| author | huffman | 
| Mon, 22 Feb 2010 21:48:20 -0800 | |
| changeset 35294 | 0e1adc24722f | 
| parent 35028 | 108662d50512 | 
| child 37765 | 26bdfb7b680b | 
| permissions | -rw-r--r-- | 
| 30096 | 1 | (* Title: Archimedean_Field.thy | 
| 2 | Author: Brian Huffman | |
| 3 | *) | |
| 4 | ||
| 5 | header {* Archimedean Fields, Floor and Ceiling Functions *}
 | |
| 6 | ||
| 7 | theory Archimedean_Field | |
| 8 | imports Main | |
| 9 | begin | |
| 10 | ||
| 11 | subsection {* Class of Archimedean fields *}
 | |
| 12 | ||
| 13 | text {* Archimedean fields have no infinite elements. *}
 | |
| 14 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
30102diff
changeset | 15 | class archimedean_field = linordered_field + number_ring + | 
| 30096 | 16 | assumes ex_le_of_int: "\<exists>z. x \<le> of_int z" | 
| 17 | ||
| 18 | lemma ex_less_of_int: | |
| 19 | fixes x :: "'a::archimedean_field" shows "\<exists>z. x < of_int z" | |
| 20 | proof - | |
| 21 | from ex_le_of_int obtain z where "x \<le> of_int z" .. | |
| 22 | then have "x < of_int (z + 1)" by simp | |
| 23 | then show ?thesis .. | |
| 24 | qed | |
| 25 | ||
| 26 | lemma ex_of_int_less: | |
| 27 | fixes x :: "'a::archimedean_field" shows "\<exists>z. of_int z < x" | |
| 28 | proof - | |
| 29 | from ex_less_of_int obtain z where "- x < of_int z" .. | |
| 30 | then have "of_int (- z) < x" by simp | |
| 31 | then show ?thesis .. | |
| 32 | qed | |
| 33 | ||
| 34 | lemma ex_less_of_nat: | |
| 35 | fixes x :: "'a::archimedean_field" shows "\<exists>n. x < of_nat n" | |
| 36 | proof - | |
| 37 | obtain z where "x < of_int z" using ex_less_of_int .. | |
| 38 | also have "\<dots> \<le> of_int (int (nat z))" by simp | |
| 39 | also have "\<dots> = of_nat (nat z)" by (simp only: of_int_of_nat_eq) | |
| 40 | finally show ?thesis .. | |
| 41 | qed | |
| 42 | ||
| 43 | lemma ex_le_of_nat: | |
| 44 | fixes x :: "'a::archimedean_field" shows "\<exists>n. x \<le> of_nat n" | |
| 45 | proof - | |
| 46 | obtain n where "x < of_nat n" using ex_less_of_nat .. | |
| 47 | then have "x \<le> of_nat n" by simp | |
| 48 | then show ?thesis .. | |
| 49 | qed | |
| 50 | ||
| 51 | text {* Archimedean fields have no infinitesimal elements. *}
 | |
| 52 | ||
| 53 | lemma ex_inverse_of_nat_Suc_less: | |
| 54 | fixes x :: "'a::archimedean_field" | |
| 55 | assumes "0 < x" shows "\<exists>n. inverse (of_nat (Suc n)) < x" | |
| 56 | proof - | |
| 57 | from `0 < x` have "0 < inverse x" | |
| 58 | by (rule positive_imp_inverse_positive) | |
| 59 | obtain n where "inverse x < of_nat n" | |
| 60 | using ex_less_of_nat .. | |
| 61 | then obtain m where "inverse x < of_nat (Suc m)" | |
| 62 | using `0 < inverse x` by (cases n) (simp_all del: of_nat_Suc) | |
| 63 | then have "inverse (of_nat (Suc m)) < inverse (inverse x)" | |
| 64 | using `0 < inverse x` by (rule less_imp_inverse_less) | |
| 65 | then have "inverse (of_nat (Suc m)) < x" | |
| 66 | using `0 < x` by (simp add: nonzero_inverse_inverse_eq) | |
| 67 | then show ?thesis .. | |
| 68 | qed | |
