src/HOLCF/Cprod2.ML
author wenzelm
Wed, 08 Mar 2000 17:48:31 +0100
changeset 8364 0eb9ee70c8f8
parent 4721 c8a8482a8124
child 9245 428385c4bc50
permissions -rw-r--r--
added Isar/rule_cases.ML;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
     1
(*  Title:      HOLCF/cprod2.ML
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
     2
    ID:         $Id$
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
     3
    Author:     Franz Regensburger
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
     4
    Copyright   1993 Technische Universitaet Muenchen
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
     5
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
     6
Lemmas for cprod2.thy 
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
     7
*)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
     8
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
     9
open Cprod2;
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    10
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    11
(* for compatibility with old HOLCF-Version *)
3842
b55686a7b22c fixed dots;
wenzelm
parents: 3323
diff changeset
    12
qed_goal "inst_cprod_po" thy "(op <<)=(%x y. fst x<<fst y & snd x<<snd y)"
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    13
 (fn prems => 
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    14
        [
3323
194ae2e0c193 eliminated the constant less by the introduction of the axclass sq_ord
slotosch
parents: 2840
diff changeset
    15
        (fold_goals_tac [less_cprod_def]),
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    16
        (rtac refl 1)
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    17
        ]);
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    18
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    19
qed_goalw "less_cprod4c" thy [inst_cprod_po RS eq_reflection]
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    20
 "(x1,y1) << (x2,y2) ==> x1 << x2 & y1 << y2"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    21
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    22
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    23
        (cut_facts_tac prems 1),
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    24
        (etac conjE 1),
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    25
        (dtac (fst_conv RS subst) 1),
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    26
        (dtac (fst_conv RS subst) 1),
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    27
        (dtac (fst_conv RS subst) 1),
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    28
        (dtac (snd_conv RS subst) 1),
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    29
        (dtac (snd_conv RS subst) 1),
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    30
        (dtac (snd_conv RS subst) 1),
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    31
        (rtac conjI 1),
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    32
        (atac 1),
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    33
        (atac 1)
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    34
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    35
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    36
(* ------------------------------------------------------------------------ *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    37
(* type cprod is pointed                                                    *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    38
(* ------------------------------------------------------------------------ *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    39
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    40
qed_goal "minimal_cprod" thy  "(UU,UU)<<p"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    41
(fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    42
        [
4098
71e05eb27fb6 isatool fixclasimp;
wenzelm
parents: 3842
diff changeset
    43
        (simp_tac(simpset() addsimps[inst_cprod_po])1)
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    44
        ]);
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    45
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    46
bind_thm ("UU_cprod_def",minimal_cprod RS minimal2UU RS sym);
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    47
3842
b55686a7b22c fixed dots;
wenzelm
parents: 3323
diff changeset
    48
qed_goal "least_cprod" thy "? x::'a*'b.!y. x<<y"
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    49
(fn prems =>
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    50
        [
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    51
        (res_inst_tac [("x","(UU,UU)")] exI 1),
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    52
        (rtac (minimal_cprod RS allI) 1)
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    53
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    54
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    55
(* ------------------------------------------------------------------------ *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    56
(* Pair <_,_>  is monotone in both arguments                                *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    57
(* ------------------------------------------------------------------------ *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    58
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    59
qed_goalw "monofun_pair1" thy [monofun] "monofun Pair"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    60
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    61
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    62
        (strip_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    63
        (rtac (less_fun RS iffD2) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    64
        (strip_tac 1),
4098
71e05eb27fb6 isatool fixclasimp;
wenzelm
parents: 3842
diff changeset
    65
        (asm_simp_tac (simpset() addsimps [inst_cprod_po]) 1)
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    66
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    67
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    68
qed_goalw "monofun_pair2" thy [monofun] "monofun(Pair x)"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    69
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    70
        [
4098
71e05eb27fb6 isatool fixclasimp;
wenzelm
parents: 3842
diff changeset
    71
        (asm_simp_tac (simpset() addsimps [inst_cprod_po]) 1)
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    72
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    73
3323
194ae2e0c193 eliminated the constant less by the introduction of the axclass sq_ord
slotosch
parents: 2840
diff changeset
    74
qed_goal "monofun_pair" thy "[|x1<<x2; y1<<y2|] ==> (x1::'a::cpo,y1::'b::cpo)<<(x2,y2)"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    75
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    76
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    77
        (cut_facts_tac prems 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    78
        (rtac trans_less 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    79
        (rtac (monofun_pair1 RS monofunE RS spec RS spec RS mp RS 
