| author | huffman |
| Sat, 06 Jun 2009 10:28:34 -0700 | |
| changeset 31489 | 10080e31b294 |
| parent 31446 | 2d91b2416de8 |
| child 31492 | 5400beeddb55 |
| permissions | -rw-r--r-- |
| 29993 | 1 |
(* Title: Inner_Product.thy |
2 |
Author: Brian Huffman |
|
3 |
*) |
|
4 |
||
5 |
header {* Inner Product Spaces and the Gradient Derivative *}
|
|
6 |
||
7 |
theory Inner_Product |
|
|
30663
0b6aff7451b2
Main is (Complex_Main) base entry point in library theories
haftmann
parents:
30067
diff
changeset
|
8 |
imports Complex_Main FrechetDeriv |
| 29993 | 9 |
begin |
10 |
||
11 |
subsection {* Real inner product spaces *}
|
|
12 |
||
| 31446 | 13 |
text {* Temporarily relax constraints for @{term dist} and @{term norm}. *}
|
14 |
||
15 |
setup {* Sign.add_const_constraint
|
|
16 |
(@{const_name dist}, SOME @{typ "'a::dist \<Rightarrow> 'a \<Rightarrow> real"}) *}
|
|
17 |
||
18 |
setup {* Sign.add_const_constraint
|
|
19 |
(@{const_name norm}, SOME @{typ "'a::norm \<Rightarrow> real"}) *}
|
|
20 |
||
| 31417 | 21 |
class real_inner = real_vector + sgn_div_norm + dist_norm + topo_dist + |
| 29993 | 22 |
fixes inner :: "'a \<Rightarrow> 'a \<Rightarrow> real" |
23 |
assumes inner_commute: "inner x y = inner y x" |
|
24 |
and inner_left_distrib: "inner (x + y) z = inner x z + inner y z" |
|
25 |
and inner_scaleR_left: "inner (scaleR r x) y = r * (inner x y)" |
|
26 |
and inner_ge_zero [simp]: "0 \<le> inner x x" |
|
27 |
and inner_eq_zero_iff [simp]: "inner x x = 0 \<longleftrightarrow> x = 0" |
|
28 |
and norm_eq_sqrt_inner: "norm x = sqrt (inner x x)" |
|
29 |
begin |
|
30 |
||
31 |
lemma inner_zero_left [simp]: "inner 0 x = 0" |
|
| 30067 | 32 |
using inner_left_distrib [of 0 0 x] by simp |
| 29993 | 33 |
|
34 |
lemma inner_minus_left [simp]: "inner (- x) y = - inner x y" |
|
| 30067 | 35 |
using inner_left_distrib [of x "- x" y] by simp |
| 29993 | 36 |
|
37 |
lemma inner_diff_left: "inner (x - y) z = inner x z - inner y z" |
|
38 |
by (simp add: diff_minus inner_left_distrib) |
|
39 |
||
40 |
text {* Transfer distributivity rules to right argument. *}
|
|
41 |
||
42 |
lemma inner_right_distrib: "inner x (y + z) = inner x y + inner x z" |
|
43 |
using inner_left_distrib [of y z x] by (simp only: inner_commute) |
|
44 |
||
45 |
lemma inner_scaleR_right: "inner x (scaleR r y) = r * (inner x y)" |
|
46 |
using inner_scaleR_left [of r y x] by (simp only: inner_commute) |
|
47 |
||
48 |
lemma inner_zero_right [simp]: "inner x 0 = 0" |
|
49 |
using inner_zero_left [of x] by (simp only: inner_commute) |
|
50 |
||
51 |
lemma inner_minus_right [simp]: "inner x (- y) = - inner x y" |
|
52 |
using inner_minus_left [of y x] by (simp only: inner_commute) |
|
53 |
||
54 |
lemma inner_diff_right: "inner x (y - z) = inner x y - inner x z" |
|
55 |
using inner_diff_left [of y z x] by (simp only: inner_commute) |
|
56 |
||
57 |
