asm)]: 
 | 
|  |    122 |   "(Parallel [],s) -Pn\<rightarrow> (Parallel Ts,t) \<longrightarrow> Ts=[] \<and> n=0 \<and> s=t"
 | 
|  |    123 | apply(induct n)
 | 
|  |    124 |  apply(simp (no_asm))
 | 
|  |    125 | apply clarify
 | 
|  |    126 | apply(drule rel_pow_Suc_D2)
 | 
|  |    127 | apply(force elim:transition_cases)
 | 
|  |    128 | done
 | 
|  |    129 | 
 | 
|  |    130 | lemma Parallel_AllNone_lemma [rule_format (no_asm)]: 
 | 
|  |    131 |  "All_None Ss \<longrightarrow> (Parallel Ss,s) -Pn\<rightarrow> (Parallel Ts,t) \<longrightarrow> Ts=Ss \<and> n=0 \<and> s=t"
 | 
|  |    132 | apply(induct "n")
 | 
|  |    133 |  apply(simp (no_asm))
 | 
|  |    134 | apply clarify
 | 
|  |    135 | apply(drule rel_pow_Suc_D2)
 | 
|  |    136 | apply clarify
 | 
|  |    137 | apply(erule transition_cases,simp_all)
 | 
|  |    138 | apply(force dest:nth_mem simp add:All_None_def)
 | 
|  |    139 | done
 | 
|  |    140 | 
 | 
|  |    141 | lemma Parallel_AllNone: "All_None Ts \<Longrightarrow> (SEM (Parallel Ts) X) = X"
 | 
|  |    142 | apply (unfold SEM_def sem_def)
 | 
|  |    143 | apply auto
 | 
|  |    144 | apply(drule rtrancl_imp_UN_rel_pow)
 | 
|  |    145 | apply clarify
 | 
|  |    146 | apply(drule Parallel_AllNone_lemma)
 | 
|  |    147 | apply auto
 | 
|  |    148 | done
 | 
|  |    149 | 
 | 
|  |    150 | lemma Parallel_empty: "Ts=[] \<Longrightarrow> (SEM (Parallel Ts) X) = X"
 | 
|  |    151 | apply(rule Parallel_AllNone)
 | 
|  |    152 | apply(simp add:All_None_def)
 | 
|  |    153 | done
 | 
|  |    154 | 
 | 
|  |    155 | text {* Set of lemmas from Apt and Olderog "Verification of sequential
 | 
|  |    156 | and concurrent programs", page 63. *}
 | 
|  |    157 | 
 | 
|  |    158 | lemma L3_5i: "X\<subseteq>Y \<Longrightarrow> SEM c X \<subseteq> SEM c Y" 
 | 
|  |    159 | apply (unfold SEM_def)
 | 
|  |    160 | apply force
 | 
|  |    161 | done
 | 
|  |    162 | 
 | 
|  |    163 | lemma L3_5ii_lemma1: 
 | 
|  |    164 |  "\<lbrakk> (c1, s1) -P*\<rightarrow> (Parallel Ts, s2); All_None Ts;  
 | 
|  |    165 |   (c2, s2) -P*\<rightarrow> (Parallel Ss, s3); All_None Ss \<rbrakk> 
 | 
|  |    166 |  \<Longrightarrow> (Seq c1 c2, s1) -P*\<rightarrow> (Parallel Ss, s3)"
 | 
|  |    167 | apply(erule converse_rtrancl_induct2)
 | 
|  |    168 | apply(force intro:converse_rtrancl_into_rtrancl)+
 | 
|  |    169 | done
 | 
|  |    170 | 
 | 
|  |    171 | lemma L3_5ii_lemma2 [rule_format (no_asm)]: 
 | 
|  |    172 |  "\<forall>c1 c2 s t. (Seq c1 c2, s) -Pn\<rightarrow> (Parallel Ts, t) \<longrightarrow>  
 | 
|  |    173 |   (All_None Ts) \<longrightarrow> (\<exists>y m Rs. (c1,s) -P*\<rightarrow> (Parallel Rs, y) \<and> 
 | 
|  |    174 |   (All_None Rs) \<and> (c2, y) -Pm\<rightarrow> (Parallel Ts, t) \<and>  m \<le> n)"
 | 
|  |    175 | apply(induct "n")
 | 
|  |    176 |  apply(force)
 | 
|  |    177 | apply(safe dest!: rel_pow_Suc_D2)
 | 
|  |    178 | apply(erule transition_cases,simp_all)
 | 
|  |    179 |  apply (fast intro!: le_SucI)
 | 
|  |    180 | apply (fast intro!: le_SucI elim!: rel_pow_imp_rtrancl converse_rtrancl_into_rtrancl)
 | 
