| author | wenzelm | 
| Sun, 05 Jul 2015 23:01:33 +0200 | |
| changeset 60651 | 1049f3724ac0 | 
| parent 60615 | e5fa1d5d3952 | 
| child 60758 | d8d85a8172b5 | 
| permissions | -rw-r--r-- | 
| 47317 
432b29a96f61
modernized obsolete old-style theory name with proper new-style underscore
 huffman parents: 
47222diff
changeset | 1 | (* Title: HOL/Set_Interval.thy | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32596diff
changeset | 2 | Author: Tobias Nipkow | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32596diff
changeset | 3 | Author: Clemens Ballarin | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32596diff
changeset | 4 | Author: Jeremy Avigad | 
| 8924 | 5 | |
| 13735 | 6 | lessThan, greaterThan, atLeast, atMost and two-sided intervals | 
| 51334 | 7 | |
| 8 | Modern convention: Ixy stands for an interval where x and y | |
| 9 | describe the lower and upper bound and x,y : {c,o,i}
 | |
| 10 | where c = closed, o = open, i = infinite. | |
| 11 | Examples: Ico = {_ ..< _} and Ici = {_ ..}
 | |
| 8924 | 12 | *) | 
| 13 | ||
| 58889 | 14 | section {* Set intervals *}
 | 
| 14577 | 15 | |
| 47317 
432b29a96f61
modernized obsolete old-style theory name with proper new-style underscore
 huffman parents: 
47222diff
changeset | 16 | theory Set_Interval | 
| 55088 
57c82e01022b
moved 'bacc' back to 'Enum' (cf. 744934b818c7) -- reduces baggage loaded by 'Hilbert_Choice'
 blanchet parents: 
55085diff
changeset | 17 | imports Lattices_Big Nat_Transfer | 
| 15131 | 18 | begin | 
| 8924 | 19 | |
| 24691 | 20 | context ord | 
| 21 | begin | |
| 44008 | 22 | |
| 24691 | 23 | definition | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32596diff
changeset | 24 |   lessThan    :: "'a => 'a set" ("(1{..<_})") where
 | 
| 25062 | 25 |   "{..<u} == {x. x < u}"
 | 
| 24691 | 26 | |
| 27 | definition | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32596diff
changeset | 28 |   atMost      :: "'a => 'a set" ("(1{.._})") where
 | 
| 25062 | 29 |   "{..u} == {x. x \<le> u}"
 | 
| 24691 | 30 | |
| 31 | definition | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32596diff
changeset | 32 |   greaterThan :: "'a => 'a set" ("(1{_<..})") where
 | 
| 25062 | 33 |   "{l<..} == {x. l<x}"
 | 
| 24691 | 34 | |
| 35 | definition | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32596diff
changeset | 36 |   atLeast     :: "'a => 'a set" ("(1{_..})") where
 | 
| 25062 | 37 |   "{l..} == {x. l\<le>x}"
 | 
| 24691 | 38 | |
| 39 | definition | |
| 25062 | 40 |   greaterThanLessThan :: "'a => 'a => 'a set"  ("(1{_<..<_})") where
 | 
| 41 |   "{l<..<u} == {l<..} Int {..<u}"
 | |
| 24691 | 42 | |
| 43 | definition | |
| 25062 | 44 |   atLeastLessThan :: "'a => 'a => 'a set"      ("(1{_..<_})") where
 | 
| 45 |   "{l..<u} == {l..} Int {..<u}"
 | |
| 24691 | 46 | |
| 47 | definition | |
| 25062 | 48 |   greaterThanAtMost :: "'a => 'a => 'a set"    ("(1{_<.._})") where
 | 
| 49 |   "{l<..u} == {l<..} Int {..u}"
 | |
| 24691 | 50 | |
| 51 | definition | |
| 25062 | 52 |   atLeastAtMost :: "'a => 'a => 'a set"        ("(1{_.._})") where
 | 
| 53 |   "{l..u} == {l..} Int {..u}"
 | |
| 24691 | 54 | |
| 55 | end | |
| 8924 | 56 | |
| 13735 | 57 | |
| 15048 | 58 | text{* A note of warning when using @{term"{..<n}"} on type @{typ
 | 
| 59 | nat}: it is equivalent to @{term"{0::nat..<n}"} but some lemmas involving
 | |
| 15052 | 60 | @{term"{m..<n}"} may not exist in @{term"{..<n}"}-form as well. *}
 | 
| 15048 | 61 | |
| 14418 | 62 | syntax | 
| 36364 
0e2679025aeb
fix syntax precedence declarations for UNION, INTER, SUP, INF
 huffman parents: 
36307diff
changeset | 63 |   "_UNION_le"   :: "'a => 'a => 'b set => 'b set"       ("(3UN _<=_./ _)" [0, 0, 10] 10)
 | 
| 
0e2679025aeb
fix syntax precedence declarations for UNION, INTER, SUP, INF
 huffman parents: 
36307diff
changeset | 64 |   "_UNION_less" :: "'a => 'a => 'b set => 'b set"       ("(3UN _<_./ _)" [0, 0, 10] 10)
 | 
| 
0e2679025aeb
fix syntax precedence declarations for UNION, INTER, SUP, INF
 huffman parents: 
36307diff
changeset | 65 |   "_INTER_le"   :: "'a => 'a => 'b set => 'b set"       ("(3INT _<=_./ _)" [0, 0, 10] 10)
 | 
| 
0e2679025aeb
fix syntax precedence declarations for UNION, INTER, SUP, INF
 huffman parents: 
36307diff
changeset | 66 |   "_INTER_less" :: "'a => 'a => 'b set => 'b set"       ("(3INT _<_./ _)" [0, 0, 10] 10)
 | 
| 14418 | 67 | |
| 30372 | 68 | syntax (xsymbols) | 
| 60586 
1d31e3a50373
proper spacing, as for other syntax for these symbols;
 wenzelm parents: 
60162diff
changeset | 69 |   "_UNION_le"   :: "'a => 'a => 'b set => 'b set"       ("(3\<Union>_\<le>_./ _)" [0, 0, 10] 10)
 | 
| 
1d31e3a50373
proper spacing, as for other syntax for these symbols;
 wenzelm parents: 
60162diff
changeset | 70 |   "_UNION_less" :: "'a => 'a => 'b set => 'b set"       ("(3\<Union>_<_./ _)" [0, 0, 10] 10)
 | 
| 
1d31e3a50373
proper spacing, as for other syntax for these symbols;
 wenzelm parents: 
60162diff
changeset | 71 |   "_INTER_le"   :: "'a => 'a => 'b set => 'b set"       ("(3\<Inter>_\<le>_./ _)" [0, 0, 10] 10)
 | 
| 
1d31e3a50373
proper spacing, as for other syntax for these symbols;
 wenzelm parents: 
60162diff
changeset | 72 |   "_INTER_less" :: "'a => 'a => 'b set => 'b set"       ("(3\<Inter>_<_./ _)" [0, 0, 10] 10)
 | 
| 14418 | 73 | |
| 30372 | 74 | syntax (latex output) | 
| 36364 
0e2679025aeb
fix syntax precedence declarations for UNION, INTER, SUP, INF
 huffman parents: 
36307diff
changeset | 75 |   "_UNION_le"   :: "'a \<Rightarrow> 'a => 'b set => 'b set"       ("(3\<Union>(00_ \<le> _)/ _)" [0, 0, 10] 10)
 | 
| 
0e2679025aeb
fix syntax precedence declarations for UNION, INTER, SUP, INF
 huffman parents: 
36307diff
changeset | 76 |   "_UNION_less" :: "'a \<Rightarrow> 'a => 'b set => 'b set"       ("(3\<Union>(00_ < _)/ _)" [0, 0, 10] 10)
 | 
| 
0e2679025aeb
fix syntax precedence declarations for UNION, INTER, SUP, INF
 huffman parents: 
36307diff
changeset | 77 |   "_INTER_le"   :: "'a \<Rightarrow> 'a => 'b set => 'b set"       ("(3\<Inter>(00_ \<le> _)/ _)" [0, 0, 10] 10)
 | 
| 
0e2679025aeb
fix syntax precedence declarations for UNION, INTER, SUP, INF
 huffman parents: 
36307diff
changeset | 78 |   "_INTER_less" :: "'a \<Rightarrow> 'a => 'b set => 'b set"       ("(3\<Inter>(00_ < _)/ _)" [0, 0, 10] 10)
 | 
| 14418 | 79 | |
| 80 | translations | |
| 81 |   "UN i<=n. A"  == "UN i:{..n}. A"
 | |
| 15045 | 82 |   "UN i<n. A"   == "UN i:{..<n}. A"
 | 
| 14418 | 83 |   "INT i<=n. A" == "INT i:{..n}. A"
 | 
| 15045 | 84 |   "INT i<n. A"  == "INT i:{..<n}. A"
 | 
| 14418 | 85 | |
| 86 | ||
| 14485 | 87 | subsection {* Various equivalences *}
 | 
| 13735 | 88 | |
| 25062 | 89 | lemma (in ord) lessThan_iff [iff]: "(i: lessThan k) = (i<k)" | 
| 13850 | 90 | by (simp add: lessThan_def) | 
| 13735 | 91 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 92 | lemma Compl_lessThan [simp]: | 
| 13735 | 93 | "!!k:: 'a::linorder. -lessThan k = atLeast k" | 
| 13850 | 94 | apply (auto simp add: lessThan_def atLeast_def) | 
| 13735 | 95 | done | 
| 96 | ||
| 13850 | 97 | lemma single_Diff_lessThan [simp]: "!!k:: 'a::order. {k} - lessThan k = {k}"
 | 
| 98 | by auto | |
| 13735 | 99 | |
| 25062 | 100 | lemma (in ord) greaterThan_iff [iff]: "(i: greaterThan k) = (k<i)" | 
| 13850 | 101 | by (simp add: greaterThan_def) | 
| 13735 | 102 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 103 | lemma Compl_greaterThan [simp]: | 
| 13735 | 104 | "!!k:: 'a::linorder. -greaterThan k = atMost k" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25919diff
changeset | 105 | by (auto simp add: greaterThan_def atMost_def) | 
| 13735 | 106 | |
| 13850 | 107 | lemma Compl_atMost [simp]: "!!k:: 'a::linorder. -atMost k = greaterThan k" | 
| 108 | apply (subst Compl_greaterThan [symmetric]) | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 109 | apply (rule double_complement) | 
| 13735 | 110 | done | 
| 111 | ||
| 25062 | 112 | lemma (in ord) atLeast_iff [iff]: "(i: atLeast k) = (k<=i)" | 
| 13850 | 113 | by (simp add: atLeast_def) | 
| 13735 | 114 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 115 | lemma Compl_atLeast [simp]: | 
