| author | wenzelm | 
| Sun, 05 Jul 2015 23:01:33 +0200 | |
| changeset 60651 | 1049f3724ac0 | 
| parent 60155 | 91477b3a2d6b | 
| child 60685 | cb21b7022b00 | 
| permissions | -rw-r--r-- | 
| 3390 
0c7625196d95
New theory "Power" of exponentiation (and binomial coefficients)
 paulson parents: diff
changeset | 1 | (* Title: HOL/Power.thy | 
| 
0c7625196d95
New theory "Power" of exponentiation (and binomial coefficients)
 paulson parents: diff
changeset | 2 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | 
| 
0c7625196d95
New theory "Power" of exponentiation (and binomial coefficients)
 paulson parents: diff
changeset | 3 | Copyright 1997 University of Cambridge | 
| 
0c7625196d95
New theory "Power" of exponentiation (and binomial coefficients)
 paulson parents: diff
changeset | 4 | *) | 
| 
0c7625196d95
New theory "Power" of exponentiation (and binomial coefficients)
 paulson parents: diff
changeset | 5 | |
| 58889 | 6 | section {* Exponentiation *}
 | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 7 | |
| 15131 | 8 | theory Power | 
| 55096 | 9 | imports Num Equiv_Relations | 
| 15131 | 10 | begin | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 11 | |
| 30960 | 12 | subsection {* Powers for Arbitrary Monoids *}
 | 
| 13 | ||
| 30996 | 14 | class power = one + times | 
| 30960 | 15 | begin | 
| 24996 | 16 | |
| 30960 | 17 | primrec power :: "'a \<Rightarrow> nat \<Rightarrow> 'a" (infixr "^" 80) where | 
| 18 | power_0: "a ^ 0 = 1" | |
| 19 | | power_Suc: "a ^ Suc n = a * a ^ n" | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 20 | |
| 30996 | 21 | notation (latex output) | 
| 22 |   power ("(_\<^bsup>_\<^esup>)" [1000] 1000)
 | |
| 23 | ||
| 24 | notation (HTML output) | |
| 25 |   power ("(_\<^bsup>_\<^esup>)" [1000] 1000)
 | |
| 26 | ||
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 27 | text {* Special syntax for squares. *}
 | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 28 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 29 | abbreviation (xsymbols) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52435diff
changeset | 30 |   power2 :: "'a \<Rightarrow> 'a"  ("(_\<^sup>2)" [1000] 999) where
 | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52435diff
changeset | 31 | "x\<^sup>2 \<equiv> x ^ 2" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 32 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 33 | notation (latex output) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52435diff
changeset | 34 |   power2  ("(_\<^sup>2)" [1000] 999)
 | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 35 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 36 | notation (HTML output) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52435diff
changeset | 37 |   power2  ("(_\<^sup>2)" [1000] 999)
 | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 38 | |
| 30960 | 39 | end | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 40 | |
| 30996 | 41 | context monoid_mult | 
| 42 | begin | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 43 | |
| 39438 
c5ece2a7a86e
Isar "default" step needs to fail for solved problems, for clear distinction of '.' and '..' for example -- amending lapse introduced in 9de4d64eee3b (April 2004);
 wenzelm parents: 
36409diff
changeset | 44 | subclass power . | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 45 | |
| 30996 | 46 | lemma power_one [simp]: | 
| 47 | "1 ^ n = 1" | |
| 30273 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 huffman parents: 
30242diff
changeset | 48 | by (induct n) simp_all | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 49 | |
| 30996 | 50 | lemma power_one_right [simp]: | 
| 31001 | 51 | "a ^ 1 = a" | 
| 30996 | 52 | by simp | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 53 | |
| 59741 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59009diff
changeset | 54 | lemma power_Suc0_right [simp]: | 
| 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59009diff
changeset | 55 | "a ^ Suc 0 = a" | 
| 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59009diff
changeset | 56 | by simp | 
| 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59009diff
changeset | 57 | |
| 30996 | 58 | lemma power_commutes: | 
| 59 | "a ^ n * a = a * a ^ n" | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57418diff
changeset | 60 | by (induct n) (simp_all add: mult.assoc) | 
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
17149diff
changeset | 61 | |
| 30996 | 62 | lemma power_Suc2: | 
| 63 | "a ^ Suc n = a ^ n * a" | |
| 30273 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 huffman parents: 
30242diff
changeset | 64 | by (simp add: power_commutes) | 
| 28131 
3130d7b3149d
add lemma power_Suc2; generalize power_minus from class comm_ring_1 to ring_1
 huffman parents: 
25874diff
changeset | 65 | |
| 30996 | 66 | lemma power_add: | 
| 67 | "a ^ (m + n) = a ^ m * a ^ n" | |
| 68 | by (induct m) (simp_all add: algebra_simps) | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 69 | |
| 30996 | 70 | lemma power_mult: | 
| 71 | "a ^ (m * n) = (a ^ m) ^ n" | |
| 30273 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 huffman parents: 
30242diff
changeset | 72 | by (induct n) (simp_all add: power_add) | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 73 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52435diff
changeset | 74 | lemma power2_eq_square: "a\<^sup>2 = a * a" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 75 | by (simp add: numeral_2_eq_2) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 76 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 77 | lemma power3_eq_cube: "a ^ 3 = a * a * a" | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57418diff
changeset | 78 | by (simp add: numeral_3_eq_3 mult.assoc) | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 79 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 80 | lemma power_even_eq: | 
| 53076 | 81 | "a ^ (2 * n) = (a ^ n)\<^sup>2" | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57418diff
changeset | 82 | by (subst mult.commute) (simp add: power_mult) | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 83 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 84 | lemma power_odd_eq: | 
| 53076 | 85 | "a ^ Suc (2*n) = a * (a ^ n)\<^sup>2" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 86 | by (simp add: power_even_eq) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 87 | |
| 47255 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 88 | lemma power_numeral_even: | 
| 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 89 | "z ^ numeral (Num.Bit0 w) = (let w = z ^ (numeral w) in w * w)" | 
| 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 90 | unfolding numeral_Bit0 power_add Let_def .. | 
| 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 91 | |
| 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 92 | lemma power_numeral_odd: | 
| 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 93 | "z ^ numeral (Num.Bit1 w) = (let w = z ^ (numeral w) in z * w * w)" | 
| 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 94 | unfolding numeral_Bit1 One_nat_def add_Suc_right add_0_right | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57418diff
changeset | 95 | unfolding power_Suc power_add Let_def mult.assoc .. | 
| 47255 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 96 | |
| 49824 | 97 | lemma funpow_times_power: | 
| 98 | "(times x ^^ f x) = times (x ^ f x)" | |
| 99 | proof (induct "f x" arbitrary: f) | |
| 100 | case 0 then show ?case by (simp add: fun_eq_iff) | |
| 101 | next | |
| 102 | case (Suc n) | |
| 103 | def g \<equiv> "\<lambda>x. f x - 1" | |
| 104 | with Suc have "n = g x" by simp | |
| 105 | with Suc have "times x ^^ g x = times (x ^ g x)" by simp | |
| 106 | moreover from Suc g_def have "f x = g x + 1" by simp | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57418diff
changeset | 107 | ultimately show ?case by (simp add: power_add funpow_add fun_eq_iff mult.assoc) | 
| 49824 | 108 | qed | 
| 109 | ||
| 58656 | 110 | lemma power_commuting_commutes: | 
| 111 | assumes "x * y = y * x" | |
| 112 | shows "x ^ n * y = y * x ^n" | |
| 113 | proof (induct n) | |