|  |    181 | done
 | 
|  |    182 | 
 | 
|  |    183 | lemma L3_5ii_lemma3: 
 | 
|  |    184 |  "\<lbrakk>(Seq c1 c2,s) -P*\<rightarrow> (Parallel Ts,t); All_None Ts\<rbrakk> \<Longrightarrow> 
 | 
|  |    185 |     (\<exists>y Rs. (c1,s) -P*\<rightarrow> (Parallel Rs,y) \<and> All_None Rs 
 | 
|  |    186 |    \<and> (c2,y) -P*\<rightarrow> (Parallel Ts,t))"
 | 
|  |    187 | apply(drule rtrancl_imp_UN_rel_pow)
 | 
|  |    188 | apply(fast dest: L3_5ii_lemma2 rel_pow_imp_rtrancl)
 | 
|  |    189 | done
 | 
|  |    190 | 
 | 
|  |    191 | lemma L3_5ii: "SEM (Seq c1 c2) X = SEM c2 (SEM c1 X)"
 | 
|  |    192 | apply (unfold SEM_def sem_def)
 | 
|  |    193 | apply auto
 | 
|  |    194 |  apply(fast dest: L3_5ii_lemma3)
 | 
|  |    195 | apply(fast elim: L3_5ii_lemma1)
 | 
|  |    196 | done
 | 
|  |    197 | 
 | 
|  |    198 | lemma L3_5iii: "SEM (Seq (Seq c1 c2) c3) X = SEM (Seq c1 (Seq c2 c3)) X"
 | 
|  |    199 | apply (simp (no_asm) add: L3_5ii)
 | 
|  |    200 | done
 | 
|  |    201 | 
 | 
|  |    202 | lemma L3_5iv:
 | 
|  |    203 |  "SEM (Cond b c1 c2) X = (SEM c1 (X \<inter> b)) Un (SEM c2 (X \<inter> (-b)))"
 | 
|  |    204 | apply (unfold SEM_def sem_def)
 | 
|  |    205 | apply auto
 | 
|  |    206 | apply(erule converse_rtranclE)
 | 
|  |    207 |  prefer 2
 | 
|  |    208 |  apply (erule transition_cases,simp_all)
 | 
|  |    209 |   apply(fast intro: converse_rtrancl_into_rtrancl elim: transition_cases)+
 | 
|  |    210 | done
 | 
|  |    211 | 
 | 
|  |    212 | 
 | 
|  |    213 | lemma  L3_5v_lemma1[rule_format]: 
 | 
|  |    214 |  "(S,s) -Pn\<rightarrow> (T,t) \<longrightarrow> S=\<Omega> \<longrightarrow> (\<not>(\<exists>Rs. T=(Parallel Rs) \<and> All_None Rs))"
 | 
|  |    215 | apply (unfold UNIV_def)
 | 
|  |    216 | apply(rule nat_less_induct)
 | 
|  |    217 | apply safe
 | 
|  |    218 | apply(erule rel_pow_E2)
 | 
|  |    219 |  apply simp_all
 | 
|  |    220 | apply(erule transition_cases)
 | 
|  |    221 |  apply simp_all
 | 
|  |    222 | apply(erule rel_pow_E2)
 | 
|  |    223 |  apply(simp add: Id_def)
 | 
|  |    224 | apply(erule transition_cases,simp_all)
 | 
|  |    225 | apply clarify
 | 
|  |    226 | apply(erule transition_cases,simp_all)
 | 
|  |    227 | apply(erule rel_pow_E2,simp)
 | 
|  |    228 | apply clarify
 | 
|  |    229 | apply(erule transition_cases)
 | 
|  |    230 |  apply simp+
 | 
|  |    231 |     apply clarify
 | 
|  |    232 |     apply(erule transition_cases)
 | 
|  |    233 | apply simp_all
 | 
|  |    234 | done
 | 
|  |    235 | 
 | 
|  |    236 | lemma L3_5v_lemma2: "\<lbrakk>(\<Omega>, s) -P*\<rightarrow> (Parallel Ts, t); All_None Ts \<rbrakk> \<Longrightarrow> False"
 | 
|  |    237 | apply(fast dest: rtrancl_imp_UN_rel_pow L3_5v_lemma1)
 | 
|  |    238 | done
 | 
|  |    239 | 
 | 
|  |    240 | lemma L3_5v_lemma3: "SEM (\<Omega>) S = {}"
 | 
|  |    241 | apply (unfold SEM_def sem_def)
 | 
|  |    242 | apply(fast dest: L3_5v_lemma2)
 | 
|  |    243 | done
 | 
|  |    244 | 
 | 
|  |    245 | lemma L3_5v_lemma4 [rule_format]: 
 | 
|  |    246 |  "\<forall>s. (While b i c, s) -Pn\<rightarrow> (Parallel Ts, t) \<longrightarrow> All_None Ts \<longrightarrow>  