| 13735 | 116 | "!!k:: 'a::linorder. -atLeast k = lessThan k" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25919diff
changeset | 117 | by (auto simp add: lessThan_def atLeast_def) | 
| 13735 | 118 | |
| 25062 | 119 | lemma (in ord) atMost_iff [iff]: "(i: atMost k) = (i<=k)" | 
| 13850 | 120 | by (simp add: atMost_def) | 
| 13735 | 121 | |
| 14485 | 122 | lemma atMost_Int_atLeast: "!!n:: 'a::order. atMost n Int atLeast n = {n}"
 | 
| 123 | by (blast intro: order_antisym) | |
| 13850 | 124 | |
| 50999 | 125 | lemma (in linorder) lessThan_Int_lessThan: "{ a <..} \<inter> { b <..} = { max a b <..}"
 | 
| 126 | by auto | |
| 127 | ||
| 128 | lemma (in linorder) greaterThan_Int_greaterThan: "{..< a} \<inter> {..< b} = {..< min a b}"
 | |
| 129 | by auto | |
| 13850 | 130 | |
| 14485 | 131 | subsection {* Logical Equivalences for Set Inclusion and Equality *}
 | 
| 13850 | 132 | |
| 133 | lemma atLeast_subset_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 134 | "(atLeast x \<subseteq> atLeast y) = (y \<le> (x::'a::order))" | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 135 | by (blast intro: order_trans) | 
| 13850 | 136 | |
| 137 | lemma atLeast_eq_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 138 | "(atLeast x = atLeast y) = (x = (y::'a::linorder))" | 
| 13850 | 139 | by (blast intro: order_antisym order_trans) | 
| 140 | ||
| 141 | lemma greaterThan_subset_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 142 | "(greaterThan x \<subseteq> greaterThan y) = (y \<le> (x::'a::linorder))" | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 143 | apply (auto simp add: greaterThan_def) | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 144 | apply (subst linorder_not_less [symmetric], blast) | 
| 13850 | 145 | done | 
| 146 | ||
| 147 | lemma greaterThan_eq_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 148 | "(greaterThan x = greaterThan y) = (x = (y::'a::linorder))" | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 149 | apply (rule iffI) | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 150 | apply (erule equalityE) | 
| 29709 | 151 | apply simp_all | 
| 13850 | 152 | done | 
| 153 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 154 | lemma atMost_subset_iff [iff]: "(atMost x \<subseteq> atMost y) = (x \<le> (y::'a::order))" | 
| 13850 | 155 | by (blast intro: order_trans) | 
| 156 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 157 | lemma atMost_eq_iff [iff]: "(atMost x = atMost y) = (x = (y::'a::linorder))" | 
| 13850 | 158 | by (blast intro: order_antisym order_trans) | 
| 159 | ||
| 160 | lemma lessThan_subset_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 161 | "(lessThan x \<subseteq> lessThan y) = (x \<le> (y::'a::linorder))" | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 162 | apply (auto simp add: lessThan_def) | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 163 | apply (subst linorder_not_less [symmetric], blast) | 
| 13850 | 164 | done | 
| 165 | ||
| 166 | lemma lessThan_eq_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 167 | "(lessThan x = lessThan y) = (x = (y::'a::linorder))" | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 168 | apply (rule iffI) | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 169 | apply (erule equalityE) | 
| 29709 | 170 | apply simp_all | 
| 13735 | 171 | done | 
| 172 | ||
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 173 | lemma lessThan_strict_subset_iff: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 174 | fixes m n :: "'a::linorder" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 175 |   shows "{..<m} < {..<n} \<longleftrightarrow> m < n"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 176 | by (metis leD lessThan_subset_iff linorder_linear not_less_iff_gr_or_eq psubset_eq) | 
| 13735 | 177 | |
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 178 | lemma (in linorder) Ici_subset_Ioi_iff: "{a ..} \<subseteq> {b <..} \<longleftrightarrow> b < a"
 | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 179 | by auto | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 180 | |
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 181 | lemma (in linorder) Iic_subset_Iio_iff: "{.. a} \<subseteq> {..< b} \<longleftrightarrow> a < b"
 | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 182 | by auto | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 183 | |
| 13850 | 184 | subsection {*Two-sided intervals*}
 | 
| 13735 | 185 | |
| 24691 | 186 | context ord | 
| 187 | begin | |
| 188 | ||
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53374diff
changeset | 189 | lemma greaterThanLessThan_iff [simp]: | 
| 25062 | 190 |   "(i : {l<..<u}) = (l < i & i < u)"
 | 
| 13735 | 191 | by (simp add: greaterThanLessThan_def) | 
| 192 | ||
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53374diff
changeset | 193 | lemma atLeastLessThan_iff [simp]: | 
| 25062 | 194 |   "(i : {l..<u}) = (l <= i & i < u)"
 | 
| 13735 | 195 | by (simp add: atLeastLessThan_def) | 
| 196 | ||
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53374diff
changeset | 197 | lemma greaterThanAtMost_iff [simp]: | 
| 25062 | 198 |   "(i : {l<..u}) = (l < i & i <= u)"
 | 
| 13735 | 199 | by (simp add: greaterThanAtMost_def) | 
| 200 | ||
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53374diff
changeset | 201 | lemma atLeastAtMost_iff [simp]: | 
| 25062 | 202 |   "(i : {l..u}) = (l <= i & i <= u)"
 | 
| 13735 | 203 | by (simp add: atLeastAtMost_def) | 
| 204 | ||
| 32436 
10cd49e0c067
Turned "x <= y ==> sup x y = y" (and relatives) into simp rules
 nipkow parents: 
32408diff
changeset | 205 | text {* The above four lemmas could be declared as iffs. Unfortunately this
 | 
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52380diff
changeset | 206 | breaks many proofs. Since it only helps blast, it is better to leave them | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52380diff
changeset | 207 | alone. *} | 
| 32436 
10cd49e0c067
Turned "x <= y ==> sup x y = y" (and relatives) into simp rules
 nipkow parents: 
32408diff
changeset | 208 | |
| 50999 | 209 | lemma greaterThanLessThan_eq: "{ a <..< b} = { a <..} \<inter> {..< b }"
 | 
| 210 | by auto | |
| 211 | ||
| 24691 | 212 | end | 
| 13735 | 213 | |
| 32400 | 214 | subsubsection{* Emptyness, singletons, subset *}
 | 
| 15554 | 215 | |
| 24691 | 216 | context order | 
| 217 | begin | |
| 15554 | 218 | |
| 32400 | 219 | lemma atLeastatMost_empty[simp]: | 
| 220 |   "b < a \<Longrightarrow> {a..b} = {}"
 | |
| 221 | by(auto simp: atLeastAtMost_def atLeast_def atMost_def) | |
| 222 | ||
| 223 | lemma atLeastatMost_empty_iff[simp]: | |
| 224 |   "{a..b} = {} \<longleftrightarrow> (~ a <= b)"
 | |
| 225 | by auto (blast intro: order_trans) | |
| 226 | ||
| 227 | lemma atLeastatMost_empty_iff2[simp]: | |
| 228 |   "{} = {a..b} \<longleftrightarrow> (~ a <= b)"
 | |
| 229 | by auto (blast intro: order_trans) | |
| 230 | ||
| 231 | lemma atLeastLessThan_empty[simp]: | |
| 232 |   "b <= a \<Longrightarrow> {a..<b} = {}"
 | |
| 233 | by(auto simp: atLeastLessThan_def) | |
| 24691 | 234 | |
| 32400 | 235 | lemma atLeastLessThan_empty_iff[simp]: | 
| 236 |   "{a..<b} = {} \<longleftrightarrow> (~ a < b)"
 | |
| 237 | by auto (blast intro: le_less_trans) | |
| 238 | ||
| 239 | lemma atLeastLessThan_empty_iff2[simp]: | |
| 240 |   "{} = {a..<b} \<longleftrightarrow> (~ a < b)"
 | |
| 241 | by auto (blast intro: le_less_trans) | |
| 15554 | 242 | |
| 32400 | 243 | lemma greaterThanAtMost_empty[simp]: "l \<le> k ==> {k<..l} = {}"
 | 
| 17719 | 244 | by(auto simp:greaterThanAtMost_def greaterThan_def atMost_def) | 
| 245 | ||
| 32400 | 246 | lemma greaterThanAtMost_empty_iff[simp]: "{k<..l} = {} \<longleftrightarrow> ~ k < l"
 | 
| 247 | by auto (blast intro: less_le_trans) | |
| 248 | ||
| 249 | lemma greaterThanAtMost_empty_iff2[simp]: "{} = {k<..l} \<longleftrightarrow> ~ k < l"
 | |
| 250 | by auto (blast intro: less_le_trans) | |
| 251 | ||
| 29709 | 252 | lemma greaterThanLessThan_empty[simp]:"l \<le> k ==> {k<..<l} = {}"
 | 
| 17719 | 253 | by(auto simp:greaterThanLessThan_def greaterThan_def lessThan_def) | 