| 114 | case (Suc n) | |
| 115 | have "x ^ Suc n * y = x ^ n * y * x" | |
| 116 | by (subst power_Suc2) (simp add: assms ac_simps) | |
| 117 | also have "\<dots> = y * x ^ Suc n" | |
| 118 | unfolding Suc power_Suc2 | |
| 119 | by (simp add: ac_simps) | |
| 120 | finally show ?case . | |
| 121 | qed simp | |
| 122 | ||
| 30996 | 123 | end | 
| 124 | ||
| 125 | context comm_monoid_mult | |
| 126 | begin | |
| 127 | ||
| 56480 
093ea91498e6
field_simps: better support for negation and division, and power
 hoelzl parents: 
55811diff
changeset | 128 | lemma power_mult_distrib [field_simps]: | 
| 30996 | 129 | "(a * b) ^ n = (a ^ n) * (b ^ n)" | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 130 | by (induct n) (simp_all add: ac_simps) | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 131 | |
| 30996 | 132 | end | 
| 133 | ||
| 60155 
91477b3a2d6b
Tidying. Improved simplification for numerals, esp in exponents.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 134 | text{*Extract constant factors from powers*}
 | 
| 59741 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59009diff
changeset | 135 | declare power_mult_distrib [where a = "numeral w" for w, simp] | 
| 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59009diff
changeset | 136 | declare power_mult_distrib [where b = "numeral w" for w, simp] | 
| 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59009diff
changeset | 137 | |
| 60155 
91477b3a2d6b
Tidying. Improved simplification for numerals, esp in exponents.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 138 | lemma power_add_numeral [simp]: | 
| 
91477b3a2d6b
Tidying. Improved simplification for numerals, esp in exponents.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 139 | fixes a :: "'a :: monoid_mult" | 
| 
91477b3a2d6b
Tidying. Improved simplification for numerals, esp in exponents.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 140 | shows "a^numeral m * a^numeral n = a^numeral (m + n)" | 
| 
91477b3a2d6b
Tidying. Improved simplification for numerals, esp in exponents.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 141 | by (simp add: power_add [symmetric]) | 
| 
91477b3a2d6b
Tidying. Improved simplification for numerals, esp in exponents.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 142 | |
| 
91477b3a2d6b
Tidying. Improved simplification for numerals, esp in exponents.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 143 | lemma power_add_numeral2 [simp]: | 
| 
91477b3a2d6b
Tidying. Improved simplification for numerals, esp in exponents.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 144 | fixes a :: "'a :: monoid_mult" | 
| 
91477b3a2d6b
Tidying. Improved simplification for numerals, esp in exponents.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 145 | shows "a^numeral m * (a^numeral n * b) = a^numeral (m + n) * b" | 
| 
91477b3a2d6b
Tidying. Improved simplification for numerals, esp in exponents.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 146 | by (simp add: mult.assoc [symmetric]) | 
| 
91477b3a2d6b
Tidying. Improved simplification for numerals, esp in exponents.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 147 | |
| 
91477b3a2d6b
Tidying. Improved simplification for numerals, esp in exponents.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 148 | lemma power_mult_numeral [simp]: | 
| 
91477b3a2d6b
Tidying. Improved simplification for numerals, esp in exponents.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 149 | fixes a :: "'a :: monoid_mult" | 
| 
91477b3a2d6b
Tidying. Improved simplification for numerals, esp in exponents.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 150 | shows"(a^numeral m)^numeral n = a^numeral (m * n)" | 
| 
91477b3a2d6b
Tidying. Improved simplification for numerals, esp in exponents.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 151 | by (simp only: numeral_mult power_mult) | 
| 
91477b3a2d6b
Tidying. Improved simplification for numerals, esp in exponents.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 152 | |
| 47191 | 153 | context semiring_numeral | 
| 154 | begin | |
| 155 | ||
| 156 | lemma numeral_sqr: "numeral (Num.sqr k) = numeral k * numeral k" | |
| 157 | by (simp only: sqr_conv_mult numeral_mult) | |
| 158 | ||
| 159 | lemma numeral_pow: "numeral (Num.pow k l) = numeral k ^ numeral l" | |
| 160 | by (induct l, simp_all only: numeral_class.numeral.simps pow.simps | |
| 161 | numeral_sqr numeral_mult power_add power_one_right) | |
| 162 | ||
| 163 | lemma power_numeral [simp]: "numeral k ^ numeral l = numeral (Num.pow k l)" | |
| 164 | by (rule numeral_pow [symmetric]) | |
| 165 | ||
| 166 | end | |
| 167 | ||
| 30996 | 168 | context semiring_1 | 
| 169 | begin | |
| 170 | ||
| 171 | lemma of_nat_power: | |
| 172 | "of_nat (m ^ n) = of_nat m ^ n" | |
| 173 | by (induct n) (simp_all add: of_nat_mult) | |
| 174 | ||
| 59009 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
58889diff
changeset | 175 | lemma zero_power: | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
58889diff
changeset | 176 | "0 < n \<Longrightarrow> 0 ^ n = 0" | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
58889diff
changeset | 177 | by (cases n) simp_all | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
58889diff
changeset | 178 | |
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
58889diff
changeset | 179 | lemma power_zero_numeral [simp]: | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
58889diff
changeset | 180 | "0 ^ numeral k = 0" | 
| 47209 
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
 huffman parents: 
47192diff
changeset | 181 | by (simp add: numeral_eq_Suc) | 
| 47191 | 182 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52435diff
changeset | 183 | lemma zero_power2: "0\<^sup>2 = 0" (* delete? *) | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 184 | by (rule power_zero_numeral) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 185 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52435diff
changeset | 186 | lemma one_power2: "1\<^sup>2 = 1" (* delete? *) | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 187 | by (rule power_one) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 188 | |
| 30996 | 189 | end | 
| 190 | ||
| 191 | context comm_semiring_1 | |
| 192 | begin | |
| 193 | ||
| 194 | text {* The divides relation *}
 | |
| 195 | ||
| 196 | lemma le_imp_power_dvd: | |
| 197 | assumes "m \<le> n" shows "a ^ m dvd a ^ n" | |
| 198 | proof | |
| 199 | have "a ^ n = a ^ (m + (n - m))" | |
| 200 | using `m \<le> n` by simp | |
| 201 | also have "\<dots> = a ^ m * a ^ (n - m)" | |
| 202 | by (rule power_add) | |
| 203 | finally show "a ^ n = a ^ m * a ^ (n - m)" . | |
| 204 | qed | |
| 205 | ||
| 206 | lemma power_le_dvd: | |
| 207 | "a ^ n dvd b \<Longrightarrow> m \<le> n \<Longrightarrow> a ^ m dvd b" | |
| 208 | by (rule dvd_trans [OF le_imp_power_dvd]) | |
| 209 | ||
| 210 | lemma dvd_power_same: | |
| 211 | "x dvd y \<Longrightarrow> x ^ n dvd y ^ n" | |
| 212 | by (induct n) (auto simp add: mult_dvd_mono) | |
| 213 | ||
| 214 | lemma dvd_power_le: | |
| 215 | "x dvd y \<Longrightarrow> m \<ge> n \<Longrightarrow> x ^ n dvd y ^ m" | |
| 216 | by (rule power_le_dvd [OF dvd_power_same]) | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 217 | |
| 30996 | 218 | lemma dvd_power [simp]: | 
| 219 | assumes "n > (0::nat) \<or> x = 1" | |
| 220 | shows "x dvd (x ^ n)" | |
| 221 | using assms proof | |
| 222 | assume "0 < n" | |
| 223 | then have "x ^ n = x ^ Suc (n - 1)" by simp | |
| 224 | then show "x dvd (x ^ n)" by simp | |
| 225 | next | |
| 226 | assume "x = 1" | |
| 227 | then show "x dvd (x ^ n)" by simp | |
| 228 | qed | |
| 229 | ||
| 230 | end | |
| 231 | ||
| 232 | context ring_1 | |
| 233 | begin | |
| 234 | ||
| 235 | lemma power_minus: | |
| 236 | "(- a) ^ n = (- 1) ^ n * a ^ n" | |
| 237 | proof (induct n) | |
| 238 | case 0 show ?case by simp | |
| 239 | next | |
| 240 | case (Suc n) then show ?case | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57418diff
changeset | 241 | by (simp del: power_Suc add: power_Suc2 mult.assoc) | 
| 30996 | 242 | qed | 
| 243 | ||
| 47191 | 244 | lemma power_minus_Bit0: | 