| 69 | ||
| 70 | lemma ex_inverse_of_nat_less: | |
| 71 | fixes x :: "'a::archimedean_field" | |
| 72 | assumes "0 < x" shows "\<exists>n>0. inverse (of_nat n) < x" | |
| 73 | using ex_inverse_of_nat_Suc_less [OF `0 < x`] by auto | |
| 74 | ||
| 75 | lemma ex_less_of_nat_mult: | |
| 76 | fixes x :: "'a::archimedean_field" | |
| 77 | assumes "0 < x" shows "\<exists>n. y < of_nat n * x" | |
| 78 | proof - | |
| 79 | obtain n where "y / x < of_nat n" using ex_less_of_nat .. | |
| 80 | with `0 < x` have "y < of_nat n * x" by (simp add: pos_divide_less_eq) | |
| 81 | then show ?thesis .. | |
| 82 | qed | |
| 83 | ||
| 84 | ||
| 85 | subsection {* Existence and uniqueness of floor function *}
 | |
| 86 | ||
| 87 | lemma exists_least_lemma: | |
| 88 | assumes "\<not> P 0" and "\<exists>n. P n" | |
| 89 | shows "\<exists>n. \<not> P n \<and> P (Suc n)" | |
| 90 | proof - | |
| 91 | from `\<exists>n. P n` have "P (Least P)" by (rule LeastI_ex) | |
| 92 | with `\<not> P 0` obtain n where "Least P = Suc n" | |
| 93 | by (cases "Least P") auto | |
| 94 | then have "n < Least P" by simp | |
| 95 | then have "\<not> P n" by (rule not_less_Least) | |
| 96 | then have "\<not> P n \<and> P (Suc n)" | |
| 97 | using `P (Least P)` `Least P = Suc n` by simp | |
| 98 | then show ?thesis .. | |
| 99 | qed | |
| 100 | ||
| 101 | lemma floor_exists: | |
| 102 | fixes x :: "'a::archimedean_field" | |
| 103 | shows "\<exists>z. of_int z \<le> x \<and> x < of_int (z + 1)" | |
| 104 | proof (cases) | |
| 105 | assume "0 \<le> x" | |
| 106 | then have "\<not> x < of_nat 0" by simp | |
| 107 | then have "\<exists>n. \<not> x < of_nat n \<and> x < of_nat (Suc n)" | |
| 108 | using ex_less_of_nat by (rule exists_least_lemma) | |
| 109 | then obtain n where "\<not> x < of_nat n \<and> x < of_nat (Suc n)" .. | |
| 110 | then have "of_int (int n) \<le> x \<and> x < of_int (int n + 1)" by simp | |
| 111 | then show ?thesis .. | |
| 112 | next | |
| 113 | assume "\<not> 0 \<le> x" | |
| 114 | then have "\<not> - x \<le> of_nat 0" by simp | |
| 115 | then have "\<exists>n. \<not> - x \<le> of_nat n \<and> - x \<le> of_nat (Suc n)" | |
| 116 | using ex_le_of_nat by (rule exists_least_lemma) | |
| 117 | then obtain n where "\<not> - x \<le> of_nat n \<and> - x \<le> of_nat (Suc n)" .. | |
| 118 | then have "of_int (- int n - 1) \<le> x \<and> x < of_int (- int n - 1 + 1)" by simp | |
| 119 | then show ?thesis .. | |
| 120 | qed | |
| 121 | ||
| 122 | lemma floor_exists1: | |
| 123 | fixes x :: "'a::archimedean_field" | |
| 124 | shows "\<exists>!z. of_int z \<le> x \<and> x < of_int (z + 1)" | |
| 125 | proof (rule ex_ex1I) | |
| 126 | show "\<exists>z. of_int z \<le> x \<and> x < of_int (z + 1)" | |
| 127 | by (rule floor_exists) | |
| 128 | next | |
| 129 | fix y z assume | |
| 130 | "of_int y \<le> x \<and> x < of_int (y + 1)" | |
| 131 | "of_int z \<le> x \<and> x < of_int (z + 1)" | |
| 132 | then have | |
| 133 | "of_int y \<le> x" "x < of_int (y + 1)" | |
| 134 | "of_int z \<le> x" "x < of_int (z + 1)" | |