| 254 | ||
| 25062 | 255 | lemma atLeastAtMost_singleton [simp]: "{a..a} = {a}"
 | 
| 24691 | 256 | by (auto simp add: atLeastAtMost_def atMost_def atLeast_def) | 
| 257 | ||
| 36846 
0f67561ed5a6
Added atLeastAtMost_singleton_iff, atLeastAtMost_singleton'
 hoelzl parents: 
36755diff
changeset | 258 | lemma atLeastAtMost_singleton': "a = b \<Longrightarrow> {a .. b} = {a}" by simp
 | 
| 
0f67561ed5a6
Added atLeastAtMost_singleton_iff, atLeastAtMost_singleton'
 hoelzl parents: 
36755diff
changeset | 259 | |
| 32400 | 260 | lemma atLeastatMost_subset_iff[simp]: | 
| 261 |   "{a..b} <= {c..d} \<longleftrightarrow> (~ a <= b) | c <= a & b <= d"
 | |
| 262 | unfolding atLeastAtMost_def atLeast_def atMost_def | |
| 263 | by (blast intro: order_trans) | |
| 264 | ||
| 265 | lemma atLeastatMost_psubset_iff: | |
| 266 |   "{a..b} < {c..d} \<longleftrightarrow>
 | |
| 267 | ((~ a <= b) | c <= a & b <= d & (c < a | b < d)) & c <= d" | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 268 | by(simp add: psubset_eq set_eq_iff less_le_not_le)(blast intro: order_trans) | 
| 32400 | 269 | |
| 51334 | 270 | lemma Icc_eq_Icc[simp]: | 
| 271 |   "{l..h} = {l'..h'} = (l=l' \<and> h=h' \<or> \<not> l\<le>h \<and> \<not> l'\<le>h')"
 | |
| 272 | by(simp add: order_class.eq_iff)(auto intro: order_trans) | |
| 273 | ||
| 36846 
0f67561ed5a6
Added atLeastAtMost_singleton_iff, atLeastAtMost_singleton'
 hoelzl parents: 
36755diff
changeset | 274 | lemma atLeastAtMost_singleton_iff[simp]: | 
| 
0f67561ed5a6
Added atLeastAtMost_singleton_iff, atLeastAtMost_singleton'
 hoelzl parents: 
36755diff
changeset | 275 |   "{a .. b} = {c} \<longleftrightarrow> a = b \<and> b = c"
 | 
| 
0f67561ed5a6
Added atLeastAtMost_singleton_iff, atLeastAtMost_singleton'
 hoelzl parents: 
36755diff
changeset | 276 | proof | 
| 
0f67561ed5a6
Added atLeastAtMost_singleton_iff, atLeastAtMost_singleton'
 hoelzl parents: 
36755diff
changeset | 277 |   assume "{a..b} = {c}"
 | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 278 | hence *: "\<not> (\<not> a \<le> b)" unfolding atLeastatMost_empty_iff[symmetric] by simp | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 279 |   with `{a..b} = {c}` have "c \<le> a \<and> b \<le> c" by auto
 | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 280 | with * show "a = b \<and> b = c" by auto | 
| 36846 
0f67561ed5a6
Added atLeastAtMost_singleton_iff, atLeastAtMost_singleton'
 hoelzl parents: 
36755diff
changeset | 281 | qed simp | 
| 
0f67561ed5a6
Added atLeastAtMost_singleton_iff, atLeastAtMost_singleton'
 hoelzl parents: 
36755diff
changeset | 282 | |
| 51334 | 283 | lemma Icc_subset_Ici_iff[simp]: | 
| 284 |   "{l..h} \<subseteq> {l'..} = (~ l\<le>h \<or> l\<ge>l')"
 | |
| 285 | by(auto simp: subset_eq intro: order_trans) | |
| 286 | ||
| 287 | lemma Icc_subset_Iic_iff[simp]: | |
| 288 |   "{l..h} \<subseteq> {..h'} = (~ l\<le>h \<or> h\<le>h')"
 | |
| 289 | by(auto simp: subset_eq intro: order_trans) | |
| 290 | ||
| 291 | lemma not_Ici_eq_empty[simp]: "{l..} \<noteq> {}"
 | |
| 292 | by(auto simp: set_eq_iff) | |
| 293 | ||
| 294 | lemma not_Iic_eq_empty[simp]: "{..h} \<noteq> {}"
 | |
| 295 | by(auto simp: set_eq_iff) | |
| 296 | ||
| 297 | lemmas not_empty_eq_Ici_eq_empty[simp] = not_Ici_eq_empty[symmetric] | |
| 298 | lemmas not_empty_eq_Iic_eq_empty[simp] = not_Iic_eq_empty[symmetric] | |
| 299 | ||
| 24691 | 300 | end | 
| 14485 | 301 | |
| 51334 | 302 | context no_top | 
| 303 | begin | |
| 304 | ||
| 305 | (* also holds for no_bot but no_top should suffice *) | |
| 306 | lemma not_UNIV_le_Icc[simp]: "\<not> UNIV \<subseteq> {l..h}"
 | |
| 307 | using gt_ex[of h] by(auto simp: subset_eq less_le_not_le) | |
| 308 | ||
| 309 | lemma not_UNIV_le_Iic[simp]: "\<not> UNIV \<subseteq> {..h}"
 | |
| 310 | using gt_ex[of h] by(auto simp: subset_eq less_le_not_le) | |
| 311 | ||
| 312 | lemma not_Ici_le_Icc[simp]: "\<not> {l..} \<subseteq> {l'..h'}"
 | |
| 313 | using gt_ex[of h'] | |
| 314 | by(auto simp: subset_eq less_le)(blast dest:antisym_conv intro: order_trans) | |
| 315 | ||
| 316 | lemma not_Ici_le_Iic[simp]: "\<not> {l..} \<subseteq> {..h'}"
 | |
| 317 | using gt_ex[of h'] | |
| 318 | by(auto simp: subset_eq less_le)(blast dest:antisym_conv intro: order_trans) | |
| 319 | ||
| 320 | end | |
| 321 | ||
| 322 | context no_bot | |
| 323 | begin | |
| 324 | ||
| 325 | lemma not_UNIV_le_Ici[simp]: "\<not> UNIV \<subseteq> {l..}"
 | |
| 326 | using lt_ex[of l] by(auto simp: subset_eq less_le_not_le) | |
| 327 | ||
| 328 | lemma not_Iic_le_Icc[simp]: "\<not> {..h} \<subseteq> {l'..h'}"
 | |
| 329 | using lt_ex[of l'] | |
| 330 | by(auto simp: subset_eq less_le)(blast dest:antisym_conv intro: order_trans) | |
| 331 | ||
| 332 | lemma not_Iic_le_Ici[simp]: "\<not> {..h} \<subseteq> {l'..}"
 | |
| 333 | using lt_ex[of l'] | |
| 334 | by(auto simp: subset_eq less_le)(blast dest:antisym_conv intro: order_trans) | |
| 335 | ||
| 336 | end | |
| 337 | ||
| 338 | ||
| 339 | context no_top | |
| 340 | begin | |
| 341 | ||
| 342 | (* also holds for no_bot but no_top should suffice *) | |
| 343 | lemma not_UNIV_eq_Icc[simp]: "\<not> UNIV = {l'..h'}"
 | |
| 344 | using gt_ex[of h'] by(auto simp: set_eq_iff less_le_not_le) | |
| 345 | ||
| 346 | lemmas not_Icc_eq_UNIV[simp] = not_UNIV_eq_Icc[symmetric] | |
| 347 | ||
| 348 | lemma not_UNIV_eq_Iic[simp]: "\<not> UNIV = {..h'}"
 | |
| 349 | using gt_ex[of h'] by(auto simp: set_eq_iff less_le_not_le) | |
| 350 | ||
| 351 | lemmas not_Iic_eq_UNIV[simp] = not_UNIV_eq_Iic[symmetric] | |
| 352 | ||
| 353 | lemma not_Icc_eq_Ici[simp]: "\<not> {l..h} = {l'..}"
 | |
| 354 | unfolding atLeastAtMost_def using not_Ici_le_Iic[of l'] by blast | |
| 355 | ||
| 356 | lemmas not_Ici_eq_Icc[simp] = not_Icc_eq_Ici[symmetric] | |
| 357 | ||
| 358 | (* also holds for no_bot but no_top should suffice *) | |
| 359 | lemma not_Iic_eq_Ici[simp]: "\<not> {..h} = {l'..}"
 | |
| 360 | using not_Ici_le_Iic[of l' h] by blast | |
| 361 | ||
| 362 | lemmas not_Ici_eq_Iic[simp] = not_Iic_eq_Ici[symmetric] | |
| 363 | ||
| 364 | end | |
| 365 | ||
| 366 | context no_bot | |
| 367 | begin | |
| 368 | ||
| 369 | lemma not_UNIV_eq_Ici[simp]: "\<not> UNIV = {l'..}"
 | |
| 370 | using lt_ex[of l'] by(auto simp: set_eq_iff less_le_not_le) | |
| 371 | ||
| 372 | lemmas not_Ici_eq_UNIV[simp] = not_UNIV_eq_Ici[symmetric] | |
| 373 | ||
| 374 | lemma not_Icc_eq_Iic[simp]: "\<not> {l..h} = {..h'}"
 | |
| 375 | unfolding atLeastAtMost_def using not_Iic_le_Ici[of h'] by blast | |
| 376 | ||
| 377 | lemmas not_Iic_eq_Icc[simp] = not_Icc_eq_Iic[symmetric] | |
| 378 | ||
| 379 | end | |
| 380 | ||
| 381 | ||
| 53216 | 382 | context dense_linorder | 
| 42891 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 383 | begin | 
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 384 | |
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 385 | lemma greaterThanLessThan_empty_iff[simp]: | 
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 386 |   "{ a <..< b } = {} \<longleftrightarrow> b \<le> a"
 | 
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 387 | using dense[of a b] by (cases "a < b") auto | 
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 388 | |
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 389 | lemma greaterThanLessThan_empty_iff2[simp]: | 
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 390 |   "{} = { a <..< b } \<longleftrightarrow> b \<le> a"
 | 
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 391 | using dense[of a b] by (cases "a < b") auto | 
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 392 | |
| 42901 | 393 | lemma atLeastLessThan_subseteq_atLeastAtMost_iff: | 
| 394 |   "{a ..< b} \<subseteq> { c .. d } \<longleftrightarrow> (a < b \<longrightarrow> c \<le> a \<and> b \<le> d)"
 | |
| 395 | using dense[of "max a d" "b"] | |
| 396 | by (force simp: subset_eq Ball_def not_less[symmetric]) | |
| 397 | ||
| 398 | lemma greaterThanAtMost_subseteq_atLeastAtMost_iff: | |
| 399 |   "{a <.. b} \<subseteq> { c .. d } \<longleftrightarrow> (a < b \<longrightarrow> c \<le> a \<and> b \<le> d)"
 | |
| 400 | using dense[of "a" "min c b"] | |