| 245 | "(- x) ^ numeral (Num.Bit0 k) = x ^ numeral (Num.Bit0 k)" | |
| 246 | by (induct k, simp_all only: numeral_class.numeral.simps power_add | |
| 247 | power_one_right mult_minus_left mult_minus_right minus_minus) | |
| 248 | ||
| 249 | lemma power_minus_Bit1: | |
| 250 | "(- x) ^ numeral (Num.Bit1 k) = - (x ^ numeral (Num.Bit1 k))" | |
| 47220 
52426c62b5d0
replace lemmas eval_nat_numeral with a simpler reformulation
 huffman parents: 
47209diff
changeset | 251 | by (simp only: eval_nat_numeral(3) power_Suc power_minus_Bit0 mult_minus_left) | 
| 47191 | 252 | |
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 253 | lemma power2_minus [simp]: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52435diff
changeset | 254 | "(- a)\<^sup>2 = a\<^sup>2" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 255 | by (rule power_minus_Bit0) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 256 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 257 | lemma power_minus1_even [simp]: | 
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58157diff
changeset | 258 | "(- 1) ^ (2*n) = 1" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 259 | proof (induct n) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 260 | case 0 show ?case by simp | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 261 | next | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 262 | case (Suc n) then show ?case by (simp add: power_add power2_eq_square) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 263 | qed | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 264 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 265 | lemma power_minus1_odd: | 
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58157diff
changeset | 266 | "(- 1) ^ Suc (2*n) = -1" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 267 | by simp | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 268 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 269 | lemma power_minus_even [simp]: | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 270 | "(-a) ^ (2*n) = a ^ (2*n)" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 271 | by (simp add: power_minus [of a]) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 272 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 273 | end | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 274 | |
| 58787 | 275 | lemma power_eq_0_nat_iff [simp]: | 
| 276 | fixes m n :: nat | |
| 277 | shows "m ^ n = 0 \<longleftrightarrow> m = 0 \<and> n > 0" | |
| 278 | by (induct n) auto | |
| 279 | ||
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 280 | context ring_1_no_zero_divisors | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 281 | begin | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 282 | |
| 58787 | 283 | lemma power_eq_0_iff [simp]: | 
| 284 | "a ^ n = 0 \<longleftrightarrow> a = 0 \<and> n > 0" | |
| 285 | by (induct n) auto | |
| 286 | ||
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 287 | lemma field_power_not_zero: | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 288 | "a \<noteq> 0 \<Longrightarrow> a ^ n \<noteq> 0" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 289 | by (induct n) auto | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 290 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 291 | lemma zero_eq_power2 [simp]: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52435diff
changeset | 292 | "a\<^sup>2 = 0 \<longleftrightarrow> a = 0" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 293 | unfolding power2_eq_square by simp | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 294 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 295 | lemma power2_eq_1_iff: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52435diff
changeset | 296 | "a\<^sup>2 = 1 \<longleftrightarrow> a = 1 \<or> a = - 1" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 297 | unfolding power2_eq_square by (rule square_eq_1_iff) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 298 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 299 | end | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 300 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 301 | context idom | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 302 | begin | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 303 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52435diff
changeset | 304 | lemma power2_eq_iff: "x\<^sup>2 = y\<^sup>2 \<longleftrightarrow> x = y \<or> x = - y" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 305 | unfolding power2_eq_square by (rule square_eq_iff) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 306 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 307 | end | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 308 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 309 | context division_ring | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 310 | begin | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 311 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 312 | text {* FIXME reorient or rename to @{text nonzero_inverse_power} *}
 | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 313 | lemma nonzero_power_inverse: | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 314 | "a \<noteq> 0 \<Longrightarrow> inverse (a ^ n) = (inverse a) ^ n" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 315 | by (induct n) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 316 | (simp_all add: nonzero_inverse_mult_distrib power_commutes field_power_not_zero) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 317 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 318 | end | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 319 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 320 | context field | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 321 | begin | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 322 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 323 | lemma nonzero_power_divide: | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 324 | "b \<noteq> 0 \<Longrightarrow> (a / b) ^ n = a ^ n / b ^ n" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 325 | by (simp add: divide_inverse power_mult_distrib nonzero_power_inverse) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 326 | |
| 59741 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59009diff
changeset | 327 | declare nonzero_power_divide [where b = "numeral w" for w, simp] | 
| 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59009diff
changeset | 328 | |
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 329 | end | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 330 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 331 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 332 | subsection {* Exponentiation on ordered types *}
 | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 333 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 334 | context linordered_ring (* TODO: move *) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 335 | begin | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 336 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 337 | lemma sum_squares_ge_zero: | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 338 | "0 \<le> x * x + y * y" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 339 | by (intro add_nonneg_nonneg zero_le_square) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 340 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 341 | lemma not_sum_squares_lt_zero: | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 342 | "\<not> x * x + y * y < 0" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 343 | by (simp add: not_less sum_squares_ge_zero) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 344 | |
| 30996 | 345 | end | 
| 346 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
33364diff
changeset | 347 | context linordered_semidom | 
| 30996 | 348 | begin | 
| 349 | ||
| 350 | lemma zero_less_power [simp]: | |
| 351 | "0 < a \<Longrightarrow> 0 < a ^ n" | |
| 56544 | 352 | by (induct n) simp_all | 
| 30996 | 353 | |
| 354 | lemma zero_le_power [simp]: | |
