src/HOLCF/Ssum2.ML
author wenzelm
Wed, 08 Mar 2000 17:48:31 +0100
changeset 8364 0eb9ee70c8f8
parent 4721 c8a8482a8124
child 9169 85a47aa21f74
permissions -rw-r--r--
added Isar/rule_cases.ML;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
     1
(*  Title:      HOLCF/Ssum2.ML
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
     2
    ID:         $Id$
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
     3
    Author:     Franz Regensburger
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
     4
    Copyright   1993 Technische Universitaet Muenchen
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
     5
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
     6
Lemmas for Ssum2.thy
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
     7
*)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
     8
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
     9
open Ssum2;
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    10
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    11
(* for compatibility with old HOLCF-Version *)
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    12
qed_goal "inst_ssum_po" thy "(op <<)=(%s1 s2.@z.\
3842
b55686a7b22c fixed dots;
wenzelm
parents: 3323
diff changeset
    13
\         (! u x. s1=Isinl u & s2=Isinl x --> z = u << x)\
b55686a7b22c fixed dots;
wenzelm
parents: 3323
diff changeset
    14
\        &(! v y. s1=Isinr v & s2=Isinr y --> z = v << y)\
b55686a7b22c fixed dots;
wenzelm
parents: 3323
diff changeset
    15
\        &(! u y. s1=Isinl u & s2=Isinr y --> z = (u = UU))\
b55686a7b22c fixed dots;
wenzelm
parents: 3323
diff changeset
    16
\        &(! v x. s1=Isinr v & s2=Isinl x --> z = (v = UU)))"
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    17
 (fn prems => 
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    18
        [
3323
194ae2e0c193 eliminated the constant less by the introduction of the axclass sq_ord
slotosch
parents: 2640
diff changeset
    19
        (fold_goals_tac [less_ssum_def]),
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    20
        (rtac refl 1)
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    21
        ]);
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    22
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    23
(* ------------------------------------------------------------------------ *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    24
(* access to less_ssum in class po                                          *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    25
(* ------------------------------------------------------------------------ *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    26
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    27
qed_goal "less_ssum3a" thy "Isinl x << Isinl y = x << y"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    28
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
    29
        [
4098
71e05eb27fb6 isatool fixclasimp;
wenzelm
parents: 3842
diff changeset
    30
        (simp_tac (simpset() addsimps [less_ssum2a]) 1)
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
    31
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    32
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    33
qed_goal "less_ssum3b" thy "Isinr x << Isinr y = x << y"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    34
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
    35
        [
4098
71e05eb27fb6 isatool fixclasimp;
wenzelm
parents: 3842
diff changeset
    36
        (simp_tac (simpset() addsimps [less_ssum2b]) 1)
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
    37
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    38
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    39
qed_goal "less_ssum3c" thy "Isinl x << Isinr y = (x = UU)"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    40
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
    41
        [
4098
71e05eb27fb6 isatool fixclasimp;
wenzelm
parents: 3842
diff changeset
    42
        (simp_tac (simpset() addsimps [less_ssum2c]) 1)
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
    43
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    44
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    45
qed_goal "less_ssum3d" thy "Isinr x << Isinl y = (x = UU)"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    46
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
    47
        [
4098
71e05eb27fb6 isatool fixclasimp;
wenzelm
parents: 3842
diff changeset
    48
        (simp_tac (simpset() addsimps [less_ssum2d]) 1)
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
    49
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    50
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    51
(* ------------------------------------------------------------------------ *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    52
(* type ssum ++ is pointed                                                  *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    53
(* ------------------------------------------------------------------------ *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    54
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    55
qed_goal "minimal_ssum" thy "Isinl UU << s"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    56
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
    57
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
    58
        (res_inst_tac [("p","s")] IssumE2 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
    59
        (hyp_subst_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
    60
        (rtac (less_ssum3a RS iffD2) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
    61
        (rtac minimal 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
    62
        (hyp_subst_tac 1),
2033
639de962ded4 Ran expandshort; used stac instead of ssubst
paulson
parents: 1779
diff changeset
    63
        (stac strict_IsinlIsinr 1),
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
    64
        (rtac (less_ssum3b RS iffD2) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
    65
        (rtac minimal 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
    66
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    67
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    68
bind_thm ("UU_ssum_def",minimal_ssum RS minimal2UU RS sym);
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    69
3842
b55686a7b22c fixed dots;
wenzelm
parents: 3323
diff changeset
    70
qed_goal "least_ssum" thy "? x::'a++'b.!y. x<<y"
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    71
(fn prems =>
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    72