| 401 | by (force simp: subset_eq Ball_def not_less[symmetric]) | |
| 402 | ||
| 403 | lemma greaterThanLessThan_subseteq_atLeastAtMost_iff: | |
| 404 |   "{a <..< b} \<subseteq> { c .. d } \<longleftrightarrow> (a < b \<longrightarrow> c \<le> a \<and> b \<le> d)"
 | |
| 405 | using dense[of "a" "min c b"] dense[of "max a d" "b"] | |
| 406 | by (force simp: subset_eq Ball_def not_less[symmetric]) | |
| 407 | ||
| 43657 | 408 | lemma atLeastAtMost_subseteq_atLeastLessThan_iff: | 
| 409 |   "{a .. b} \<subseteq> { c ..< d } \<longleftrightarrow> (a \<le> b \<longrightarrow> c \<le> a \<and> b < d)"
 | |
| 410 | using dense[of "max a d" "b"] | |
| 411 | by (force simp: subset_eq Ball_def not_less[symmetric]) | |
| 412 | ||
| 413 | lemma greaterThanAtMost_subseteq_atLeastLessThan_iff: | |
| 414 |   "{a <.. b} \<subseteq> { c ..< d } \<longleftrightarrow> (a < b \<longrightarrow> c \<le> a \<and> b < d)"
 | |
| 415 | using dense[of "a" "min c b"] | |
| 416 | by (force simp: subset_eq Ball_def not_less[symmetric]) | |
| 417 | ||
| 418 | lemma greaterThanLessThan_subseteq_atLeastLessThan_iff: | |
| 419 |   "{a <..< b} \<subseteq> { c ..< d } \<longleftrightarrow> (a < b \<longrightarrow> c \<le> a \<and> b \<le> d)"
 | |
| 420 | using dense[of "a" "min c b"] dense[of "max a d" "b"] | |
| 421 | by (force simp: subset_eq Ball_def not_less[symmetric]) | |
| 422 | ||
| 56328 | 423 | lemma greaterThanLessThan_subseteq_greaterThanAtMost_iff: | 
| 424 |   "{a <..< b} \<subseteq> { c <.. d } \<longleftrightarrow> (a < b \<longrightarrow> c \<le> a \<and> b \<le> d)"
 | |
| 425 | using dense[of "a" "min c b"] dense[of "max a d" "b"] | |
| 426 | by (force simp: subset_eq Ball_def not_less[symmetric]) | |
| 427 | ||
| 42891 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 428 | end | 
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 429 | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 430 | context no_top | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 431 | begin | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 432 | |
| 51334 | 433 | lemma greaterThan_non_empty[simp]: "{x <..} \<noteq> {}"
 | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 434 | using gt_ex[of x] by auto | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 435 | |
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 436 | end | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 437 | |
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 438 | context no_bot | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 439 | begin | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 440 | |
| 51334 | 441 | lemma lessThan_non_empty[simp]: "{..< x} \<noteq> {}"
 | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 442 | using lt_ex[of x] by auto | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 443 | |
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 444 | end | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 445 | |
| 32408 | 446 | lemma (in linorder) atLeastLessThan_subset_iff: | 
| 447 |   "{a..<b} <= {c..<d} \<Longrightarrow> b <= a | c<=a & b<=d"
 | |
| 448 | apply (auto simp:subset_eq Ball_def) | |
| 449 | apply(frule_tac x=a in spec) | |
| 450 | apply(erule_tac x=d in allE) | |
| 451 | apply (simp add: less_imp_le) | |
| 452 | done | |
| 453 | ||
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 454 | lemma atLeastLessThan_inj: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 455 | fixes a b c d :: "'a::linorder" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 456 |   assumes eq: "{a ..< b} = {c ..< d}" and "a < b" "c < d"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 457 | shows "a = c" "b = d" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 458 | using assms by (metis atLeastLessThan_subset_iff eq less_le_not_le linorder_antisym_conv2 subset_refl)+ | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 459 | |
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 460 | lemma atLeastLessThan_eq_iff: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 461 | fixes a b c d :: "'a::linorder" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 462 | assumes "a < b" "c < d" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 463 |   shows "{a ..< b} = {c ..< d} \<longleftrightarrow> a = c \<and> b = d"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 464 | using atLeastLessThan_inj assms by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 465 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 466 | lemma (in linorder) Ioc_inj: "{a <.. b} = {c <.. d} \<longleftrightarrow> (b \<le> a \<and> d \<le> c) \<or> a = c \<and> b = d"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 467 | by (metis eq_iff greaterThanAtMost_empty_iff2 greaterThanAtMost_iff le_cases not_le) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 468 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 469 | lemma (in order) Iio_Int_singleton: "{..<k} \<inter> {x} = (if x < k then {x} else {})"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 470 | by auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 471 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 472 | lemma (in linorder) Ioc_subset_iff: "{a<..b} \<subseteq> {c<..d} \<longleftrightarrow> (b \<le> a \<or> c \<le> a \<and> b \<le> d)"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 473 | by (auto simp: subset_eq Ball_def) (metis less_le not_less) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 474 | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52380diff
changeset | 475 | lemma (in order_bot) atLeast_eq_UNIV_iff: "{x..} = UNIV \<longleftrightarrow> x = bot"
 | 
| 51334 | 476 | by (auto simp: set_eq_iff intro: le_bot) | 
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
51152diff
changeset | 477 | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52380diff
changeset | 478 | lemma (in order_top) atMost_eq_UNIV_iff: "{..x} = UNIV \<longleftrightarrow> x = top"
 | 
| 51334 | 479 | by (auto simp: set_eq_iff intro: top_le) | 
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
51152diff
changeset | 480 | |
| 51334 | 481 | lemma (in bounded_lattice) atLeastAtMost_eq_UNIV_iff: | 
| 482 |   "{x..y} = UNIV \<longleftrightarrow> (x = bot \<and> y = top)"
 | |
| 483 | by (auto simp: set_eq_iff intro: top_le le_bot) | |
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
51152diff
changeset | 484 | |
| 56949 | 485 | lemma Iio_eq_empty_iff: "{..< n::'a::{linorder, order_bot}} = {} \<longleftrightarrow> n = bot"
 | 
| 486 | by (auto simp: set_eq_iff not_less le_bot) | |
| 487 | ||
| 488 | lemma Iio_eq_empty_iff_nat: "{..< n::nat} = {} \<longleftrightarrow> n = 0"
 | |
| 489 | by (simp add: Iio_eq_empty_iff bot_nat_def) | |
| 490 | ||
| 58970 | 491 | lemma mono_image_least: | 
| 492 |   assumes f_mono: "mono f" and f_img: "f ` {m ..< n} = {m' ..< n'}" "m < n"
 | |
| 493 | shows "f m = m'" | |
| 494 | proof - | |
| 495 |   from f_img have "{m' ..< n'} \<noteq> {}"
 | |
| 496 | by (metis atLeastLessThan_empty_iff image_is_empty) | |
| 497 |   with f_img have "m' \<in> f ` {m ..< n}" by auto
 | |
| 498 | then obtain k where "f k = m'" "m \<le> k" by auto | |
| 499 | moreover have "m' \<le> f m" using f_img by auto | |
| 500 | ultimately show "f m = m'" | |
| 501 | using f_mono by (auto elim: monoE[where x=m and y=k]) | |
| 502 | qed | |
| 503 | ||
| 51328 
d63ec23c9125
move auxiliary lemmas from Library/Extended_Reals to HOL image
 hoelzl parents: 
51152diff
changeset | 504 | |
| 56328 | 505 | subsection {* Infinite intervals *}
 | 
| 506 | ||
| 507 | context dense_linorder | |
| 508 | begin | |
| 509 | ||
| 510 | lemma infinite_Ioo: | |
| 511 | assumes "a < b" | |
| 512 |   shows "\<not> finite {a<..<b}"
 | |
| 513 | proof | |
| 514 |   assume fin: "finite {a<..<b}"
 | |
| 515 |   moreover have ne: "{a<..<b} \<noteq> {}"
 | |
| 516 | using `a < b` by auto | |
| 517 |   ultimately have "a < Max {a <..< b}" "Max {a <..< b} < b"
 | |
| 518 |     using Max_in[of "{a <..< b}"] by auto
 | |
| 519 |   then obtain x where "Max {a <..< b} < x" "x < b"
 | |
| 520 |     using dense[of "Max {a<..<b}" b] by auto
 | |