| 355 | "0 \<le> a \<Longrightarrow> 0 \<le> a ^ n" | |
| 56536 | 356 | by (induct n) simp_all | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 357 | |
| 47241 | 358 | lemma power_mono: | 
| 359 | "a \<le> b \<Longrightarrow> 0 \<le> a \<Longrightarrow> a ^ n \<le> b ^ n" | |
| 360 | by (induct n) (auto intro: mult_mono order_trans [of 0 a b]) | |
| 361 | ||
| 362 | lemma one_le_power [simp]: "1 \<le> a \<Longrightarrow> 1 \<le> a ^ n" | |
| 363 | using power_mono [of 1 a n] by simp | |
| 364 | ||
| 365 | lemma power_le_one: "\<lbrakk>0 \<le> a; a \<le> 1\<rbrakk> \<Longrightarrow> a ^ n \<le> 1" | |
| 366 | using power_mono [of a 1 n] by simp | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 367 | |
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 368 | lemma power_gt1_lemma: | 
| 30996 | 369 | assumes gt1: "1 < a" | 
| 370 | shows "1 < a * a ^ n" | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 371 | proof - | 
| 30996 | 372 | from gt1 have "0 \<le> a" | 
| 373 | by (fact order_trans [OF zero_le_one less_imp_le]) | |
| 374 | have "1 * 1 < a * 1" using gt1 by simp | |
| 375 | also have "\<dots> \<le> a * a ^ n" using gt1 | |
| 376 | by (simp only: mult_mono `0 \<le> a` one_le_power order_less_imp_le | |
| 14577 | 377 | zero_le_one order_refl) | 
| 378 | finally show ?thesis by simp | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 379 | qed | 
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 380 | |
| 30996 | 381 | lemma power_gt1: | 
| 382 | "1 < a \<Longrightarrow> 1 < a ^ Suc n" | |
| 383 | by (simp add: power_gt1_lemma) | |
| 24376 | 384 | |
| 30996 | 385 | lemma one_less_power [simp]: | 
| 386 | "1 < a \<Longrightarrow> 0 < n \<Longrightarrow> 1 < a ^ n" | |
| 387 | by (cases n) (simp_all add: power_gt1_lemma) | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 388 | |
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 389 | lemma power_le_imp_le_exp: | 
| 30996 | 390 | assumes gt1: "1 < a" | 
| 391 | shows "a ^ m \<le> a ^ n \<Longrightarrow> m \<le> n" | |
| 392 | proof (induct m arbitrary: n) | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 393 | case 0 | 
| 14577 | 394 | show ?case by simp | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 395 | next | 
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 396 | case (Suc m) | 
| 14577 | 397 | show ?case | 
| 398 | proof (cases n) | |
| 399 | case 0 | |
| 30996 | 400 | with Suc.prems Suc.hyps have "a * a ^ m \<le> 1" by simp | 
| 14577 | 401 | with gt1 show ?thesis | 
| 402 | by (force simp only: power_gt1_lemma | |
| 30996 | 403 | not_less [symmetric]) | 
| 14577 | 404 | next | 
| 405 | case (Suc n) | |
| 30996 | 406 | with Suc.prems Suc.hyps show ?thesis | 
| 14577 | 407 | by (force dest: mult_left_le_imp_le | 
| 30996 | 408 | simp add: less_trans [OF zero_less_one gt1]) | 
| 14577 | 409 | qed | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 410 | qed | 
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 411 | |
| 14577 | 412 | text{*Surely we can strengthen this? It holds for @{text "0<a<1"} too.*}
 | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 413 | lemma power_inject_exp [simp]: | 
| 30996 | 414 | "1 < a \<Longrightarrow> a ^ m = a ^ n \<longleftrightarrow> m = n" | 
| 14577 | 415 | by (force simp add: order_antisym power_le_imp_le_exp) | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 416 | |
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 417 | text{*Can relax the first premise to @{term "0<a"} in the case of the
 | 
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 418 | natural numbers.*} | 
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 419 | lemma power_less_imp_less_exp: | 
| 30996 | 420 | "1 < a \<Longrightarrow> a ^ m < a ^ n \<Longrightarrow> m < n" | 
| 421 | by (simp add: order_less_le [of m n] less_le [of "a^m" "a^n"] | |
| 422 | power_le_imp_le_exp) | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 423 | |
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 424 | lemma power_strict_mono [rule_format]: | 
| 30996 | 425 | "a < b \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 < n \<longrightarrow> a ^ n < b ^ n" | 
| 426 | by (induct n) | |
| 427 | (auto simp add: mult_strict_mono le_less_trans [of 0 a b]) | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 428 | |
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 429 | text{*Lemma for @{text power_strict_decreasing}*}
 | 
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 430 | lemma power_Suc_less: | 
| 30996 | 431 | "0 < a \<Longrightarrow> a < 1 \<Longrightarrow> a * a ^ n < a ^ n" | 
| 432 | by (induct n) | |
| 433 | (auto simp add: mult_strict_left_mono) | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 434 | |
| 30996 | 435 | lemma power_strict_decreasing [rule_format]: | 
| 436 | "n < N \<Longrightarrow> 0 < a \<Longrightarrow> a < 1 \<longrightarrow> a ^ N < a ^ n" | |
| 437 | proof (induct N) | |
| 438 | case 0 then show ?case by simp | |
| 439 | next | |
| 440 | case (Suc N) then show ?case | |
| 441 | apply (auto simp add: power_Suc_less less_Suc_eq) | |
| 442 | apply (subgoal_tac "a * a^N < 1 * a^n") | |
| 443 | apply simp | |
| 444 | apply (rule mult_strict_mono) apply auto | |
| 445 | done | |
| 446 | qed | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 447 | |
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 448 | text{*Proof resembles that of @{text power_strict_decreasing}*}
 | 
| 30996 | 449 | lemma power_decreasing [rule_format]: | 
| 450 | "n \<le> N \<Longrightarrow> 0 \<le> a \<Longrightarrow> a \<le> 1 \<longrightarrow> a ^ N \<le> a ^ n" | |
| 451 | proof (induct N) | |
| 452 | case 0 then show ?case by simp | |
| 453 | next | |
| 454 | case (Suc N) then show ?case | |
| 455 | apply (auto simp add: le_Suc_eq) | |
| 456 | apply (subgoal_tac "a * a^N \<le> 1 * a^n", simp) | |
| 457 | apply (rule mult_mono) apply auto | |
| 458 | done | |
| 459 | qed | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 460 | |
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 461 | lemma power_Suc_less_one: | 
| 30996 | 462 | "0 < a \<Longrightarrow> a < 1 \<Longrightarrow> a ^ Suc n < 1" | 
| 463 | using power_strict_decreasing [of 0 "Suc n" a] by simp | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 464 | |
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 465 | text{*Proof again resembles that of @{text power_strict_decreasing}*}
 | 
| 30996 | 466 | lemma power_increasing [rule_format]: | 
| 467 | "n \<le> N \<Longrightarrow> 1 \<le> a \<Longrightarrow> a ^ n \<le> a ^ N" | |
| 468 | proof (induct N) | |
| 469 | case 0 then show ?case by simp | |
| 470 | next | |
| 471 | case (Suc N) then show ?case | |
| 472 | apply (auto simp add: le_Suc_eq) | |
| 473 | apply (subgoal_tac "1 * a^n \<le> a * a^N", simp) | |
| 474 | apply (rule mult_mono) apply (auto simp add: order_trans [OF zero_le_one]) | |
| 475 | done | |
| 476 | qed | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 477 | |
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 478 | text{*Lemma for @{text power_strict_increasing}*}
 | 
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 479 | lemma power_less_power_Suc: | 
| 30996 | 480 | "1 < a \<Longrightarrow> a ^ n < a * a ^ n" | 
| 481 | by (induct n) (auto simp add: mult_strict_left_mono less_trans [OF zero_less_one]) | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 482 | |
| 30996 | 483 | lemma power_strict_increasing [rule_format]: | 
| 484 | "n < N \<Longrightarrow> 1 < a \<longrightarrow> a ^ n < a ^ N" | |
| 485 | proof (induct N) | |
| 486 | case 0 then show ?case by simp | |
| 487 | next | |
| 488 | case (Suc N) then show ?case | |
| 489 | apply (auto simp add: power_less_power_Suc less_Suc_eq) | |
| 490 | apply (subgoal_tac "1 * a^n < a * a^N", simp) | |
| 491 | apply (rule mult_strict_mono) apply (auto simp add: less_trans [OF zero_less_one] less_imp_le) | |
| 492 | done | |
| 493 | qed | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 494 | |
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25062diff
changeset | 495 | lemma power_increasing_iff [simp]: | 
| 30996 | 496 | "1 < b \<Longrightarrow> b ^ x \<le> b ^ y \<longleftrightarrow> x \<le> y" | 