        [
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    73
        (res_inst_tac [("x","Isinl UU")] exI 1),
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    74
        (rtac (minimal_ssum RS allI) 1)
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    75
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    76
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    77
(* ------------------------------------------------------------------------ *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    78
(* Isinl, Isinr are monotone                                                *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    79
(* ------------------------------------------------------------------------ *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    80
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    81
qed_goalw "monofun_Isinl" thy [monofun] "monofun(Isinl)"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    82
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
    83
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
    84
        (strip_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
    85
        (etac (less_ssum3a RS iffD2) 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
    86
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    87
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
    88
qed_goalw "monofun_Isinr" thy [monofun] "monofun(Isinr)"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    89
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
    90
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
    91
        (strip_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
    92
        (etac (less_ssum3b RS iffD2) 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
    93
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    94
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    95
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    96
(* ------------------------------------------------------------------------ *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    97
(* Iwhen is monotone in all arguments                                       *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    98
(* ------------------------------------------------------------------------ *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    99
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   100
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
   101
qed_goalw "monofun_Iwhen1" thy [monofun] "monofun(Iwhen)"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   102
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   103
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   104
        (strip_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   105
        (rtac (less_fun RS iffD2) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   106
        (strip_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   107
        (rtac (less_fun RS iffD2) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   108
        (strip_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   109
        (res_inst_tac [("p","xb")] IssumE 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   110
        (hyp_subst_tac 1),
1277
caef3601c0b2 corrected some errors that occurred after introduction of local simpsets
regensbu
parents: 1267
diff changeset
   111
        (asm_simp_tac Ssum0_ss 1),
caef3601c0b2 corrected some errors that occurred after introduction of local simpsets
regensbu
parents: 1267
diff changeset
   112
        (asm_simp_tac Ssum0_ss 1),
caef3601c0b2 corrected some errors that occurred after introduction of local simpsets
regensbu
parents: 1267
diff changeset
   113
        (etac monofun_cfun_fun 1),
caef3601c0b2 corrected some errors that occurred after introduction of local simpsets
regensbu
parents: 1267
diff changeset
   114
        (asm_simp_tac Ssum0_ss 1)
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   115
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   116
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
   117
qed_goalw "monofun_Iwhen2" thy [monofun] "monofun(Iwhen(f))"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   118
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   119
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   120
        (strip_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   121
        (rtac (less_fun RS iffD2) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   122
        (strip_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   123
        (res_inst_tac [("p","xa")] IssumE 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   124
        (hyp_subst_tac 1),
1277
caef3601c0b2 corrected some errors that occurred after introduction of local simpsets
regensbu
parents: 1267
diff changeset
   125
        (asm_simp_tac Ssum0_ss 1),
caef3601c0b2 corrected some errors that occurred after introduction of local simpsets
regensbu
parents: 1267
diff changeset
   126
        (asm_simp_tac Ssum0_ss 1),
caef3601c0b2 corrected some errors that occurred after introduction of local simpsets
regensbu
parents: 1267
diff changeset
   127
        (asm_simp_tac Ssum0_ss 1),
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   128
        (etac monofun_cfun_fun 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   129
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   130
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
   131
qed_goalw "monofun_Iwhen3" thy [monofun] "monofun(Iwhen(f)(g))"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   132
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   133
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   134
        (strip_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   135
        (res_inst_tac [("p","x")] IssumE 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   136
        (hyp_subst_tac 1),
1277
caef3601c0b2 corrected some errors that occurred after introduction of local simpsets
regensbu
parents: 1267
diff changeset
   137
        (asm_simp_tac Ssum0_ss 1),
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   138
        (hyp_subst_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   139
        (res_inst_tac [("p","y")] IssumE 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   140
        (hyp_subst_tac 1),
1277
caef3601c0b2 corrected some errors that occurred after introduction of local simpsets
regensbu
parents: 1267
diff changeset
   141
        (asm_simp_tac Ssum0_ss 1),
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   142
        (res_inst_tac  [("P","xa=UU")] notE 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   143