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    80
        (less_fun RS iffD1 RS spec)) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    81
        (rtac (monofun_pair2 RS monofunE RS spec RS spec RS mp) 2),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    82
        (atac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    83
        (atac 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    84
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    85
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    86
(* ------------------------------------------------------------------------ *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    87
(* fst and snd are monotone                                                 *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    88
(* ------------------------------------------------------------------------ *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    89
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    90
qed_goalw "monofun_fst" thy [monofun] "monofun fst"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    91
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    92
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    93
        (strip_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    94
        (res_inst_tac [("p","x")] PairE 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    95
        (hyp_subst_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    96
        (res_inst_tac [("p","y")] PairE 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    97
        (hyp_subst_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    98
        (Asm_simp_tac  1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
    99
        (etac (less_cprod4c RS conjunct1) 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   100
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   101
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
   102
qed_goalw "monofun_snd" thy [monofun] "monofun snd"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   103
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   104
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   105
        (strip_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   106
        (res_inst_tac [("p","x")] PairE 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   107
        (hyp_subst_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   108
        (res_inst_tac [("p","y")] PairE 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   109
        (hyp_subst_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   110
        (Asm_simp_tac  1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   111
        (etac (less_cprod4c RS conjunct2) 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   112
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   113
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   114
(* ------------------------------------------------------------------------ *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   115
(* the type 'a * 'b is a cpo                                                *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   116
(* ------------------------------------------------------------------------ *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   117
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
   118
qed_goal "lub_cprod" thy 
4721
c8a8482a8124 renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
oheimb
parents: 4098
diff changeset
   119
"chain S ==> range S<<|(lub(range(%i. fst(S i))),lub(range(%i. snd(S i))))"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   120
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   121
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   122
        (cut_facts_tac prems 1),
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
   123
        (rtac (conjI RS is_lubI) 1),
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
   124
        (rtac (allI RS ub_rangeI) 1),
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
   125
        (res_inst_tac [("t","S i")] (surjective_pairing RS ssubst) 1),
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   126
        (rtac monofun_pair 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   127
        (rtac is_ub_thelub 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   128
        (etac (monofun_fst RS ch2ch_monofun) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   129
        (rtac is_ub_thelub 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   130
        (etac (monofun_snd RS ch2ch_monofun) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   131
        (strip_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   132
        (res_inst_tac [("t","u")] (surjective_pairing RS ssubst) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   133
        (rtac monofun_pair 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   134
        (rtac is_lub_thelub 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   135
        (etac (monofun_fst RS ch2ch_monofun) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   136
        (etac (monofun_fst RS ub2ub_monofun) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   137
        (rtac is_lub_thelub 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   138
        (etac (monofun_snd RS ch2ch_monofun) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   139
        (etac (monofun_snd RS ub2ub_monofun) 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   140
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   141
1779
1155c06fa956 introduced forgotten bind_thm calls
oheimb
parents: 1461
diff changeset
   142
bind_thm ("thelub_cprod", lub_cprod RS thelubI);
1168
74be52691d62 The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents: 899
diff changeset
   143
(*
4721
c8a8482a8124 renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
oheimb
parents: 4098
diff changeset
   144
"chain ?S1 ==>
1168
74be52691d62 The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents: 899
diff changeset
   145
 lub (range ?S1) =
74be52691d62 The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents: 899
diff changeset
   146
 (lub (range (%i. fst (?S1 i))), lub (range (%i. snd (?S1 i))))" : thm
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   147
1168
74be52691d62 The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents: 899
diff changeset
   148
*)
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   149
4721
c8a8482a8124 renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
oheimb
parents: 4098
diff changeset
   150
qed_goal "cpo_cprod" thy "chain(S::nat=>'a::cpo*'b::cpo)==>? x. range S<<| x"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   151
(fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   152
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   153
        (cut_facts_tac prems 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   154
        (rtac exI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   155
        (etac lub_cprod 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1267
diff changeset
   156
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   157
1168
74be52691d62 The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents: 899
diff changeset
   158