lemmas inner_distrib = inner_left_distrib inner_right_distrib |
|
58 |
lemmas inner_diff = inner_diff_left inner_diff_right |
|
59 |
lemmas inner_scaleR = inner_scaleR_left inner_scaleR_right |
|
60 |
||
61 |
lemma inner_gt_zero_iff [simp]: "0 < inner x x \<longleftrightarrow> x \<noteq> 0" |
|
62 |
by (simp add: order_less_le) |
|
63 |
||
64 |
lemma power2_norm_eq_inner: "(norm x)\<twosuperior> = inner x x" |
|
65 |
by (simp add: norm_eq_sqrt_inner) |
|
66 |
||
| 30046 | 67 |
lemma Cauchy_Schwarz_ineq: |
| 29993 | 68 |
"(inner x y)\<twosuperior> \<le> inner x x * inner y y" |
69 |
proof (cases) |
|
70 |
assume "y = 0" |
|
71 |
thus ?thesis by simp |
|
72 |
next |
|
73 |
assume y: "y \<noteq> 0" |
|
74 |
let ?r = "inner x y / inner y y" |
|
75 |
have "0 \<le> inner (x - scaleR ?r y) (x - scaleR ?r y)" |
|
76 |
by (rule inner_ge_zero) |
|
77 |
also have "\<dots> = inner x x - inner y x * ?r" |
|
78 |
by (simp add: inner_diff inner_scaleR) |
|
79 |
also have "\<dots> = inner x x - (inner x y)\<twosuperior> / inner y y" |
|
80 |
by (simp add: power2_eq_square inner_commute) |
|
81 |
finally have "0 \<le> inner x x - (inner x y)\<twosuperior> / inner y y" . |
|
82 |
hence "(inner x y)\<twosuperior> / inner y y \<le> inner x x" |
|
83 |
by (simp add: le_diff_eq) |
|
84 |
thus "(inner x y)\<twosuperior> \<le> inner x x * inner y y" |
|
85 |
by (simp add: pos_divide_le_eq y) |
|
86 |
qed |
|
87 |
||
| 30046 | 88 |
lemma Cauchy_Schwarz_ineq2: |
| 29993 | 89 |
"\<bar>inner x y\<bar> \<le> norm x * norm y" |
90 |
proof (rule power2_le_imp_le) |
|
91 |
have "(inner x y)\<twosuperior> \<le> inner x x * inner y y" |
|
| 30046 | 92 |
using Cauchy_Schwarz_ineq . |
| 29993 | 93 |
thus "\<bar>inner x y\<bar>\<twosuperior> \<le> (norm x * norm y)\<twosuperior>" |
94 |
by (simp add: power_mult_distrib power2_norm_eq_inner) |
|
95 |
show "0 \<le> norm x * norm y" |
|
96 |
unfolding norm_eq_sqrt_inner |
|
97 |
by (intro mult_nonneg_nonneg real_sqrt_ge_zero inner_ge_zero) |
|
98 |
qed |
|
99 |
||
100 |
subclass real_normed_vector |
|
101 |
proof |
|
102 |
fix a :: real and x y :: 'a |
|
103 |
show "0 \<le> norm x" |
|
104 |
unfolding norm_eq_sqrt_inner by simp |
|
105 |
show "norm x = 0 \<longleftrightarrow> x = 0" |
|
106 |
unfolding norm_eq_sqrt_inner by simp |
|
107 |
show "norm (x + y) \<le> norm x + norm y" |
|
108 |
proof (rule power2_le_imp_le) |
|
109 |
have "inner x y \<le> norm x * norm y" |
|
| 30046 | 110 |
by (rule order_trans [OF abs_ge_self Cauchy_Schwarz_ineq2]) |
| 29993 | 111 |
thus "(norm (x + y))\<twosuperior> \<le> (norm x + norm y)\<twosuperior>" |
112 |
unfolding power2_sum power2_norm_eq_inner |
|
113 |
by (simp add: inner_distrib inner_commute) |
|
114 |
show "0 \<le> norm x + norm y" |
|
115 |
unfolding norm_eq_sqrt_inner |
|
116 |
by (simp add: add_nonneg_nonneg) |
|
117 |
qed |
|
118 |
have "sqrt (a\<twosuperior> * inner x x) = \<bar>a\<bar> * sqrt (inner x x)" |