        (atac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   144
        (rtac UU_I 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   145
        (rtac (less_ssum3a  RS iffD1) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   146
        (atac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   147
        (hyp_subst_tac 1),
1277
caef3601c0b2 corrected some errors that occurred after introduction of local simpsets
regensbu
parents: 1267
diff changeset
   148
        (asm_simp_tac Ssum0_ss 1),
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   149
        (rtac monofun_cfun_arg 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   150
        (etac (less_ssum3a  RS iffD1) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   151
        (hyp_subst_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   152
        (res_inst_tac [("s","UU"),("t","xa")] subst 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   153
        (etac (less_ssum3c  RS iffD1 RS sym) 1),
1277
caef3601c0b2 corrected some errors that occurred after introduction of local simpsets
regensbu
parents: 1267
diff changeset
   154
        (asm_simp_tac Ssum0_ss 1),
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   155
        (hyp_subst_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   156
        (res_inst_tac [("p","y")] IssumE 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   157
        (hyp_subst_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   158
        (res_inst_tac [("s","UU"),("t","ya")] subst 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   159
        (etac (less_ssum3d  RS iffD1 RS sym) 1),
1277
caef3601c0b2 corrected some errors that occurred after introduction of local simpsets
regensbu
parents: 1267
diff changeset
   160
        (asm_simp_tac Ssum0_ss 1),
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   161
        (hyp_subst_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   162
        (res_inst_tac [("s","UU"),("t","ya")] subst 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   163
        (etac (less_ssum3d  RS iffD1 RS sym) 1),
1277
caef3601c0b2 corrected some errors that occurred after introduction of local simpsets
regensbu
parents: 1267
diff changeset
   164
        (asm_simp_tac Ssum0_ss 1),
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   165
        (hyp_subst_tac 1),
1277
caef3601c0b2 corrected some errors that occurred after introduction of local simpsets
regensbu
parents: 1267
diff changeset
   166
        (asm_simp_tac Ssum0_ss 1),
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   167
        (rtac monofun_cfun_arg 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   168
        (etac (less_ssum3b  RS iffD1) 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   169
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   170
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   171
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   172
(* ------------------------------------------------------------------------ *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   173
(* some kind of exhaustion rules for chains in 'a ++ 'b                     *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   174
(* ------------------------------------------------------------------------ *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   175
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
   176
qed_goal "ssum_lemma1" thy 
3842
b55686a7b22c fixed dots;
wenzelm
parents: 3323
diff changeset
   177
"[|~(!i.? x. Y(i::nat)=Isinl(x))|] ==> (? i.! x. Y(i)~=Isinl(x))"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   178
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   179
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   180
        (cut_facts_tac prems 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   181
        (fast_tac HOL_cs 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   182
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   183
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
   184
qed_goal "ssum_lemma2" thy 
1168
74be52691d62 The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents: 961
diff changeset
   185
"[|(? i.!x.(Y::nat => 'a++'b)(i::nat)~=Isinl(x::'a))|] ==>\
74be52691d62 The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents: 961
diff changeset
   186
\   (? i y. (Y::nat => 'a++'b)(i::nat)=Isinr(y::'b) & y~=UU)"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   187
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   188
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   189
        (cut_facts_tac prems 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   190
        (etac exE 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   191
        (res_inst_tac [("p","Y(i)")] IssumE 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   192
        (dtac spec 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   193
        (contr_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   194
        (dtac spec 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   195
        (contr_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   196
        (fast_tac HOL_cs 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   197
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   198
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   199
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
   200
qed_goal "ssum_lemma3" thy 
4721
c8a8482a8124 renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
oheimb
parents: 4098
diff changeset
   201
"[|chain(Y);(? i x. Y(i)=Isinr(x::'b) & (x::'b)~=UU)|] ==>\
3842
b55686a7b22c fixed dots;
wenzelm
parents: 3323
diff changeset
   202
\ (!i.? y. Y(i)=Isinr(y))"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   203
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   204
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   205
        (cut_facts_tac prems 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   206
        (etac exE 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   207
        (etac exE 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   208
        (rtac allI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   209
        (res_inst_tac [("p","Y(ia)")] IssumE 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   210
        (rtac exI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   211
        (rtac trans 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   212
        (rtac strict_IsinlIsinr 2),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   213
        (atac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   214
        (etac exI 2),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   215