 | 
|  |    247 |   (\<exists>k. (fwhile b c k, s) -P*\<rightarrow> (Parallel Ts, t))"
 | 
|  |    248 | apply(rule nat_less_induct)
 | 
|  |    249 | apply safe
 | 
|  |    250 | apply(erule rel_pow_E2)
 | 
|  |    251 |  apply safe
 | 
|  |    252 | apply(erule transition_cases,simp_all)
 | 
|  |    253 |  apply (rule_tac x = "1" in exI)
 | 
|  |    254 |  apply(force dest: Parallel_empty_lemma intro: converse_rtrancl_into_rtrancl simp add: Id_def)
 | 
|  |    255 | apply safe
 | 
|  |    256 | apply(drule L3_5ii_lemma2)
 | 
|  |    257 |  apply safe
 | 
|  |    258 | apply(drule le_imp_less_Suc)
 | 
|  |    259 | apply (erule allE , erule impE,assumption)
 | 
|  |    260 | apply (erule allE , erule impE, assumption)
 | 
|  |    261 | apply safe
 | 
|  |    262 | apply (rule_tac x = "k+1" in exI)
 | 
|  |    263 | apply(simp (no_asm))
 | 
|  |    264 | apply(rule converse_rtrancl_into_rtrancl)
 | 
|  |    265 |  apply fast
 | 
|  |    266 | apply(fast elim: L3_5ii_lemma1)
 | 
|  |    267 | done
 | 
|  |    268 | 
 | 
|  |    269 | lemma L3_5v_lemma5 [rule_format]: 
 | 
|  |    270 |  "\<forall>s. (fwhile b c k, s) -P*\<rightarrow> (Parallel Ts, t) \<longrightarrow> All_None Ts \<longrightarrow>  
 | 
|  |    271 |   (While b i c, s) -P*\<rightarrow> (Parallel Ts,t)"
 | 
|  |    272 | apply(induct "k")
 | 
|  |    273 |  apply(force dest: L3_5v_lemma2)
 | 
|  |    274 | apply safe
 | 
|  |    275 | apply(erule converse_rtranclE)
 | 
|  |    276 |  apply simp_all
 | 
|  |    277 | apply(erule transition_cases,simp_all)
 | 
|  |    278 |  apply(rule converse_rtrancl_into_rtrancl)
 | 
|  |    279 |   apply(fast)
 | 
|  |    280 |  apply(fast elim!: L3_5ii_lemma1 dest: L3_5ii_lemma3)
 | 
|  |    281 | apply(drule rtrancl_imp_UN_rel_pow)
 | 
|  |    282 | apply clarify
 | 
|  |    283 | apply(erule rel_pow_E2)
 | 
|  |    284 |  apply simp_all
 | 
|  |    285 | apply(erule transition_cases,simp_all)
 | 
|  |    286 | apply(fast dest: Parallel_empty_lemma)
 | 
|  |    287 | done
 | 
|  |    288 | 
 | 
|  |    289 | lemma L3_5v: "SEM (While b i c) = (\<lambda>x. (\<Union>k. SEM (fwhile b c k) x))"
 | 
|  |    290 | apply(rule ext)
 | 
|  |    291 | apply (simp add: SEM_def sem_def)
 | 
|  |    292 | apply safe
 | 
|  |    293 |  apply(drule rtrancl_imp_UN_rel_pow,simp)
 | 
|  |    294 |  apply clarify
 | 
|  |    295 |  apply(fast dest:L3_5v_lemma4)
 | 
|  |    296 | apply(fast intro: L3_5v_lemma5)
 | 
|  |    297 | done
 | 
|  |    298 | 
 | 
|  |    299 | section {* Validity of Correctness Formulas *}
 | 
|  |    300 | 
 | 
|  |    301 | constdefs 
 | 
|  |    302 |   com_validity :: "'a assn \<Rightarrow> 'a com \<Rightarrow> 'a assn \<Rightarrow> bool"  ("(3\<parallel>= _// _//_)" [90,55,90] 50)
 | 
|  |    303 |   "\<parallel>= p c q \<equiv> SEM c p \<subseteq> q"
 | 
|  |    304 | 
 | 
|  |    305 |   ann_com_validity :: "'a ann_com \<Rightarrow> 'a assn \<Rightarrow> bool"   ("\<Turnstile> _ _" [60,90] 45)
 | 
|  |    306 |   "\<Turnstile> c q \<equiv> ann_SEM c (pre c) \<subseteq> q"
 | 
|  |    307 | 
 | 
|  |    308 | end |