|
119 |
by (simp add: real_sqrt_mult_distrib) |
|
120 |
then show "norm (a *\<^sub>R x) = \<bar>a\<bar> * norm x" |
|
121 |
unfolding norm_eq_sqrt_inner |
|
122 |
by (simp add: inner_scaleR power2_eq_square mult_assoc) |
|
123 |
qed |
|
124 |
||
125 |
end |
|
126 |
||
| 31446 | 127 |
text {* Re-enable constraints for @{term dist} and @{term norm}. *}
|
128 |
||
129 |
setup {* Sign.add_const_constraint
|
|
130 |
(@{const_name dist}, SOME @{typ "'a::metric_space \<Rightarrow> 'a \<Rightarrow> real"}) *}
|
|
131 |
||
132 |
setup {* Sign.add_const_constraint
|
|
133 |
(@{const_name norm}, SOME @{typ "'a::real_normed_vector \<Rightarrow> real"}) *}
|
|
134 |
||
|
30729
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
wenzelm
parents:
30663
diff
changeset
|
135 |
interpretation inner: |
| 29993 | 136 |
bounded_bilinear "inner::'a::real_inner \<Rightarrow> 'a \<Rightarrow> real" |
137 |
proof |
|
138 |
fix x y z :: 'a and r :: real |
|
139 |
show "inner (x + y) z = inner x z + inner y z" |
|
140 |
by (rule inner_left_distrib) |
|
141 |
show "inner x (y + z) = inner x y + inner x z" |
|
142 |
by (rule inner_right_distrib) |
|
143 |
show "inner (scaleR r x) y = scaleR r (inner x y)" |
|
144 |
unfolding real_scaleR_def by (rule inner_scaleR_left) |
|
145 |
show "inner x (scaleR r y) = scaleR r (inner x y)" |
|
146 |
unfolding real_scaleR_def by (rule inner_scaleR_right) |
|
147 |
show "\<exists>K. \<forall>x y::'a. norm (inner x y) \<le> norm x * norm y * K" |
|
148 |
proof |
|
149 |
show "\<forall>x y::'a. norm (inner x y) \<le> norm x * norm y * 1" |
|
| 30046 | 150 |
by (simp add: Cauchy_Schwarz_ineq2) |
| 29993 | 151 |
qed |
152 |
qed |
|
153 |
||
|
30729
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
wenzelm
parents:
30663
diff
changeset
|
154 |
interpretation inner_left: |
| 29993 | 155 |
bounded_linear "\<lambda>x::'a::real_inner. inner x y" |
156 |
by (rule inner.bounded_linear_left) |
|
157 |
||
|
30729
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
wenzelm
parents:
30663
diff
changeset
|
158 |
interpretation inner_right: |
| 29993 | 159 |
bounded_linear "\<lambda>y::'a::real_inner. inner x y" |
160 |
by (rule inner.bounded_linear_right) |
|
161 |
||
162 |
||
163 |
subsection {* Class instances *}
|
|
164 |
||
165 |
instantiation real :: real_inner |
|
166 |
begin |
|
167 |
||
168 |
definition inner_real_def [simp]: "inner = op *" |
|
169 |
||
170 |
instance proof |
|
171 |
fix x y z r :: real |
|
172 |
show "inner x y = inner y x" |
|
173 |
unfolding inner_real_def by (rule mult_commute) |
|
174 |
show "inner (x + y) z = inner x z + inner y z" |
|
175 |
unfolding inner_real_def by (rule left_distrib) |
|
176 |
show "inner (scaleR r x) y = r * inner x y" |
|
177 |
unfolding inner_real_def real_scaleR_def by (rule mult_assoc) |
|
178 |
show "0 \<le> inner x x" |
|
179 |
unfolding inner_real_def by simp |