        (etac conjE 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   216
        (res_inst_tac [("m","i"),("n","ia")] nat_less_cases 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   217
        (hyp_subst_tac 2),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   218
        (etac exI 2),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   219
        (eres_inst_tac [("P","x=UU")] notE 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   220
        (rtac (less_ssum3d RS iffD1) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   221
        (eres_inst_tac [("s","Y(i)"),("t","Isinr(x)::'a++'b")] subst 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   222
        (eres_inst_tac [("s","Y(ia)"),("t","Isinl(xa)::'a++'b")] subst 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   223
        (etac (chain_mono RS mp) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   224
        (atac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   225
        (eres_inst_tac [("P","xa=UU")] notE 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   226
        (rtac (less_ssum3c RS iffD1) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   227
        (eres_inst_tac [("s","Y(i)"),("t","Isinr(x)::'a++'b")] subst 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   228
        (eres_inst_tac [("s","Y(ia)"),("t","Isinl(xa)::'a++'b")] subst 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   229
        (etac (chain_mono RS mp) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   230
        (atac 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   231
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   232
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
   233
qed_goal "ssum_lemma4" thy 
4721
c8a8482a8124 renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
oheimb
parents: 4098
diff changeset
   234
"chain(Y) ==> (!i.? x. Y(i)=Isinl(x))|(!i.? y. Y(i)=Isinr(y))"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   235
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   236
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   237
        (cut_facts_tac prems 1),
1675
36ba4da350c3 adapted several proofs
oheimb
parents: 1461
diff changeset
   238
        (rtac case_split_thm 1),
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   239
        (etac disjI1 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   240
        (rtac disjI2 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   241
        (etac ssum_lemma3 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   242
        (rtac ssum_lemma2 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   243
        (etac ssum_lemma1 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   244
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   245
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   246
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   247
(* ------------------------------------------------------------------------ *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   248
(* restricted surjectivity of Isinl                                         *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   249
(* ------------------------------------------------------------------------ *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   250
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
   251
qed_goal "ssum_lemma5" thy 
3842
b55686a7b22c fixed dots;
wenzelm
parents: 3323
diff changeset
   252
"z=Isinl(x)==> Isinl((Iwhen (LAM x. x) (LAM y. UU))(z)) = z"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   253
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   254
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   255
        (cut_facts_tac prems 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   256
        (hyp_subst_tac 1),
1675
36ba4da350c3 adapted several proofs
oheimb
parents: 1461
diff changeset
   257
        (case_tac "x=UU" 1),
1277
caef3601c0b2 corrected some errors that occurred after introduction of local simpsets
regensbu
parents: 1267
diff changeset
   258
        (asm_simp_tac Ssum0_ss 1),
caef3601c0b2 corrected some errors that occurred after introduction of local simpsets
regensbu
parents: 1267
diff changeset
   259
        (asm_simp_tac Ssum0_ss 1)
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   260
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   261
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   262
(* ------------------------------------------------------------------------ *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   263
(* restricted surjectivity of Isinr                                         *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   264
(* ------------------------------------------------------------------------ *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   265
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
   266
qed_goal "ssum_lemma6" thy 
3842
b55686a7b22c fixed dots;
wenzelm
parents: 3323
diff changeset
   267
"z=Isinr(x)==> Isinr((Iwhen (LAM y. UU) (LAM x. x))(z)) = z"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   268
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   269
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   270
        (cut_facts_tac prems 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   271
        (hyp_subst_tac 1),
1675
36ba4da350c3 adapted several proofs
oheimb
parents: 1461
diff changeset
   272
        (case_tac "x=UU" 1),
1277
caef3601c0b2 corrected some errors that occurred after introduction of local simpsets
regensbu
parents: 1267
diff changeset
   273
        (asm_simp_tac Ssum0_ss 1),
caef3601c0b2 corrected some errors that occurred after introduction of local simpsets
regensbu
parents: 1267
diff changeset
   274
        (asm_simp_tac Ssum0_ss 1)
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   275
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   276
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   277
(* ------------------------------------------------------------------------ *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   278
(* technical lemmas                                                         *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   279
(* ------------------------------------------------------------------------ *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   280
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
   281
qed_goal "ssum_lemma7" thy 
3842
b55686a7b22c fixed dots;
wenzelm
parents: 3323
diff changeset
   282
"[|Isinl(x) << z; x~=UU|] ==> ? y. z=Isinl(y) & y~=UU"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   283