| 497 | by (blast intro: power_le_imp_le_exp power_increasing less_imp_le) | |
| 15066 | 498 | |
| 499 | lemma power_strict_increasing_iff [simp]: | |
| 30996 | 500 | "1 < b \<Longrightarrow> b ^ x < b ^ y \<longleftrightarrow> x < y" | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25062diff
changeset | 501 | by (blast intro: power_less_imp_less_exp power_strict_increasing) | 
| 15066 | 502 | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 503 | lemma power_le_imp_le_base: | 
| 30996 | 504 | assumes le: "a ^ Suc n \<le> b ^ Suc n" | 
| 505 | and ynonneg: "0 \<le> b" | |
| 506 | shows "a \<le> b" | |
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25062diff
changeset | 507 | proof (rule ccontr) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25062diff
changeset | 508 | assume "~ a \<le> b" | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25062diff
changeset | 509 | then have "b < a" by (simp only: linorder_not_le) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25062diff
changeset | 510 | then have "b ^ Suc n < a ^ Suc n" | 
| 41550 | 511 | by (simp only: assms power_strict_mono) | 
| 30996 | 512 | from le and this show False | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25062diff
changeset | 513 | by (simp add: linorder_not_less [symmetric]) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25062diff
changeset | 514 | qed | 
| 14577 | 515 | |
| 22853 | 516 | lemma power_less_imp_less_base: | 
| 517 | assumes less: "a ^ n < b ^ n" | |
| 518 | assumes nonneg: "0 \<le> b" | |
| 519 | shows "a < b" | |
| 520 | proof (rule contrapos_pp [OF less]) | |
| 521 | assume "~ a < b" | |
| 522 | hence "b \<le> a" by (simp only: linorder_not_less) | |
| 523 | hence "b ^ n \<le> a ^ n" using nonneg by (rule power_mono) | |
| 30996 | 524 | thus "\<not> a ^ n < b ^ n" by (simp only: linorder_not_less) | 
| 22853 | 525 | qed | 
| 526 | ||
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 527 | lemma power_inject_base: | 
| 30996 | 528 | "a ^ Suc n = b ^ Suc n \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> a = b" | 
| 529 | by (blast intro: power_le_imp_le_base antisym eq_refl sym) | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 530 | |
| 22955 | 531 | lemma power_eq_imp_eq_base: | 
| 30996 | 532 | "a ^ n = b ^ n \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 < n \<Longrightarrow> a = b" | 
| 533 | by (cases n) (simp_all del: power_Suc, rule power_inject_base) | |
| 22955 | 534 | |
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 535 | lemma power2_le_imp_le: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52435diff
changeset | 536 | "x\<^sup>2 \<le> y\<^sup>2 \<Longrightarrow> 0 \<le> y \<Longrightarrow> x \<le> y" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 537 | unfolding numeral_2_eq_2 by (rule power_le_imp_le_base) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 538 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 539 | lemma power2_less_imp_less: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52435diff
changeset | 540 | "x\<^sup>2 < y\<^sup>2 \<Longrightarrow> 0 \<le> y \<Longrightarrow> x < y" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 541 | by (rule power_less_imp_less_base) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 542 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 543 | lemma power2_eq_imp_eq: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52435diff
changeset | 544 | "x\<^sup>2 = y\<^sup>2 \<Longrightarrow> 0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> x = y" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 545 | unfolding numeral_2_eq_2 by (erule (2) power_eq_imp_eq_base) simp | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 546 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 547 | end | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 548 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 549 | context linordered_ring_strict | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 550 | begin | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 551 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 552 | lemma sum_squares_eq_zero_iff: | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 553 | "x * x + y * y = 0 \<longleftrightarrow> x = 0 \<and> y = 0" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 554 | by (simp add: add_nonneg_eq_0_iff) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 555 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 556 | lemma sum_squares_le_zero_iff: | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 557 | "x * x + y * y \<le> 0 \<longleftrightarrow> x = 0 \<and> y = 0" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 558 | by (simp add: le_less not_sum_squares_lt_zero sum_squares_eq_zero_iff) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 559 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 560 | lemma sum_squares_gt_zero_iff: | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 561 | "0 < x * x + y * y \<longleftrightarrow> x \<noteq> 0 \<or> y \<noteq> 0" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 562 | by (simp add: not_le [symmetric] sum_squares_le_zero_iff) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 563 | |
| 30996 | 564 | end | 
| 565 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
33364diff
changeset | 566 | context linordered_idom | 
| 30996 | 567 | begin | 
| 29978 
33df3c4eb629
generalize le_imp_power_dvd and power_le_dvd; move from Divides to Power
 huffman parents: 
29608diff
changeset | 568 | |
| 30996 | 569 | lemma power_abs: | 
| 570 | "abs (a ^ n) = abs a ^ n" | |
| 571 | by (induct n) (auto simp add: abs_mult) | |
| 572 | ||
| 573 | lemma abs_power_minus [simp]: | |
| 574 | "abs ((-a) ^ n) = abs (a ^ n)" | |
| 35216 | 575 | by (simp add: power_abs) | 
| 30996 | 576 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53076diff
changeset | 577 | lemma zero_less_power_abs_iff [simp]: | 
| 30996 | 578 | "0 < abs a ^ n \<longleftrightarrow> a \<noteq> 0 \<or> n = 0" | 
| 579 | proof (induct n) | |
| 580 | case 0 show ?case by simp | |
| 581 | next | |
| 582 | case (Suc n) show ?case by (auto simp add: Suc zero_less_mult_iff) | |
| 29978 
33df3c4eb629
generalize le_imp_power_dvd and power_le_dvd; move from Divides to Power
 huffman parents: 
29608diff
changeset | 583 | qed | 
| 
33df3c4eb629
generalize le_imp_power_dvd and power_le_dvd; move from Divides to Power
 huffman parents: 
29608diff
changeset | 584 | |
| 30996 | 585 | lemma zero_le_power_abs [simp]: | 
| 586 | "0 \<le> abs a ^ n" | |
| 587 | by (rule zero_le_power [OF abs_ge_zero]) | |
| 588 | ||
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 589 | lemma zero_le_power2 [simp]: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52435diff
changeset | 590 | "0 \<le> a\<^sup>2" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 591 | by (simp add: power2_eq_square) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 592 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 593 | lemma zero_less_power2 [simp]: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52435diff
changeset | 594 | "0 < a\<^sup>2 \<longleftrightarrow> a \<noteq> 0" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 595 | by (force simp add: power2_eq_square zero_less_mult_iff linorder_neq_iff) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 596 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 597 | lemma power2_less_0 [simp]: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52435diff
changeset | 598 | "\<not> a\<^sup>2 < 0" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 599 | by (force simp add: power2_eq_square mult_less_0_iff) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 600 | |
| 58787 | 601 | lemma power2_less_eq_zero_iff [simp]: | 
| 602 | "a\<^sup>2 \<le> 0 \<longleftrightarrow> a = 0" | |
| 603 | by (simp add: le_less) | |
| 604 | ||
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 605 | lemma abs_power2 [simp]: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52435diff