| 135 | by simp_all | |
| 136 | from le_less_trans [OF `of_int y \<le> x` `x < of_int (z + 1)`] | |
| 137 | le_less_trans [OF `of_int z \<le> x` `x < of_int (y + 1)`] | |
| 138 | show "y = z" by (simp del: of_int_add) | |
| 139 | qed | |
| 140 | ||
| 141 | ||
| 142 | subsection {* Floor function *}
 | |
| 143 | ||
| 144 | definition | |
| 145 | floor :: "'a::archimedean_field \<Rightarrow> int" where | |
| 146 | [code del]: "floor x = (THE z. of_int z \<le> x \<and> x < of_int (z + 1))" | |
| 147 | ||
| 148 | notation (xsymbols) | |
| 149 |   floor  ("\<lfloor>_\<rfloor>")
 | |
| 150 | ||
| 151 | notation (HTML output) | |
| 152 |   floor  ("\<lfloor>_\<rfloor>")
 | |
| 153 | ||
| 154 | lemma floor_correct: "of_int (floor x) \<le> x \<and> x < of_int (floor x + 1)" | |
| 155 | unfolding floor_def using floor_exists1 by (rule theI') | |
| 156 | ||
| 157 | lemma floor_unique: "\<lbrakk>of_int z \<le> x; x < of_int z + 1\<rbrakk> \<Longrightarrow> floor x = z" | |
| 158 | using floor_correct [of x] floor_exists1 [of x] by auto | |
| 159 | ||
| 160 | lemma of_int_floor_le: "of_int (floor x) \<le> x" | |
| 161 | using floor_correct .. | |
| 162 | ||
| 163 | lemma le_floor_iff: "z \<le> floor x \<longleftrightarrow> of_int z \<le> x" | |
| 164 | proof | |
| 165 | assume "z \<le> floor x" | |
| 166 | then have "(of_int z :: 'a) \<le> of_int (floor x)" by simp | |
| 167 | also have "of_int (floor x) \<le> x" by (rule of_int_floor_le) | |
| 168 | finally show "of_int z \<le> x" . | |
| 169 | next | |
| 170 | assume "of_int z \<le> x" | |
| 171 | also have "x < of_int (floor x + 1)" using floor_correct .. | |
| 172 | finally show "z \<le> floor x" by (simp del: of_int_add) | |
| 173 | qed | |
| 174 | ||
| 175 | lemma floor_less_iff: "floor x < z \<longleftrightarrow> x < of_int z" | |
| 176 | by (simp add: not_le [symmetric] le_floor_iff) | |
| 177 | ||
| 178 | lemma less_floor_iff: "z < floor x \<longleftrightarrow> of_int z + 1 \<le> x" | |
| 179 | using le_floor_iff [of "z + 1" x] by auto | |
| 180 | ||
| 181 | lemma floor_le_iff: "floor x \<le> z \<longleftrightarrow> x < of_int z + 1" | |
| 182 | by (simp add: not_less [symmetric] less_floor_iff) | |
| 183 | ||
| 184 | lemma floor_mono: assumes "x \<le> y" shows "floor x \<le> floor y" | |
| 185 | proof - | |
| 186 | have "of_int (floor x) \<le> x" by (rule of_int_floor_le) | |
| 187 | also note `x \<le> y` | |
| 188 | finally show ?thesis by (simp add: le_floor_iff) | |
| 189 | qed | |
| 190 | ||
| 191 | lemma floor_less_cancel: "floor x < floor y \<Longrightarrow> x < y" | |
| 192 | by (auto simp add: not_le [symmetric] floor_mono) | |
| 193 | ||
| 194 | lemma floor_of_int [simp]: "floor (of_int z) = z" | |
| 195 | by (rule floor_unique) simp_all | |
| 196 | ||
| 197 | lemma floor_of_nat [simp]: "floor (of_nat n) = int n" | |
| 198 | using floor_of_int [of "of_nat n"] by simp | |
| 199 | ||
| 200 | text {* Floor with numerals *}
 | |
| 201 | ||
| 202 | lemma floor_zero [simp]: "floor 0 = 0" | |