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   284
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   285
        (cut_facts_tac prems 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   286
        (res_inst_tac [("p","z")] IssumE 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   287
        (hyp_subst_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   288
        (etac notE 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   289
        (rtac antisym_less 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   290
        (etac (less_ssum3a RS iffD1) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   291
        (rtac minimal 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   292
        (fast_tac HOL_cs 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   293
        (hyp_subst_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   294
        (rtac notE 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   295
        (etac (less_ssum3c RS iffD1) 2),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   296
        (atac 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   297
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   298
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
   299
qed_goal "ssum_lemma8" thy 
3842
b55686a7b22c fixed dots;
wenzelm
parents: 3323
diff changeset
   300
"[|Isinr(x) << z; x~=UU|] ==> ? y. z=Isinr(y) & y~=UU"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   301
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   302
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   303
        (cut_facts_tac prems 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   304
        (res_inst_tac [("p","z")] IssumE 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   305
        (hyp_subst_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   306
        (etac notE 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   307
        (etac (less_ssum3d RS iffD1) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   308
        (hyp_subst_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   309
        (rtac notE 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   310
        (etac (less_ssum3d RS iffD1) 2),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   311
        (atac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   312
        (fast_tac HOL_cs 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   313
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   314
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   315
(* ------------------------------------------------------------------------ *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   316
(* the type 'a ++ 'b is a cpo in three steps                                *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   317
(* ------------------------------------------------------------------------ *)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   318
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
   319
qed_goal "lub_ssum1a" thy 
4721
c8a8482a8124 renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
oheimb
parents: 4098
diff changeset
   320
"[|chain(Y);(!i.? x. Y(i)=Isinl(x))|] ==>\
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   321
\ range(Y) <<|\
3842
b55686a7b22c fixed dots;
wenzelm
parents: 3323
diff changeset
   322
\ Isinl(lub(range(%i.(Iwhen (LAM x. x) (LAM y. UU))(Y i))))"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   323
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   324
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   325
        (cut_facts_tac prems 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   326
        (rtac is_lubI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   327
        (rtac conjI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   328
        (rtac ub_rangeI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   329
        (rtac allI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   330
        (etac allE 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   331
        (etac exE 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   332
        (res_inst_tac [("t","Y(i)")] (ssum_lemma5 RS subst) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   333
        (atac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   334
        (rtac (monofun_Isinl RS monofunE RS spec RS spec RS mp) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   335
        (rtac is_ub_thelub 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   336
        (etac (monofun_Iwhen3 RS ch2ch_monofun) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   337
        (strip_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   338
        (res_inst_tac [("p","u")] IssumE2 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   339
        (res_inst_tac [("t","u")] (ssum_lemma5 RS subst) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   340
        (atac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   341
        (rtac (monofun_Isinl RS monofunE RS spec RS spec RS mp) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   342
        (rtac is_lub_thelub 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   343
        (etac (monofun_Iwhen3 RS ch2ch_monofun) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   344
        (etac (monofun_Iwhen3 RS ub2ub_monofun) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   345
        (hyp_subst_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   346
        (rtac (less_ssum3c RS iffD2) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   347
        (rtac chain_UU_I_inverse 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   348
        (rtac allI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   349
        (res_inst_tac [("p","Y(i)")] IssumE 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   350
        (asm_simp_tac Ssum0_ss 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   351
        (asm_simp_tac Ssum0_ss 2),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   352
        (etac notE 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   353
        (rtac (less_ssum3c RS iffD1) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   354
        (res_inst_tac [("t","Isinl(x)")] subst 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   355
        (atac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   356
        (etac (ub_rangeE RS spec) 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   357
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   358
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   359
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
   360