changeset | 606 | "abs (a\<^sup>2) = a\<^sup>2" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 607 | by (simp add: power2_eq_square abs_mult abs_mult_self) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 608 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 609 | lemma power2_abs [simp]: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52435diff
changeset | 610 | "(abs a)\<^sup>2 = a\<^sup>2" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 611 | by (simp add: power2_eq_square abs_mult_self) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 612 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 613 | lemma odd_power_less_zero: | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 614 | "a < 0 \<Longrightarrow> a ^ Suc (2*n) < 0" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 615 | proof (induct n) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 616 | case 0 | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 617 | then show ?case by simp | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 618 | next | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 619 | case (Suc n) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 620 | have "a ^ Suc (2 * Suc n) = (a*a) * a ^ Suc(2*n)" | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 621 | by (simp add: ac_simps power_add power2_eq_square) | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 622 | thus ?case | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 623 | by (simp del: power_Suc add: Suc mult_less_0_iff mult_neg_neg) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 624 | qed | 
| 30996 | 625 | |
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 626 | lemma odd_0_le_power_imp_0_le: | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 627 | "0 \<le> a ^ Suc (2*n) \<Longrightarrow> 0 \<le> a" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 628 | using odd_power_less_zero [of a n] | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 629 | by (force simp add: linorder_not_less [symmetric]) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 630 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 631 | lemma zero_le_even_power'[simp]: | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 632 | "0 \<le> a ^ (2*n)" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 633 | proof (induct n) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 634 | case 0 | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 635 | show ?case by simp | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 636 | next | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 637 | case (Suc n) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 638 | have "a ^ (2 * Suc n) = (a*a) * a ^ (2*n)" | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 639 | by (simp add: ac_simps power_add power2_eq_square) | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 640 | thus ?case | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 641 | by (simp add: Suc zero_le_mult_iff) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 642 | qed | 
| 30996 | 643 | |
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 644 | lemma sum_power2_ge_zero: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52435diff
changeset | 645 | "0 \<le> x\<^sup>2 + y\<^sup>2" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 646 | by (intro add_nonneg_nonneg zero_le_power2) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 647 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 648 | lemma not_sum_power2_lt_zero: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52435diff
changeset | 649 | "\<not> x\<^sup>2 + y\<^sup>2 < 0" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 650 | unfolding not_less by (rule sum_power2_ge_zero) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 651 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 652 | lemma sum_power2_eq_zero_iff: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52435diff
changeset | 653 | "x\<^sup>2 + y\<^sup>2 = 0 \<longleftrightarrow> x = 0 \<and> y = 0" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 654 | unfolding power2_eq_square by (simp add: add_nonneg_eq_0_iff) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 655 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 656 | lemma sum_power2_le_zero_iff: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52435diff
changeset | 657 | "x\<^sup>2 + y\<^sup>2 \<le> 0 \<longleftrightarrow> x = 0 \<and> y = 0" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 658 | by (simp add: le_less sum_power2_eq_zero_iff not_sum_power2_lt_zero) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 659 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 660 | lemma sum_power2_gt_zero_iff: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52435diff
changeset | 661 | "0 < x\<^sup>2 + y\<^sup>2 \<longleftrightarrow> x \<noteq> 0 \<or> y \<noteq> 0" | 
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 662 | unfolding not_le [symmetric] by (simp add: sum_power2_le_zero_iff) | 
| 30996 | 663 | |
| 59865 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 664 | lemma abs_le_square_iff: | 
| 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 665 | "\<bar>x\<bar> \<le> \<bar>y\<bar> \<longleftrightarrow> x\<^sup>2 \<le> y\<^sup>2" | 
| 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 666 | proof | 
| 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 667 | assume "\<bar>x\<bar> \<le> \<bar>y\<bar>" | 
| 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 668 | then have "\<bar>x\<bar>\<^sup>2 \<le> \<bar>y\<bar>\<^sup>2" by (rule power_mono, simp) | 
| 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 669 | then show "x\<^sup>2 \<le> y\<^sup>2" by simp | 
| 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 670 | next | 
| 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 671 | assume "x\<^sup>2 \<le> y\<^sup>2" | 
| 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 672 | then show "\<bar>x\<bar> \<le> \<bar>y\<bar>" | 
| 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 673 | by (auto intro!: power2_le_imp_le [OF _ abs_ge_zero]) | 
| 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 674 | qed | 
| 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 675 | |
| 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 676 | lemma abs_square_le_1:"x\<^sup>2 \<le> 1 \<longleftrightarrow> abs(x) \<le> 1" | 
| 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 677 | using abs_le_square_iff [of x 1] | 
| 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 678 | by simp | 
| 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 679 | |
| 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 680 | lemma abs_square_eq_1: "x\<^sup>2 = 1 \<longleftrightarrow> abs(x) = 1" | 
| 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 681 | by (auto simp add: abs_if power2_eq_1_iff) | 
| 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 682 | |
| 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 683 | lemma abs_square_less_1: "x\<^sup>2 < 1 \<longleftrightarrow> abs(x) < 1" | 
| 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 684 | using abs_square_eq_1 [of x] abs_square_le_1 [of x] | 
| 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 685 | by (auto simp add: le_less) | 
| 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 686 | |
| 30996 | 687 | end | 
| 688 | ||
| 29978 
33df3c4eb629
generalize le_imp_power_dvd and power_le_dvd; move from Divides to Power
 huffman parents: 
29608diff
changeset | 689 | |
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 690 | subsection {* Miscellaneous rules *}
 | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 691 | |
| 55718 
34618f031ba9
A few lemmas about summations, etc.
 paulson <lp15@cam.ac.uk> parents: 
55096diff
changeset | 692 | lemma self_le_power: | 
| 
34618f031ba9
A few lemmas about summations, etc.
 paulson <lp15@cam.ac.uk> parents: 
55096diff
changeset | 693 | fixes x::"'a::linordered_semidom" | 
| 
34618f031ba9
A few lemmas about summations, etc.
 paulson <lp15@cam.ac.uk> parents: 
55096diff
changeset | 694 | shows "1 \<le> x \<Longrightarrow> 0 < n \<Longrightarrow> x \<le> x ^ n" | 
| 55811 | 695 | using power_increasing[of 1 n x] power_one_right[of x] by auto | 
| 55718 
34618f031ba9
A few lemmas about summations, etc.