| 203 | using floor_of_int [of 0] by simp | |
| 204 | ||
| 205 | lemma floor_one [simp]: "floor 1 = 1" | |
| 206 | using floor_of_int [of 1] by simp | |
| 207 | ||
| 208 | lemma floor_number_of [simp]: "floor (number_of v) = number_of v" | |
| 209 | using floor_of_int [of "number_of v"] by simp | |
| 210 | ||
| 211 | lemma zero_le_floor [simp]: "0 \<le> floor x \<longleftrightarrow> 0 \<le> x" | |
| 212 | by (simp add: le_floor_iff) | |
| 213 | ||
| 214 | lemma one_le_floor [simp]: "1 \<le> floor x \<longleftrightarrow> 1 \<le> x" | |
| 215 | by (simp add: le_floor_iff) | |
| 216 | ||
| 217 | lemma number_of_le_floor [simp]: "number_of v \<le> floor x \<longleftrightarrow> number_of v \<le> x" | |
| 218 | by (simp add: le_floor_iff) | |
| 219 | ||
| 220 | lemma zero_less_floor [simp]: "0 < floor x \<longleftrightarrow> 1 \<le> x" | |
| 221 | by (simp add: less_floor_iff) | |
| 222 | ||
| 223 | lemma one_less_floor [simp]: "1 < floor x \<longleftrightarrow> 2 \<le> x" | |
| 224 | by (simp add: less_floor_iff) | |
| 225 | ||
| 226 | lemma number_of_less_floor [simp]: | |
| 227 | "number_of v < floor x \<longleftrightarrow> number_of v + 1 \<le> x" | |
| 228 | by (simp add: less_floor_iff) | |
| 229 | ||
| 230 | lemma floor_le_zero [simp]: "floor x \<le> 0 \<longleftrightarrow> x < 1" | |
| 231 | by (simp add: floor_le_iff) | |
| 232 | ||
| 233 | lemma floor_le_one [simp]: "floor x \<le> 1 \<longleftrightarrow> x < 2" | |
| 234 | by (simp add: floor_le_iff) | |
| 235 | ||
| 236 | lemma floor_le_number_of [simp]: | |
| 237 | "floor x \<le> number_of v \<longleftrightarrow> x < number_of v + 1" | |
| 238 | by (simp add: floor_le_iff) | |
| 239 | ||
| 240 | lemma floor_less_zero [simp]: "floor x < 0 \<longleftrightarrow> x < 0" | |
| 241 | by (simp add: floor_less_iff) | |
| 242 | ||
| 243 | lemma floor_less_one [simp]: "floor x < 1 \<longleftrightarrow> x < 1" | |
| 244 | by (simp add: floor_less_iff) | |
| 245 | ||
| 246 | lemma floor_less_number_of [simp]: | |
| 247 | "floor x < number_of v \<longleftrightarrow> x < number_of v" | |
| 248 | by (simp add: floor_less_iff) | |
| 249 | ||
| 250 | text {* Addition and subtraction of integers *}
 | |
| 251 | ||
| 252 | lemma floor_add_of_int [simp]: "floor (x + of_int z) = floor x + z" | |
| 253 | using floor_correct [of x] by (simp add: floor_unique) | |
| 254 | ||
| 255 | lemma floor_add_number_of [simp]: | |
| 256 | "floor (x + number_of v) = floor x + number_of v" | |
| 257 | using floor_add_of_int [of x "number_of v"] by simp | |
| 258 | ||
| 259 | lemma floor_add_one [simp]: "floor (x + 1) = floor x + 1" | |
| 260 | using floor_add_of_int [of x 1] by simp | |
| 261 | ||
| 262 | lemma floor_diff_of_int [simp]: "floor (x - of_int z) = floor x - z" | |
| 263 | using floor_add_of_int [of x "- z"] by (simp add: algebra_simps) | |
| 264 | ||
| 265 | lemma floor_diff_number_of [simp]: | |
| 266 | "floor (x - number_of v) = floor x - number_of v" | |
| 267 | using floor_diff_of_int [of x "number_of v"] by simp | |
| 268 | ||