qed_goal "lub_ssum1b" thy 
4721
c8a8482a8124 renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
oheimb
parents: 4098
diff changeset
   361
"[|chain(Y);(!i.? x. Y(i)=Isinr(x))|] ==>\
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   362
\ range(Y) <<|\
3842
b55686a7b22c fixed dots;
wenzelm
parents: 3323
diff changeset
   363
\ Isinr(lub(range(%i.(Iwhen (LAM y. UU) (LAM x. x))(Y i))))"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   364
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   365
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   366
        (cut_facts_tac prems 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   367
        (rtac is_lubI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   368
        (rtac conjI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   369
        (rtac ub_rangeI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   370
        (rtac allI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   371
        (etac allE 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   372
        (etac exE 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   373
        (res_inst_tac [("t","Y(i)")] (ssum_lemma6 RS subst) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   374
        (atac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   375
        (rtac (monofun_Isinr RS monofunE RS spec RS spec RS mp) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   376
        (rtac is_ub_thelub 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   377
        (etac (monofun_Iwhen3 RS ch2ch_monofun) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   378
        (strip_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   379
        (res_inst_tac [("p","u")] IssumE2 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   380
        (hyp_subst_tac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   381
        (rtac (less_ssum3d RS iffD2) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   382
        (rtac chain_UU_I_inverse 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   383
        (rtac allI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   384
        (res_inst_tac [("p","Y(i)")] IssumE 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   385
        (asm_simp_tac Ssum0_ss 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   386
        (asm_simp_tac Ssum0_ss 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   387
        (etac notE 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   388
        (rtac (less_ssum3d RS iffD1) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   389
        (res_inst_tac [("t","Isinr(y)")] subst 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   390
        (atac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   391
        (etac (ub_rangeE RS spec) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   392
        (res_inst_tac [("t","u")] (ssum_lemma6 RS subst) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   393
        (atac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   394
        (rtac (monofun_Isinr RS monofunE RS spec RS spec RS mp) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   395
        (rtac is_lub_thelub 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   396
        (etac (monofun_Iwhen3 RS ch2ch_monofun) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   397
        (etac (monofun_Iwhen3 RS ub2ub_monofun) 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   398
        ]);
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   399
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   400
1779
1155c06fa956 introduced forgotten bind_thm calls
oheimb
parents: 1675
diff changeset
   401
bind_thm ("thelub_ssum1a", lub_ssum1a RS thelubI);
1168
74be52691d62 The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents: 961
diff changeset
   402
(*
4721
c8a8482a8124 renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
oheimb
parents: 4098
diff changeset
   403
[| chain ?Y1; ! i. ? x. ?Y1 i = Isinl x |] ==>
1168
74be52691d62 The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents: 961
diff changeset
   404
 lub (range ?Y1) = Isinl
74be52691d62 The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents: 961
diff changeset
   405
 (lub (range (%i. Iwhen (LAM x. x) (LAM y. UU) (?Y1 i))))
74be52691d62 The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents: 961
diff changeset
   406
*)
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   407
1779
1155c06fa956 introduced forgotten bind_thm calls
oheimb
parents: 1675
diff changeset
   408
bind_thm ("thelub_ssum1b", lub_ssum1b RS thelubI);
1168
74be52691d62 The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents: 961
diff changeset
   409
(*
4721
c8a8482a8124 renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
oheimb
parents: 4098
diff changeset
   410
[| chain ?Y1; ! i. ? x. ?Y1 i = Isinr x |] ==>
1168
74be52691d62 The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents: 961
diff changeset
   411
 lub (range ?Y1) = Isinr
74be52691d62 The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents: 961
diff changeset
   412
 (lub (range (%i. Iwhen (LAM y. UU) (LAM x. x) (?Y1 i))))
74be52691d62 The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents: 961
diff changeset
   413
*)
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   414
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2033
diff changeset
   415
qed_goal "cpo_ssum" thy 
4721
c8a8482a8124 renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
oheimb
parents: 4098
diff changeset
   416
        "chain(Y::nat=>'a ++'b) ==> ? x. range(Y) <<|x"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
   417
 (fn prems =>
1461
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   418
        [
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   419
        (cut_facts_tac prems 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   420
        (rtac (ssum_lemma4 RS disjE) 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   421
        (atac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   422
        (rtac exI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   423
        (etac lub_ssum1a 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   424
        (atac 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   425
        (rtac exI 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   426
        (etac lub_ssum1b 1),
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   427
        (atac 1)
6bcb44e4d6e5 expanded tabs
clasohm
parents: 1277
diff changeset
   428
        ]);
1168
74be52691d62 The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents: 961
diff changeset
   429