 paulson <lp15@cam.ac.uk> parents: 
55096diff
changeset | 696 | |
| 47255 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 697 | lemma power_eq_if: "p ^ m = (if m=0 then 1 else p * (p ^ (m - 1)))" | 
| 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 698 | unfolding One_nat_def by (cases m) simp_all | 
| 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 699 | |
| 58787 | 700 | lemma (in comm_semiring_1) power2_sum: | 
| 701 | "(x + y)\<^sup>2 = x\<^sup>2 + y\<^sup>2 + 2 * x * y" | |
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 702 | by (simp add: algebra_simps power2_eq_square mult_2_right) | 
| 30996 | 703 | |
| 58787 | 704 | lemma (in comm_ring_1) power2_diff: | 
| 705 | "(x - y)\<^sup>2 = x\<^sup>2 + y\<^sup>2 - 2 * x * y" | |
| 706 | by (simp add: algebra_simps power2_eq_square mult_2_right) | |
| 30996 | 707 | |
| 708 | lemma power_0_Suc [simp]: | |
| 709 |   "(0::'a::{power, semiring_0}) ^ Suc n = 0"
 | |
| 710 | by simp | |
| 30313 | 711 | |
| 30996 | 712 | text{*It looks plausible as a simprule, but its effect can be strange.*}
 | 
| 713 | lemma power_0_left: | |
| 714 |   "0 ^ n = (if n = 0 then 1 else (0::'a::{power, semiring_0}))"
 | |
| 715 | by (induct n) simp_all | |
| 716 | ||
| 36409 | 717 | lemma (in field) power_diff: | 
| 30996 | 718 | assumes nz: "a \<noteq> 0" | 
| 719 | shows "n \<le> m \<Longrightarrow> a ^ (m - n) = a ^ m / a ^ n" | |
| 36409 | 720 | by (induct m n rule: diff_induct) (simp_all add: nz field_power_not_zero) | 
| 30313 | 721 | |
| 30996 | 722 | text{*Perhaps these should be simprules.*}
 | 
| 723 | lemma power_inverse: | |
| 59867 
58043346ca64
given up separate type classes demanding `inverse 0 = 0`
 haftmann parents: 
59865diff
changeset | 724 | fixes a :: "'a::division_ring" | 
| 36409 | 725 | shows "inverse (a ^ n) = inverse a ^ n" | 
| 30996 | 726 | apply (cases "a = 0") | 
| 727 | apply (simp add: power_0_left) | |
| 728 | apply (simp add: nonzero_power_inverse) | |
| 729 | done (* TODO: reorient or rename to inverse_power *) | |
| 730 | ||
| 731 | lemma power_one_over: | |
| 59867 
58043346ca64
given up separate type classes demanding `inverse 0 = 0`
 haftmann parents: 
59865diff
changeset | 732 |   "1 / (a::'a::{field, power}) ^ n =  (1 / a) ^ n"
 | 
| 30996 | 733 | by (simp add: divide_inverse) (rule power_inverse) | 
| 734 | ||
| 56481 | 735 | lemma power_divide [field_simps, divide_simps]: | 
| 59867 
58043346ca64
given up separate type classes demanding `inverse 0 = 0`
 haftmann parents: 
59865diff
changeset | 736 | "(a / b) ^ n = (a::'a::field) ^ n / b ^ n" | 
| 30996 | 737 | apply (cases "b = 0") | 
| 738 | apply (simp add: power_0_left) | |
| 739 | apply (rule nonzero_power_divide) | |
| 740 | apply assumption | |
| 30313 | 741 | done | 
| 742 | ||
| 47255 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 743 | text {* Simprules for comparisons where common factors can be cancelled. *}
 | 
| 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 744 | |
| 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 745 | lemmas zero_compare_simps = | 
| 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 746 | add_strict_increasing add_strict_increasing2 add_increasing | 
| 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 747 | zero_le_mult_iff zero_le_divide_iff | 
| 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 748 | zero_less_mult_iff zero_less_divide_iff | 
| 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 749 | mult_le_0_iff divide_le_0_iff | 
| 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 750 | mult_less_0_iff divide_less_0_iff | 
| 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 751 | zero_le_power2 power2_less_0 | 
| 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 752 | |
| 30313 | 753 | |
| 30960 | 754 | subsection {* Exponentiation for the Natural Numbers *}
 | 
| 14577 | 755 | |
| 30996 | 756 | lemma nat_one_le_power [simp]: | 
| 757 | "Suc 0 \<le> i \<Longrightarrow> Suc 0 \<le> i ^ n" | |
| 758 | by (rule one_le_power [of i n, unfolded One_nat_def]) | |
| 23305 | 759 | |
| 30996 | 760 | lemma nat_zero_less_power_iff [simp]: | 
| 761 | "x ^ n > 0 \<longleftrightarrow> x > (0::nat) \<or> n = 0" | |
| 762 | by (induct n) auto | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 763 | |
| 30056 | 764 | lemma nat_power_eq_Suc_0_iff [simp]: | 
| 30996 | 765 | "x ^ m = Suc 0 \<longleftrightarrow> m = 0 \<or> x = Suc 0" | 
| 766 | by (induct m) auto | |
| 30056 | 767 | |
| 30996 | 768 | lemma power_Suc_0 [simp]: | 
| 769 | "Suc 0 ^ n = Suc 0" | |
| 770 | by simp | |
| 30056 | 771 | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 772 | text{*Valid for the naturals, but what if @{text"0<i<1"}?
 | 
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 773 | Premises cannot be weakened: consider the case where @{term "i=0"},
 | 
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 774 | @{term "m=1"} and @{term "n=0"}.*}
 | 
| 21413 | 775 | lemma nat_power_less_imp_less: | 
| 776 | assumes nonneg: "0 < (i\<Colon>nat)" | |
| 30996 | 777 | assumes less: "i ^ m < i ^ n" | 
| 21413 | 778 | shows "m < n" | 
| 779 | proof (cases "i = 1") | |
| 780 | case True with less power_one [where 'a = nat] show ?thesis by simp | |
| 781 | next | |
| 782 | case False with nonneg have "1 < i" by auto | |
| 783 | from power_strict_increasing_iff [OF this] less show ?thesis .. | |
| 784 | qed | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 785 | |
| 33274 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
31998diff
changeset | 786 | lemma power_dvd_imp_le: | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
31998diff
changeset | 787 | "i ^ m dvd i ^ n \<Longrightarrow> (1::nat) < i \<Longrightarrow> m \<le> n" | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
31998diff
changeset | 788 | apply (rule power_le_imp_le_exp, assumption) | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
31998diff
changeset | 789 | apply (erule dvd_imp_le, simp) | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
31998diff
changeset | 790 | done | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
31998diff
changeset | 791 | |
| 51263 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49824diff
changeset | 792 | lemma power2_nat_le_eq_le: | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49824diff
changeset | 793 | fixes m n :: nat | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52435diff
changeset | 794 | shows "m\<^sup>2 \<le> n\<^sup>2 \<longleftrightarrow> m \<le> n" | 
| 51263 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49824diff
changeset | 795 | by (auto intro: power2_le_imp_le power_mono) | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49824diff