|
180 |
show "inner x x = 0 \<longleftrightarrow> x = 0" |
|
181 |
unfolding inner_real_def by simp |
|
182 |
show "norm x = sqrt (inner x x)" |
|
183 |
unfolding inner_real_def by simp |
|
184 |
qed |
|
185 |
||
186 |
end |
|
187 |
||
188 |
instantiation complex :: real_inner |
|
189 |
begin |
|
190 |
||
191 |
definition inner_complex_def: |
|
192 |
"inner x y = Re x * Re y + Im x * Im y" |
|
193 |
||
194 |
instance proof |
|
195 |
fix x y z :: complex and r :: real |
|
196 |
show "inner x y = inner y x" |
|
197 |
unfolding inner_complex_def by (simp add: mult_commute) |
|
198 |
show "inner (x + y) z = inner x z + inner y z" |
|
199 |
unfolding inner_complex_def by (simp add: left_distrib) |
|
200 |
show "inner (scaleR r x) y = r * inner x y" |
|
201 |
unfolding inner_complex_def by (simp add: right_distrib) |
|
202 |
show "0 \<le> inner x x" |
|
203 |
unfolding inner_complex_def by (simp add: add_nonneg_nonneg) |
|
204 |
show "inner x x = 0 \<longleftrightarrow> x = 0" |
|
205 |
unfolding inner_complex_def |
|
206 |
by (simp add: add_nonneg_eq_0_iff complex_Re_Im_cancel_iff) |
|
207 |
show "norm x = sqrt (inner x x)" |
|
208 |
unfolding inner_complex_def complex_norm_def |
|
209 |
by (simp add: power2_eq_square) |
|
210 |
qed |
|
211 |
||
212 |
end |
|
213 |
||
214 |
||
215 |
subsection {* Gradient derivative *}
|
|
216 |
||
217 |
definition |
|
218 |
gderiv :: |
|
219 |
"['a::real_inner \<Rightarrow> real, 'a, 'a] \<Rightarrow> bool" |
|
220 |
("(GDERIV (_)/ (_)/ :> (_))" [1000, 1000, 60] 60)
|
|
221 |
where |
|
222 |
"GDERIV f x :> D \<longleftrightarrow> FDERIV f x :> (\<lambda>h. inner h D)" |
|
223 |
||
224 |
lemma deriv_fderiv: "DERIV f x :> D \<longleftrightarrow> FDERIV f x :> (\<lambda>h. h * D)" |
|
225 |
by (simp only: deriv_def field_fderiv_def) |
|
226 |
||
227 |
lemma gderiv_deriv [simp]: "GDERIV f x :> D \<longleftrightarrow> DERIV f x :> D" |
|
228 |
by (simp only: gderiv_def deriv_fderiv inner_real_def) |
|
229 |
||
230 |
lemma GDERIV_DERIV_compose: |
|
231 |
"\<lbrakk>GDERIV f x :> df; DERIV g (f x) :> dg\<rbrakk> |
|
232 |
\<Longrightarrow> GDERIV (\<lambda>x. g (f x)) x :> scaleR dg df" |
|
233 |
unfolding gderiv_def deriv_fderiv |
|
234 |
apply (drule (1) FDERIV_compose) |
|
235 |
apply (simp add: inner_scaleR_right mult_ac) |
|
236 |
done |
|
237 |
||
238 |
lemma FDERIV_subst: "\<lbrakk>FDERIV f x :> df; df = d\<rbrakk> \<Longrightarrow> FDERIV f x :> d" |
|
239 |
by simp |
|
240 |
||
241 |
lemma GDERIV_subst: "\<lbrakk>GDERIV f x :> df; df = d\<rbrakk> \<Longrightarrow> GDERIV f x :> d" |
|
242 |
by simp |
|
243 |
||
244 |
lemma GDERIV_const: "GDERIV (\<lambda>x. k) x :> 0" |
|
245 |
unfolding gderiv_def inner_right.zero by (rule FDERIV_const) |
|
246 |
||
247 |
lemma GDERIV_add: |
|
248 |
"\<lbrakk>GDERIV f x :> df; GDERIV g x :> dg\<rbrakk> |
|
249 |
\<Longrightarrow> GDERIV (\<lambda>x. f x + g x) x :> df + dg" |