| 269 | lemma floor_diff_one [simp]: "floor (x - 1) = floor x - 1" | |
| 270 | using floor_diff_of_int [of x 1] by simp | |
| 271 | ||
| 272 | ||
| 273 | subsection {* Ceiling function *}
 | |
| 274 | ||
| 275 | definition | |
| 276 | ceiling :: "'a::archimedean_field \<Rightarrow> int" where | |
| 277 | [code del]: "ceiling x = - floor (- x)" | |
| 278 | ||
| 279 | notation (xsymbols) | |
| 280 |   ceiling  ("\<lceil>_\<rceil>")
 | |
| 281 | ||
| 282 | notation (HTML output) | |
| 283 |   ceiling  ("\<lceil>_\<rceil>")
 | |
| 284 | ||
| 285 | lemma ceiling_correct: "of_int (ceiling x) - 1 < x \<and> x \<le> of_int (ceiling x)" | |
| 286 | unfolding ceiling_def using floor_correct [of "- x"] by simp | |
| 287 | ||
| 288 | lemma ceiling_unique: "\<lbrakk>of_int z - 1 < x; x \<le> of_int z\<rbrakk> \<Longrightarrow> ceiling x = z" | |
| 289 | unfolding ceiling_def using floor_unique [of "- z" "- x"] by simp | |
| 290 | ||
| 291 | lemma le_of_int_ceiling: "x \<le> of_int (ceiling x)" | |
| 292 | using ceiling_correct .. | |
| 293 | ||
| 294 | lemma ceiling_le_iff: "ceiling x \<le> z \<longleftrightarrow> x \<le> of_int z" | |
| 295 | unfolding ceiling_def using le_floor_iff [of "- z" "- x"] by auto | |
| 296 | ||
| 297 | lemma less_ceiling_iff: "z < ceiling x \<longleftrightarrow> of_int z < x" | |
| 298 | by (simp add: not_le [symmetric] ceiling_le_iff) | |
| 299 | ||
| 300 | lemma ceiling_less_iff: "ceiling x < z \<longleftrightarrow> x \<le> of_int z - 1" | |
| 301 | using ceiling_le_iff [of x "z - 1"] by simp | |
| 302 | ||
| 303 | lemma le_ceiling_iff: "z \<le> ceiling x \<longleftrightarrow> of_int z - 1 < x" | |
| 304 | by (simp add: not_less [symmetric] ceiling_less_iff) | |
| 305 | ||
| 306 | lemma ceiling_mono: "x \<ge> y \<Longrightarrow> ceiling x \<ge> ceiling y" | |
| 307 | unfolding ceiling_def by (simp add: floor_mono) | |
| 308 | ||
| 309 | lemma ceiling_less_cancel: "ceiling x < ceiling y \<Longrightarrow> x < y" | |
| 310 | by (auto simp add: not_le [symmetric] ceiling_mono) | |
| 311 | ||
| 312 | lemma ceiling_of_int [simp]: "ceiling (of_int z) = z" | |
| 313 | by (rule ceiling_unique) simp_all | |
| 314 | ||
| 315 | lemma ceiling_of_nat [simp]: "ceiling (of_nat n) = int n" | |
| 316 | using ceiling_of_int [of "of_nat n"] by simp | |
| 317 | ||
| 318 | text {* Ceiling with numerals *}
 | |
| 319 | ||
| 320 | lemma ceiling_zero [simp]: "ceiling 0 = 0" | |
| 321 | using ceiling_of_int [of 0] by simp | |
| 322 | ||
| 323 | lemma ceiling_one [simp]: "ceiling 1 = 1" | |
| 324 | using ceiling_of_int [of 1] by simp | |
| 325 | ||
| 326 | lemma ceiling_number_of [simp]: "ceiling (number_of v) = number_of v" | |
| 327 | using ceiling_of_int [of "number_of v"] by simp | |
| 328 | ||
| 329 | lemma ceiling_le_zero [simp]: "ceiling x \<le> 0 \<longleftrightarrow> x \<le> 0" | |
| 330 | by (simp add: ceiling_le_iff) | |
| 331 | ||
| 332 | lemma ceiling_le_one [simp]: "ceiling x \<le> 1 \<longleftrightarrow> x \<le> 1" | |
| 333 | by (simp add: ceiling_le_iff) | |
| 334 | ||