changeset | 796 | |
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49824diff
changeset | 797 | lemma power2_nat_le_imp_le: | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49824diff
changeset | 798 | fixes m n :: nat | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52435diff
changeset | 799 | assumes "m\<^sup>2 \<le> n" | 
| 51263 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49824diff
changeset | 800 | shows "m \<le> n" | 
| 54249 | 801 | proof (cases m) | 
| 802 | case 0 then show ?thesis by simp | |
| 803 | next | |
| 804 | case (Suc k) | |
| 805 | show ?thesis | |
| 806 | proof (rule ccontr) | |
| 807 | assume "\<not> m \<le> n" | |
| 808 | then have "n < m" by simp | |
| 809 | with assms Suc show False | |
| 810 | by (auto simp add: algebra_simps) (simp add: power2_eq_square) | |
| 811 | qed | |
| 812 | qed | |
| 51263 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49824diff
changeset | 813 | |
| 55096 | 814 | subsubsection {* Cardinality of the Powerset *}
 | 
| 815 | ||
| 816 | lemma card_UNIV_bool [simp]: "card (UNIV :: bool set) = 2" | |
| 817 | unfolding UNIV_bool by simp | |
| 818 | ||
| 819 | lemma card_Pow: "finite A \<Longrightarrow> card (Pow A) = 2 ^ card A" | |
| 820 | proof (induct rule: finite_induct) | |
| 821 | case empty | |
| 822 | show ?case by auto | |
| 823 | next | |
| 824 | case (insert x A) | |
| 825 | then have "inj_on (insert x) (Pow A)" | |
| 826 | unfolding inj_on_def by (blast elim!: equalityE) | |
| 827 | then have "card (Pow A) + card (insert x ` Pow A) = 2 * 2 ^ card A" | |
| 828 | by (simp add: mult_2 card_image Pow_insert insert.hyps) | |
| 829 | then show ?case using insert | |
| 830 | apply (simp add: Pow_insert) | |
| 831 | apply (subst card_Un_disjoint, auto) | |
| 832 | done | |
| 833 | qed | |
| 834 | ||
| 57418 | 835 | |
| 836 | subsubsection {* Generalized sum over a set *}
 | |
| 837 | ||
| 838 | lemma setsum_zero_power [simp]: | |
| 839 | fixes c :: "nat \<Rightarrow> 'a::division_ring" | |
| 840 | shows "(\<Sum>i\<in>A. c i * 0^i) = (if finite A \<and> 0 \<in> A then c 0 else 0)" | |
| 841 | apply (cases "finite A") | |
| 842 | by (induction A rule: finite_induct) auto | |
| 843 | ||
| 844 | lemma setsum_zero_power' [simp]: | |
| 845 | fixes c :: "nat \<Rightarrow> 'a::field" | |
| 846 | shows "(\<Sum>i\<in>A. c i * 0^i / d i) = (if finite A \<and> 0 \<in> A then c 0 / d 0 else 0)" | |
| 847 | using setsum_zero_power [of "\<lambda>i. c i / d i" A] | |
| 848 | by auto | |
| 849 | ||
| 850 | ||
| 55096 | 851 | subsubsection {* Generalized product over a set *}
 | 
| 852 | ||
| 853 | lemma setprod_constant: "finite A ==> (\<Prod>x\<in> A. (y::'a::{comm_monoid_mult})) = y^(card A)"
 | |
| 854 | apply (erule finite_induct) | |
| 855 | apply auto | |
| 856 | done | |
| 857 | ||
| 57418 | 858 | lemma setprod_power_distrib: | 
| 859 | fixes f :: "'a \<Rightarrow> 'b::comm_semiring_1" | |
| 860 | shows "setprod f A ^ n = setprod (\<lambda>x. (f x) ^ n) A" | |
| 861 | proof (cases "finite A") | |
| 862 | case True then show ?thesis | |
| 863 | by (induct A rule: finite_induct) (auto simp add: power_mult_distrib) | |
| 864 | next | |
| 865 | case False then show ?thesis | |
| 866 | by simp | |
| 867 | qed | |
| 868 | ||
| 58437 | 869 | lemma power_setsum: | 
| 870 | "c ^ (\<Sum>a\<in>A. f a) = (\<Prod>a\<in>A. c ^ f a)" | |
| 871 | by (induct A rule: infinite_finite_induct) (simp_all add: power_add) | |
| 872 | ||
| 55096 | 873 | lemma setprod_gen_delta: | 
| 874 | assumes fS: "finite S" | |
| 875 | shows "setprod (\<lambda>k. if k=a then b k else c) S = (if a \<in> S then (b a ::'a::comm_monoid_mult) * c^ (card S - 1) else c^ card S)" | |
| 876 | proof- | |
| 877 | let ?f = "(\<lambda>k. if k=a then b k else c)" | |
| 878 |   {assume a: "a \<notin> S"
 | |
| 879 | hence "\<forall> k\<in> S. ?f k = c" by simp | |
| 880 | hence ?thesis using a setprod_constant[OF fS, of c] by simp } | |
| 881 | moreover | |
| 882 |   {assume a: "a \<in> S"
 | |
| 883 |     let ?A = "S - {a}"
 | |
| 884 |     let ?B = "{a}"
 | |
| 885 | have eq: "S = ?A \<union> ?B" using a by blast | |
| 886 |     have dj: "?A \<inter> ?B = {}" by simp
 | |
| 887 | from fS have fAB: "finite ?A" "finite ?B" by auto | |
| 888 | have fA0:"setprod ?f ?A = setprod (\<lambda>i. c) ?A" | |
| 57418 | 889 | apply (rule setprod.cong) by auto | 
| 55096 | 890 | have cA: "card ?A = card S - 1" using fS a by auto | 
| 891 | have fA1: "setprod ?f ?A = c ^ card ?A" unfolding fA0 apply (rule setprod_constant) using fS by auto | |
| 892 | have "setprod ?f ?A * setprod ?f ?B = setprod ?f S" | |
| 57418 | 893 | using setprod.union_disjoint[OF fAB dj, of ?f, unfolded eq[symmetric]] | 
| 55096 | 894 | by simp | 
| 895 | then have ?thesis using a cA | |
| 57418 | 896 | by (simp add: fA1 field_simps cong add: setprod.cong cong del: if_weak_cong)} | 
| 55096 | 897 | ultimately show ?thesis by blast | 
| 898 | qed | |
| 899 | ||
| 31155 
92d8ff6af82c
monomorphic code generation for power operations
 haftmann parents: 
31021diff
changeset | 900 | subsection {* Code generator tweak *}
 | 
| 
92d8ff6af82c
monomorphic code generation for power operations
 haftmann parents: 
31021diff
changeset | 901 | |
| 45231 
d85a2fdc586c
replacing code_inline by code_unfold, removing obsolete code_unfold, code_inline del now that the ancient code generator is removed
 bulwahn parents: 
41550diff
changeset | 902 | lemma power_power_power [code]: | 
| 31155 
92d8ff6af82c
monomorphic code generation for power operations
 haftmann parents: 
31021diff
changeset | 903 |   "power = power.power (1::'a::{power}) (op *)"
 | 
| 
92d8ff6af82c
monomorphic code generation for power operations
 haftmann parents: 
31021diff
changeset | 904 | unfolding power_def power.power_def .. | 
| 
92d8ff6af82c
monomorphic code generation for power operations
 haftmann parents: 
31021diff
changeset | 905 | |
| 
92d8ff6af82c
monomorphic code generation for power operations
 haftmann parents: 
31021diff
changeset | 906 | declare power.power.simps [code] | 
| 
92d8ff6af82c
monomorphic code generation for power operations
 haftmann parents: 
31021diff
changeset | 907 | |
| 52435 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
51263diff
changeset | 908 | code_identifier | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
51263diff
changeset | 909 | code_module Power \<rightharpoonup> (SML) Arith and (OCaml) Arith and (Haskell) Arith | 
| 33364 | 910 | |
| 3390 
0c7625196d95
New theory "Power" of exponentiation (and binomial coefficients)
 paulson parents: diff
changeset | 911 | end | 
| 49824 | 912 |