| 521 |   then have "x \<in> {a <..< b}"
 | |
| 522 |     using `a < Max {a <..< b}` by auto
 | |
| 523 |   then have "x \<le> Max {a <..< b}"
 | |
| 524 | using fin by auto | |
| 525 |   with `Max {a <..< b} < x` show False by auto
 | |
| 526 | qed | |
| 527 | ||
| 528 | lemma infinite_Icc: "a < b \<Longrightarrow> \<not> finite {a .. b}"
 | |
| 529 | using greaterThanLessThan_subseteq_atLeastAtMost_iff[of a b a b] infinite_Ioo[of a b] | |
| 530 | by (auto dest: finite_subset) | |
| 531 | ||
| 532 | lemma infinite_Ico: "a < b \<Longrightarrow> \<not> finite {a ..< b}"
 | |
| 533 | using greaterThanLessThan_subseteq_atLeastLessThan_iff[of a b a b] infinite_Ioo[of a b] | |
| 534 | by (auto dest: finite_subset) | |
| 535 | ||
| 536 | lemma infinite_Ioc: "a < b \<Longrightarrow> \<not> finite {a <.. b}"
 | |
| 537 | using greaterThanLessThan_subseteq_greaterThanAtMost_iff[of a b a b] infinite_Ioo[of a b] | |
| 538 | by (auto dest: finite_subset) | |
| 539 | ||
| 540 | end | |
| 541 | ||
| 542 | lemma infinite_Iio: "\<not> finite {..< a :: 'a :: {no_bot, linorder}}"
 | |
| 543 | proof | |
| 544 |   assume "finite {..< a}"
 | |
| 545 |   then have *: "\<And>x. x < a \<Longrightarrow> Min {..< a} \<le> x"
 | |
| 546 | by auto | |
| 547 | obtain x where "x < a" | |
| 548 | using lt_ex by auto | |
| 549 | ||
| 550 |   obtain y where "y < Min {..< a}"
 | |
| 551 | using lt_ex by auto | |
| 552 |   also have "Min {..< a} \<le> x"
 | |
| 553 | using `x < a` by fact | |
| 554 | also note `x < a` | |
| 555 |   finally have "Min {..< a} \<le> y"
 | |
| 556 | by fact | |
| 557 |   with `y < Min {..< a}` show False by auto
 | |
| 558 | qed | |
| 559 | ||
| 560 | lemma infinite_Iic: "\<not> finite {.. a :: 'a :: {no_bot, linorder}}"
 | |
| 561 |   using infinite_Iio[of a] finite_subset[of "{..< a}" "{.. a}"]
 | |
| 562 | by (auto simp: subset_eq less_imp_le) | |
| 563 | ||
| 564 | lemma infinite_Ioi: "\<not> finite {a :: 'a :: {no_top, linorder} <..}"
 | |
| 565 | proof | |
| 566 |   assume "finite {a <..}"
 | |
| 567 |   then have *: "\<And>x. a < x \<Longrightarrow> x \<le> Max {a <..}"
 | |
| 568 | by auto | |
| 569 | ||
| 570 |   obtain y where "Max {a <..} < y"
 | |
| 571 | using gt_ex by auto | |
| 572 | ||
| 573 | obtain x where "a < x" | |
| 574 | using gt_ex by auto | |
| 575 |   also then have "x \<le> Max {a <..}"
 | |
| 576 | by fact | |
| 577 |   also note `Max {a <..} < y`
 | |
| 578 |   finally have "y \<le> Max { a <..}"
 | |
| 579 | by fact | |
| 580 |   with `Max {a <..} < y` show False by auto
 | |
| 581 | qed | |
| 582 | ||
| 583 | lemma infinite_Ici: "\<not> finite {a :: 'a :: {no_top, linorder} ..}"
 | |
| 584 |   using infinite_Ioi[of a] finite_subset[of "{a <..}" "{a ..}"]
 | |
| 585 | by (auto simp: subset_eq less_imp_le) | |
| 586 | ||
| 32456 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 587 | subsubsection {* Intersection *}
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 588 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 589 | context linorder | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 590 | begin | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 591 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 592 | lemma Int_atLeastAtMost[simp]: "{a..b} Int {c..d} = {max a c .. min b d}"
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 593 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 594 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 595 | lemma Int_atLeastAtMostR1[simp]: "{..b} Int {c..d} = {c .. min b d}"
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 596 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 597 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 598 | lemma Int_atLeastAtMostR2[simp]: "{a..} Int {c..d} = {max a c .. d}"
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 599 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 600 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 601 | lemma Int_atLeastAtMostL1[simp]: "{a..b} Int {..d} = {a .. min b d}"
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 602 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 603 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 604 | lemma Int_atLeastAtMostL2[simp]: "{a..b} Int {c..} = {max a c .. b}"
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 605 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 606 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 607 | lemma Int_atLeastLessThan[simp]: "{a..<b} Int {c..<d} = {max a c ..< min b d}"
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 608 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 609 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 610 | lemma Int_greaterThanAtMost[simp]: "{a<..b} Int {c<..d} = {max a c <.. min b d}"
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 611 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 612 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 613 | lemma Int_greaterThanLessThan[simp]: "{a<..<b} Int {c<..<d} = {max a c <..< min b d}"
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 614 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 615 | |
| 50417 | 616 | lemma Int_atMost[simp]: "{..a} \<inter> {..b} = {.. min a b}"
 | 
| 617 | by (auto simp: min_def) | |
| 618 | ||
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 619 | lemma Ioc_disjoint: "{a<..b} \<inter> {c<..d} = {} \<longleftrightarrow> b \<le> a \<or> d \<le> c \<or> b \<le> c \<or> d \<le> a"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 620 | using assms by auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 621 | |
| 32456 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 622 | end | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 623 | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 624 | context complete_lattice | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 625 | begin | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 626 | |
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 627 | lemma | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 628 |   shows Sup_atLeast[simp]: "Sup {x ..} = top"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 629 |     and Sup_greaterThanAtLeast[simp]: "x < top \<Longrightarrow> Sup {x <..} = top"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 630 |     and Sup_atMost[simp]: "Sup {.. y} = y"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 631 |     and Sup_atLeastAtMost[simp]: "x \<le> y \<Longrightarrow> Sup { x .. y} = y"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 632 |     and Sup_greaterThanAtMost[simp]: "x < y \<Longrightarrow> Sup { x <.. y} = y"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 633 | by (auto intro!: Sup_eqI) | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 634 | |
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 635 | lemma | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 636 |   shows Inf_atMost[simp]: "Inf {.. x} = bot"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 637 |     and Inf_atMostLessThan[simp]: "top < x \<Longrightarrow> Inf {..< x} = bot"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 638 |     and Inf_atLeast[simp]: "Inf {x ..} = x"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 639 |     and Inf_atLeastAtMost[simp]: "x \<le> y \<Longrightarrow> Inf { x .. y} = x"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 640 |     and Inf_atLeastLessThan[simp]: "x < y \<Longrightarrow> Inf { x ..< y} = x"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 641 | by (auto intro!: Inf_eqI) | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 642 | |
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 643 | end | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 644 | |
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 645 | lemma | 
| 53216 | 646 |   fixes x y :: "'a :: {complete_lattice, dense_linorder}"
 | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 647 |   shows Sup_lessThan[simp]: "Sup {..< y} = y"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 648 |     and Sup_atLeastLessThan[simp]: "x < y \<Longrightarrow> Sup { x ..< y} = y"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 649 |     and Sup_greaterThanLessThan[simp]: "x < y \<Longrightarrow> Sup { x <..< y} = y"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 650 |     and Inf_greaterThan[simp]: "Inf {x <..} = x"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 651 |     and Inf_greaterThanAtMost[simp]: "x < y \<Longrightarrow> Inf { x <.. y} = x"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 652 |     and Inf_greaterThanLessThan[simp]: "x < y \<Longrightarrow> Inf { x <..< y} = x"
 | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 653 | by (auto intro!: Inf_eqI Sup_eqI intro: dense_le dense_le_bounded dense_ge dense_ge_bounded) | 
| 32456 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 654 | |
| 14485 | 655 | subsection {* Intervals of natural numbers *}
 | 
| 656 | ||
| 15047 | 657 | subsubsection {* The Constant @{term lessThan} *}
 | 
| 658 | ||
| 14485 | 659 | lemma lessThan_0 [simp]: "lessThan (0::nat) = {}"
 | 
| 660 | by (simp add: lessThan_def) | |
| 661 | ||
| 662 | lemma lessThan_Suc: "lessThan (Suc k) = insert k (lessThan k)" | |
| 663 | by (simp add: lessThan_def less_Suc_eq, blast) | |
| 664 | ||
| 43156 | 665 | text {* The following proof is convenient in induction proofs where
 | 
| 39072 | 666 | new elements get indices at the beginning. So it is used to transform | 
| 667 | @{term "{..<Suc n}"} to @{term "0::nat"} and @{term "{..< n}"}. *}
 | |
| 668 | ||
| 59000 | 669 | lemma zero_notin_Suc_image: "0 \<notin> Suc ` A" | 
| 670 | by auto | |
| 671 | ||
| 39072 | 672 | lemma lessThan_Suc_eq_insert_0: "{..<Suc n} = insert 0 (Suc ` {..<n})"
 | 
| 59000 | 673 | by (auto simp: image_iff less_Suc_eq_0_disj) | 
| 39072 | 674 | |
| 14485 | 675 | lemma lessThan_Suc_atMost: "lessThan (Suc k) = atMost k" | 
| 676 | by (simp add: lessThan_def atMost_def less_Suc_eq_le) | |
| 677 | ||
| 59000 | 678 | lemma Iic_Suc_eq_insert_0: "{.. Suc n} = insert 0 (Suc ` {.. n})"
 | 
| 679 | unfolding lessThan_Suc_atMost[symmetric] lessThan_Suc_eq_insert_0[of "Suc n"] .. | |
| 680 | ||
| 14485 | 681 | lemma UN_lessThan_UNIV: "(UN m::nat. lessThan m) = UNIV" | 
| 682 | by blast | |
| 683 | ||
| 15047 | 684 | subsubsection {* The Constant @{term greaterThan} *}
 | 
| 685 | ||
| 14485 | 686 | lemma greaterThan_0 [simp]: "greaterThan 0 = range Suc" | 
| 687 | apply (simp add: greaterThan_def) | |
| 688 | apply (blast dest: gr0_conv_Suc [THEN iffD1]) | |
| 689 | done | |
| 690 | ||
| 691 | lemma greaterThan_Suc: "greaterThan (Suc k) = greaterThan k - {Suc k}"
 | |
| 692 | apply (simp add: greaterThan_def) | |
| 693 | apply (auto elim: linorder_neqE) | |
| 694 | done | |
| 695 | ||
| 696 | lemma INT_greaterThan_UNIV: "(INT m::nat. greaterThan m) = {}"
 | |
| 697 | by blast | |
| 698 | ||
| 15047 | 699 | subsubsection {* The Constant @{term atLeast} *}
 | 
| 700 | ||
| 14485 | 701 | lemma atLeast_0 [simp]: "atLeast (0::nat) = UNIV" | 
| 702 | by (unfold atLeast_def UNIV_def, simp) | |
| 703 | ||
| 704 | lemma atLeast_Suc: "atLeast (Suc k) = atLeast k - {k}"
 | |
| 705 | apply (simp add: atLeast_def) | |
| 706 | apply (simp add: Suc_le_eq) | |
| 707 | apply (simp add: order_le_less, blast) | |
| 708 | done | |
| 709 | ||
| 710 | lemma atLeast_Suc_greaterThan: "atLeast (Suc k) = greaterThan k" | |
| 711 | by (auto simp add: greaterThan_def atLeast_def less_Suc_eq_le) | |
| 712 | ||
| 713 | lemma UN_atLeast_UNIV: "(UN m::nat. atLeast m) = UNIV" | |
| 714 | by blast | |
| 715 | ||
| 15047 | 716 | subsubsection {* The Constant @{term atMost} *}
 | 
| 717 | ||
| 14485 | 718 | lemma atMost_0 [simp]: "atMost (0::nat) = {0}"
 | 
| 719 | by (simp add: atMost_def) | |
| 720 | ||
| 721 | lemma atMost_Suc: "atMost (Suc k) = insert (Suc k) (atMost k)" | |
| 722 | apply (simp add: atMost_def) | |
| 723 | apply (simp add: less_Suc_eq order_le_less, blast) | |
| 724 | done | |
| 725 | ||
| 726 | lemma UN_atMost_UNIV: "(UN m::nat. atMost m) = UNIV" | |
| 727 | by blast | |
| 728 | ||
| 15047 | 729 | subsubsection {* The Constant @{term atLeastLessThan} *}
 | 
| 730 | ||
| 28068 | 731 | text{*The orientation of the following 2 rules is tricky. The lhs is
 | 
| 24449 | 732 | defined in terms of the rhs. Hence the chosen orientation makes sense | 
| 733 | in this theory --- the reverse orientation complicates proofs (eg | |
| 734 | nontermination). But outside, when the definition of the lhs is rarely | |
| 735 | used, the opposite orientation seems preferable because it reduces a | |
| 736 | specific concept to a more general one. *} | |
| 28068 | 737 | |
| 15047 | 738 | lemma atLeast0LessThan: "{0::nat..<n} = {..<n}"
 | 
| 15042 | 739 | by(simp add:lessThan_def atLeastLessThan_def) | 
| 24449 | 740 | |
| 28068 | 741 | lemma atLeast0AtMost: "{0..n::nat} = {..n}"
 | 
| 742 | by(simp add:atMost_def atLeastAtMost_def) | |
| 743 | ||
| 31998 
2c7a24f74db9
code attributes use common underscore convention
 haftmann parents: 
31509diff
changeset | 744 | declare atLeast0LessThan[symmetric, code_unfold] | 
| 
2c7a24f74db9
code attributes use common underscore convention
 haftmann parents: 
31509diff
changeset | 745 | atLeast0AtMost[symmetric, code_unfold] | 
| 24449 | 746 | |
| 747 | lemma atLeastLessThan0: "{m..<0::nat} = {}"
 | |
| 15047 | 748 | by (simp add: atLeastLessThan_def) | 
| 24449 | 749 | |
| 15047 | 750 | subsubsection {* Intervals of nats with @{term Suc} *}
 | 
| 751 | ||
| 752 | text{*Not a simprule because the RHS is too messy.*}
 | |
| 753 | lemma atLeastLessThanSuc: | |
| 754 |     "{m..<Suc n} = (if m \<le> n then insert n {m..<n} else {})"
 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 755 | by (auto simp add: atLeastLessThan_def) | 
| 15047 | 756 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 757 | lemma atLeastLessThan_singleton [simp]: "{m..<Suc m} = {m}"
 | 
| 15047 | 758 | by (auto simp add: atLeastLessThan_def) | 
| 16041 | 759 | (* | 
| 15047 | 760 | lemma atLeast_sum_LessThan [simp]: "{m + k..<k::nat} = {}"
 | 
| 761 | by (induct k, simp_all add: atLeastLessThanSuc) | |
| 762 | ||
| 763 | lemma atLeastSucLessThan [simp]: "{Suc n..<n} = {}"
 | |
| 764 | by (auto simp add: atLeastLessThan_def) | |
| 16041 | 765 | *) | 
| 15045 | 766 | lemma atLeastLessThanSuc_atLeastAtMost: "{l..<Suc u} = {l..u}"
 | 
| 14485 | 767 | by (simp add: lessThan_Suc_atMost atLeastAtMost_def atLeastLessThan_def) | 
| 768 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 769 | lemma atLeastSucAtMost_greaterThanAtMost: "{Suc l..u} = {l<..u}"
 | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 770 | by (simp add: atLeast_Suc_greaterThan atLeastAtMost_def | 
| 14485 | 771 | greaterThanAtMost_def) | 
| 772 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 773 | lemma atLeastSucLessThan_greaterThanLessThan: "{Suc l..<u} = {l<..<u}"
 | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 774 | by (simp add: atLeast_Suc_greaterThan atLeastLessThan_def | 
| 14485 | 775 | greaterThanLessThan_def) | 
| 776 | ||
| 15554 | 777 | lemma atLeastAtMostSuc_conv: "m \<le> Suc n \<Longrightarrow> {m..Suc n} = insert (Suc n) {m..n}"
 | 
| 778 | by (auto simp add: atLeastAtMost_def) | |
| 779 | ||
| 45932 | 780 | lemma atLeastAtMost_insertL: "m \<le> n \<Longrightarrow> insert m {Suc m..n} = {m ..n}"
 | 
| 781 | by auto | |
| 782 | ||
| 43157 | 783 | text {* The analogous result is useful on @{typ int}: *}
 | 
| 784 | (* here, because we don't have an own int section *) | |
| 785 | lemma atLeastAtMostPlus1_int_conv: | |
| 786 |   "m <= 1+n \<Longrightarrow> {m..1+n} = insert (1+n) {m..n::int}"
 | |
| 787 | by (auto intro: set_eqI) | |
| 788 | ||
| 33044 | 789 | lemma atLeastLessThan_add_Un: "i \<le> j \<Longrightarrow> {i..<j+k} = {i..<j} \<union> {j..<j+k::nat}"
 | 
| 790 | apply (induct k) | |
| 791 | apply (simp_all add: atLeastLessThanSuc) | |
| 792 | done | |
| 793 | ||
| 57113 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 794 | subsubsection {* Intervals and numerals *}
 | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 795 | |
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 796 | lemma lessThan_nat_numeral:  --{*Evaluation for specific numerals*}
 | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 797 | "lessThan (numeral k :: nat) = insert (pred_numeral k) (lessThan (pred_numeral k))" | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 798 | by (simp add: numeral_eq_Suc lessThan_Suc) | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 799 | |
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 800 | lemma atMost_nat_numeral:  --{*Evaluation for specific numerals*}
 | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 801 | "atMost (numeral k :: nat) = insert (numeral k) (atMost (pred_numeral k))" | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 802 | by (simp add: numeral_eq_Suc atMost_Suc) | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 803 | |
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 804 | lemma atLeastLessThan_nat_numeral:  --{*Evaluation for specific numerals*}
 | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 805 | "atLeastLessThan m (numeral k :: nat) = | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 806 | (if m \<le> (pred_numeral k) then insert (pred_numeral k) (atLeastLessThan m (pred_numeral k)) | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 807 |                  else {})"
 | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 808 | by (simp add: numeral_eq_Suc atLeastLessThanSuc) | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 809 | |
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 810 | subsubsection {* Image *}
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 811 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 812 | lemma image_add_atLeastAtMost: | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60586diff
changeset | 813 | fixes k ::"'a::linordered_semidom" | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60586diff
changeset | 814 |   shows "(\<lambda>n. n+k) ` {i..j} = {i+k..j+k}" (is "?A = ?B")
 | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 815 | proof | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 816 | show "?A \<subseteq> ?B" by auto | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 817 | next | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 818 | show "?B \<subseteq> ?A" | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 819 | proof | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 820 | fix n assume a: "n : ?B" | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60586diff
changeset | 821 |     hence "n - k : {i..j}"
 | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60586diff
changeset | 822 | by (auto simp: add_le_imp_le_diff add_le_add_imp_diff_le) | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60586diff
changeset | 823 | moreover have "n = (n - k) + k" using a | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60586diff
changeset | 824 | proof - | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60586diff
changeset | 825 | have "k + i \<le> n" | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60586diff
changeset | 826 | by (metis a add.commute atLeastAtMost_iff) | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60586diff
changeset | 827 | hence "k + (n - k) = n" | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60586diff
changeset | 828 | by (metis (no_types) ab_semigroup_add_class.add_ac(1) add_diff_cancel_left' le_add_diff_inverse) | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60586diff
changeset | 829 | thus ?thesis | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60586diff
changeset | 830 | by (simp add: add.commute) | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60586diff
changeset | 831 | qed | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 832 | ultimately show "n : ?A" by blast | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 833 | qed | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 834 | qed | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 835 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 836 | lemma image_add_atLeastLessThan: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 837 |   "(%n::nat. n+k) ` {i..<j} = {i+k..<j+k}" (is "?A = ?B")
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 838 | proof | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 839 | show "?A \<subseteq> ?B" by auto | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 840 | next | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 841 | show "?B \<subseteq> ?A" | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 842 | proof | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 843 | fix n assume a: "n : ?B" | 
| 20217 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 webertj parents: 
19538diff
changeset | 844 |     hence "n - k : {i..<j}" by auto
 | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 845 | moreover have "n = (n - k) + k" using a by auto | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 846 | ultimately show "n : ?A" by blast | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 847 | qed | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 848 | qed | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 849 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 850 | corollary image_Suc_atLeastAtMost[simp]: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 851 |   "Suc ` {i..j} = {Suc i..Suc j}"
 | 
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
29960diff
changeset | 852 | using image_add_atLeastAtMost[where k="Suc 0"] by simp | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 853 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 854 | corollary image_Suc_atLeastLessThan[simp]: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 855 |   "Suc ` {i..<j} = {Suc i..<Suc j}"
 | 
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
29960diff
changeset | 856 | using image_add_atLeastLessThan[where k="Suc 0"] by simp | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 857 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 858 | lemma image_add_int_atLeastLessThan: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 859 |     "(%x. x + (l::int)) ` {0..<u-l} = {l..<u}"
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 860 | apply (auto simp add: image_def) | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 861 | apply (rule_tac x = "x - l" in bexI) | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 862 | apply auto | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 863 | done | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 864 | |
| 37664 | 865 | lemma image_minus_const_atLeastLessThan_nat: | 
| 866 | fixes c :: nat | |
| 867 |   shows "(\<lambda>i. i - c) ` {x ..< y} =
 | |
| 868 |       (if c < y then {x - c ..< y - c} else if x < y then {0} else {})"
 | |
| 869 | (is "_ = ?right") | |
| 870 | proof safe | |
| 871 | fix a assume a: "a \<in> ?right" | |
| 872 |   show "a \<in> (\<lambda>i. i - c) ` {x ..< y}"
 | |
| 873 | proof cases | |
| 874 | assume "c < y" with a show ?thesis | |
| 875 | by (auto intro!: image_eqI[of _ _ "a + c"]) | |
| 876 | next | |
| 877 | assume "\<not> c < y" with a show ?thesis | |
| 878 | by (auto intro!: image_eqI[of _ _ x] split: split_if_asm) | |
| 879 | qed | |
| 880 | qed auto | |
| 881 | ||
| 51152 | 882 | lemma image_int_atLeastLessThan: "int ` {a..<b} = {int a..<int b}"
 | 
| 55143 
04448228381d
explicit eigen-context for attributes "where", "of", and corresponding read_instantiate, instantiate_tac;
 wenzelm parents: 
55088diff
changeset | 883 | by (auto intro!: image_eqI [where x = "nat x" for x]) | 
| 51152 | 884 | |
| 35580 | 885 | context ordered_ab_group_add | 
| 886 | begin | |
| 887 | ||
| 888 | lemma | |
| 889 | fixes x :: 'a | |
| 890 |   shows image_uminus_greaterThan[simp]: "uminus ` {x<..} = {..<-x}"
 | |
| 891 |   and image_uminus_atLeast[simp]: "uminus ` {x..} = {..-x}"
 | |
| 892 | proof safe | |
| 893 | fix y assume "y < -x" | |
| 894 | hence *: "x < -y" using neg_less_iff_less[of "-y" x] by simp | |
| 895 |   have "- (-y) \<in> uminus ` {x<..}"
 | |
| 896 | by (rule imageI) (simp add: *) | |
| 897 |   thus "y \<in> uminus ` {x<..}" by simp
 | |
| 898 | next | |