| 335 | lemma ceiling_le_number_of [simp]: | |
| 336 | "ceiling x \<le> number_of v \<longleftrightarrow> x \<le> number_of v" | |
| 337 | by (simp add: ceiling_le_iff) | |
| 338 | ||
| 339 | lemma ceiling_less_zero [simp]: "ceiling x < 0 \<longleftrightarrow> x \<le> -1" | |
| 340 | by (simp add: ceiling_less_iff) | |
| 341 | ||
| 342 | lemma ceiling_less_one [simp]: "ceiling x < 1 \<longleftrightarrow> x \<le> 0" | |
| 343 | by (simp add: ceiling_less_iff) | |
| 344 | ||
| 345 | lemma ceiling_less_number_of [simp]: | |
| 346 | "ceiling x < number_of v \<longleftrightarrow> x \<le> number_of v - 1" | |
| 347 | by (simp add: ceiling_less_iff) | |
| 348 | ||
| 349 | lemma zero_le_ceiling [simp]: "0 \<le> ceiling x \<longleftrightarrow> -1 < x" | |
| 350 | by (simp add: le_ceiling_iff) | |
| 351 | ||
| 352 | lemma one_le_ceiling [simp]: "1 \<le> ceiling x \<longleftrightarrow> 0 < x" | |
| 353 | by (simp add: le_ceiling_iff) | |
| 354 | ||
| 355 | lemma number_of_le_ceiling [simp]: | |
| 356 | "number_of v \<le> ceiling x\<longleftrightarrow> number_of v - 1 < x" | |
| 357 | by (simp add: le_ceiling_iff) | |
| 358 | ||
| 359 | lemma zero_less_ceiling [simp]: "0 < ceiling x \<longleftrightarrow> 0 < x" | |
| 360 | by (simp add: less_ceiling_iff) | |
| 361 | ||
| 362 | lemma one_less_ceiling [simp]: "1 < ceiling x \<longleftrightarrow> 1 < x" | |
| 363 | by (simp add: less_ceiling_iff) | |
| 364 | ||
| 365 | lemma number_of_less_ceiling [simp]: | |
| 366 | "number_of v < ceiling x \<longleftrightarrow> number_of v < x" | |
| 367 | by (simp add: less_ceiling_iff) | |
| 368 | ||
| 369 | text {* Addition and subtraction of integers *}
 | |
| 370 | ||
| 371 | lemma ceiling_add_of_int [simp]: "ceiling (x + of_int z) = ceiling x + z" | |
| 372 | using ceiling_correct [of x] by (simp add: ceiling_unique) | |
| 373 | ||
| 374 | lemma ceiling_add_number_of [simp]: | |
| 375 | "ceiling (x + number_of v) = ceiling x + number_of v" | |
| 376 | using ceiling_add_of_int [of x "number_of v"] by simp | |
| 377 | ||
| 378 | lemma ceiling_add_one [simp]: "ceiling (x + 1) = ceiling x + 1" | |
| 379 | using ceiling_add_of_int [of x 1] by simp | |
| 380 | ||
| 381 | lemma ceiling_diff_of_int [simp]: "ceiling (x - of_int z) = ceiling x - z" | |
| 382 | using ceiling_add_of_int [of x "- z"] by (simp add: algebra_simps) | |
| 383 | ||
| 384 | lemma ceiling_diff_number_of [simp]: | |
| 385 | "ceiling (x - number_of v) = ceiling x - number_of v" | |
| 386 | using ceiling_diff_of_int [of x "number_of v"] by simp | |
| 387 | ||
| 388 | lemma ceiling_diff_one [simp]: "ceiling (x - 1) = ceiling x - 1" | |
| 389 | using ceiling_diff_of_int [of x 1] by simp | |
| 390 | ||
| 391 | ||
| 392 | subsection {* Negation *}
 | |
| 393 | ||
| 30102 | 394 | lemma floor_minus: "floor (- x) = - ceiling x" | 
| 30096 | 395 | unfolding ceiling_def by simp | 
| 396 | ||
| 30102 | 397 | lemma ceiling_minus: "ceiling (- x) = - floor x" | 
| 30096 | 398 | unfolding ceiling_def by simp | 
| 399 | ||
| 400 | end |