|
250 |
unfolding gderiv_def inner_right.add by (rule FDERIV_add) |
|
251 |
||
252 |
lemma GDERIV_minus: |
|
253 |
"GDERIV f x :> df \<Longrightarrow> GDERIV (\<lambda>x. - f x) x :> - df" |
|
254 |
unfolding gderiv_def inner_right.minus by (rule FDERIV_minus) |
|
255 |
||
256 |
lemma GDERIV_diff: |
|
257 |
"\<lbrakk>GDERIV f x :> df; GDERIV g x :> dg\<rbrakk> |
|
258 |
\<Longrightarrow> GDERIV (\<lambda>x. f x - g x) x :> df - dg" |
|
259 |
unfolding gderiv_def inner_right.diff by (rule FDERIV_diff) |
|
260 |
||
261 |
lemma GDERIV_scaleR: |
|
262 |
"\<lbrakk>DERIV f x :> df; GDERIV g x :> dg\<rbrakk> |
|
263 |
\<Longrightarrow> GDERIV (\<lambda>x. scaleR (f x) (g x)) x |
|
264 |
:> (scaleR (f x) dg + scaleR df (g x))" |
|
265 |
unfolding gderiv_def deriv_fderiv inner_right.add inner_right.scaleR |
|
266 |
apply (rule FDERIV_subst) |
|
267 |
apply (erule (1) scaleR.FDERIV) |
|
268 |
apply (simp add: mult_ac) |
|
269 |
done |
|
270 |
||
271 |
lemma GDERIV_mult: |
|
272 |
"\<lbrakk>GDERIV f x :> df; GDERIV g x :> dg\<rbrakk> |
|
273 |
\<Longrightarrow> GDERIV (\<lambda>x. f x * g x) x :> scaleR (f x) dg + scaleR (g x) df" |
|
274 |
unfolding gderiv_def |
|
275 |
apply (rule FDERIV_subst) |
|
276 |
apply (erule (1) FDERIV_mult) |
|
277 |
apply (simp add: inner_distrib inner_scaleR mult_ac) |
|
278 |
done |
|
279 |
||
280 |
lemma GDERIV_inverse: |
|
281 |
"\<lbrakk>GDERIV f x :> df; f x \<noteq> 0\<rbrakk> |
|
282 |
\<Longrightarrow> GDERIV (\<lambda>x. inverse (f x)) x :> - (inverse (f x))\<twosuperior> *\<^sub>R df" |
|
283 |
apply (erule GDERIV_DERIV_compose) |
|
284 |
apply (erule DERIV_inverse [folded numeral_2_eq_2]) |
|
285 |
done |
|
286 |
||
287 |
lemma GDERIV_norm: |
|
288 |
assumes "x \<noteq> 0" shows "GDERIV (\<lambda>x. norm x) x :> sgn x" |
|
289 |
proof - |
|
290 |
have 1: "FDERIV (\<lambda>x. inner x x) x :> (\<lambda>h. inner x h + inner h x)" |
|
291 |
by (intro inner.FDERIV FDERIV_ident) |
|
292 |
have 2: "(\<lambda>h. inner x h + inner h x) = (\<lambda>h. inner h (scaleR 2 x))" |
|
293 |
by (simp add: expand_fun_eq inner_scaleR inner_commute) |
|
294 |
have "0 < inner x x" using `x \<noteq> 0` by simp |
|
295 |
then have 3: "DERIV sqrt (inner x x) :> (inverse (sqrt (inner x x)) / 2)" |
|
296 |
by (rule DERIV_real_sqrt) |
|
297 |
have 4: "(inverse (sqrt (inner x x)) / 2) *\<^sub>R 2 *\<^sub>R x = sgn x" |
|
298 |
by (simp add: sgn_div_norm norm_eq_sqrt_inner) |
|
299 |
show ?thesis |
|
300 |
unfolding norm_eq_sqrt_inner |
|
301 |
apply (rule GDERIV_subst [OF _ 4]) |
|
302 |
apply (rule GDERIV_DERIV_compose [where g=sqrt and df="scaleR 2 x"]) |
|
303 |
apply (subst gderiv_def) |
|
304 |
apply (rule FDERIV_subst [OF _ 2]) |
|
305 |
apply (rule 1) |
|
306 |
apply (rule 3) |
|
307 |
done |
|
308 |
qed |
|
309 |
||
310 |
lemmas FDERIV_norm = GDERIV_norm [unfolded gderiv_def] |
|
311 |
||
312 |
end |