| 899 | fix y assume "y \<le> -x" | |
| 900 |   have "- (-y) \<in> uminus ` {x..}"
 | |
| 901 | by (rule imageI) (insert `y \<le> -x`[THEN le_imp_neg_le], simp) | |
| 902 |   thus "y \<in> uminus ` {x..}" by simp
 | |
| 903 | qed simp_all | |
| 904 | ||
| 905 | lemma | |
| 906 | fixes x :: 'a | |
| 907 |   shows image_uminus_lessThan[simp]: "uminus ` {..<x} = {-x<..}"
 | |
| 908 |   and image_uminus_atMost[simp]: "uminus ` {..x} = {-x..}"
 | |
| 909 | proof - | |
| 910 |   have "uminus ` {..<x} = uminus ` uminus ` {-x<..}"
 | |
| 911 |     and "uminus ` {..x} = uminus ` uminus ` {-x..}" by simp_all
 | |
| 912 |   thus "uminus ` {..<x} = {-x<..}" and "uminus ` {..x} = {-x..}"
 | |
| 913 | by (simp_all add: image_image | |
| 914 | del: image_uminus_greaterThan image_uminus_atLeast) | |
| 915 | qed | |
| 916 | ||
| 917 | lemma | |
| 918 | fixes x :: 'a | |
| 919 |   shows image_uminus_atLeastAtMost[simp]: "uminus ` {x..y} = {-y..-x}"
 | |
| 920 |   and image_uminus_greaterThanAtMost[simp]: "uminus ` {x<..y} = {-y..<-x}"
 | |
| 921 |   and image_uminus_atLeastLessThan[simp]: "uminus ` {x..<y} = {-y<..-x}"
 | |
| 922 |   and image_uminus_greaterThanLessThan[simp]: "uminus ` {x<..<y} = {-y<..<-x}"
 | |
| 923 | by (simp_all add: atLeastAtMost_def greaterThanAtMost_def atLeastLessThan_def | |
| 924 | greaterThanLessThan_def image_Int[OF inj_uminus] Int_commute) | |
| 925 | end | |
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 926 | |
| 14485 | 927 | subsubsection {* Finiteness *}
 | 
| 928 | ||
| 15045 | 929 | lemma finite_lessThan [iff]: fixes k :: nat shows "finite {..<k}"
 | 
| 14485 | 930 | by (induct k) (simp_all add: lessThan_Suc) | 
| 931 | ||
| 932 | lemma finite_atMost [iff]: fixes k :: nat shows "finite {..k}"
 | |
| 933 | by (induct k) (simp_all add: atMost_Suc) | |
| 934 | ||
| 935 | lemma finite_greaterThanLessThan [iff]: | |
| 15045 | 936 |   fixes l :: nat shows "finite {l<..<u}"
 | 
| 14485 | 937 | by (simp add: greaterThanLessThan_def) | 
| 938 | ||
| 939 | lemma finite_atLeastLessThan [iff]: | |
| 15045 | 940 |   fixes l :: nat shows "finite {l..<u}"
 | 
| 14485 | 941 | by (simp add: atLeastLessThan_def) | 
| 942 | ||
| 943 | lemma finite_greaterThanAtMost [iff]: | |
| 15045 | 944 |   fixes l :: nat shows "finite {l<..u}"
 | 
| 14485 | 945 | by (simp add: greaterThanAtMost_def) | 
| 946 | ||
| 947 | lemma finite_atLeastAtMost [iff]: | |
| 948 |   fixes l :: nat shows "finite {l..u}"
 | |
| 949 | by (simp add: atLeastAtMost_def) | |
| 950 | ||
| 28068 | 951 | text {* A bounded set of natural numbers is finite. *}
 | 
| 14485 | 952 | lemma bounded_nat_set_is_finite: | 
| 24853 | 953 | "(ALL i:N. i < (n::nat)) ==> finite N" | 
| 28068 | 954 | apply (rule finite_subset) | 
| 955 | apply (rule_tac [2] finite_lessThan, auto) | |
| 956 | done | |
| 957 | ||
| 31044 | 958 | text {* A set of natural numbers is finite iff it is bounded. *}
 | 
| 959 | lemma finite_nat_set_iff_bounded: | |
| 960 | "finite(N::nat set) = (EX m. ALL n:N. n<m)" (is "?F = ?B") | |
| 961 | proof | |
| 962 | assume f:?F show ?B | |
| 963 | using Max_ge[OF `?F`, simplified less_Suc_eq_le[symmetric]] by blast | |
| 964 | next | |
| 965 | assume ?B show ?F using `?B` by(blast intro:bounded_nat_set_is_finite) | |
| 966 | qed | |
| 967 | ||
| 968 | lemma finite_nat_set_iff_bounded_le: | |
| 969 | "finite(N::nat set) = (EX m. ALL n:N. n<=m)" | |
| 970 | apply(simp add:finite_nat_set_iff_bounded) | |
| 971 | apply(blast dest:less_imp_le_nat le_imp_less_Suc) | |
| 972 | done | |
| 973 | ||
| 28068 | 974 | lemma finite_less_ub: | 
| 975 |      "!!f::nat=>nat. (!!n. n \<le> f n) ==> finite {n. f n \<le> u}"
 | |
| 976 | by (rule_tac B="{..u}" in finite_subset, auto intro: order_trans)
 | |
| 14485 | 977 | |
| 56328 | 978 | |
| 24853 | 979 | text{* Any subset of an interval of natural numbers the size of the
 | 
| 980 | subset is exactly that interval. *} | |
| 981 | ||
| 982 | lemma subset_card_intvl_is_intvl: | |
| 55085 
0e8e4dc55866
moved 'fundef_cong' attribute (and other basic 'fun' stuff) up the dependency chain
 blanchet parents: 
54606diff
changeset | 983 |   assumes "A \<subseteq> {k..<k + card A}"
 | 
| 
0e8e4dc55866
moved 'fundef_cong' attribute (and other basic 'fun' stuff) up the dependency chain
 blanchet parents: 
54606diff
changeset | 984 |   shows "A = {k..<k + card A}"
 | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 985 | proof (cases "finite A") | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 986 | case True | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 987 | from this and assms show ?thesis | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 988 | proof (induct A rule: finite_linorder_max_induct) | 
| 24853 | 989 | case empty thus ?case by auto | 
| 990 | next | |
| 33434 | 991 | case (insert b A) | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 992 | hence *: "b \<notin> A" by auto | 
| 55085 
0e8e4dc55866
moved 'fundef_cong' attribute (and other basic 'fun' stuff) up the dependency chain
 blanchet parents: 
54606diff
changeset | 993 |     with insert have "A <= {k..<k + card A}" and "b = k + card A"
 | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 994 | by fastforce+ | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 995 | with insert * show ?case by auto | 
| 24853 | 996 | qed | 
| 997 | next | |
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 998 | case False | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 999 | with assms show ?thesis by simp | 
| 24853 | 1000 | qed | 
| 1001 | ||
| 1002 | ||
| 32596 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 1003 | subsubsection {* Proving Inclusions and Equalities between Unions *}
 | 
| 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 1004 | |
| 36755 | 1005 | lemma UN_le_eq_Un0: | 
| 1006 |   "(\<Union>i\<le>n::nat. M i) = (\<Union>i\<in>{1..n}. M i) \<union> M 0" (is "?A = ?B")
 | |
| 1007 | proof | |
| 1008 | show "?A <= ?B" | |
| 1009 | proof | |
| 1010 | fix x assume "x : ?A" | |
| 1011 | then obtain i where i: "i\<le>n" "x : M i" by auto | |
| 1012 | show "x : ?B" | |
| 1013 | proof(cases i) | |
| 1014 | case 0 with i show ?thesis by simp | |
| 1015 | next | |
| 1016 | case (Suc j) with i show ?thesis by auto | |
| 1017 | qed | |
| 1018 | qed | |
| 1019 | next | |
| 1020 | show "?B <= ?A" by auto | |
| 1021 | qed | |
| 1022 | ||
| 1023 | lemma UN_le_add_shift: | |
| 1024 |   "(\<Union>i\<le>n::nat. M(i+k)) = (\<Union>i\<in>{k..n+k}. M i)" (is "?A = ?B")
 | |
| 1025 | proof | |
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44008diff
changeset | 1026 | show "?A <= ?B" by fastforce | 
| 36755 | 1027 | next | 
| 1028 | show "?B <= ?A" | |
| 1029 | proof | |
| 1030 | fix x assume "x : ?B" | |
| 1031 |     then obtain i where i: "i : {k..n+k}" "x : M(i)" by auto
 | |
| 1032 | hence "i-k\<le>n & x : M((i-k)+k)" by auto | |
| 1033 | thus "x : ?A" by blast | |
| 1034 | qed | |
| 1035 | qed | |
| 1036 | ||
| 32596 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 1037 | lemma UN_UN_finite_eq: "(\<Union>n::nat. \<Union>i\<in>{0..<n}. A i) = (\<Union>n. A n)"
 | 
| 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 1038 | by (auto simp add: atLeast0LessThan) | 
| 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 1039 | |
| 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 1040 | lemma UN_finite_subset: "(!!n::nat. (\<Union>i\<in>{0..<n}. A i) \<subseteq> C) \<Longrightarrow> (\<Union>n. A n) \<subseteq> C"
 | 
| 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 1041 | by (subst UN_UN_finite_eq [symmetric]) blast | 
| 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 1042 | |
| 33044 | 1043 | lemma UN_finite2_subset: | 
| 1044 |      "(!!n::nat. (\<Union>i\<in>{0..<n}. A i) \<subseteq> (\<Union>i\<in>{0..<n+k}. B i)) \<Longrightarrow> (\<Union>n. A n) \<subseteq> (\<Union>n. B n)"
 | |
| 1045 | apply (rule UN_finite_subset) | |
| 1046 | apply (subst UN_UN_finite_eq [symmetric, of B]) | |
| 1047 | apply blast | |
| 1048 | done | |
| 32596 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 1049 | |
| 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 1050 | lemma UN_finite2_eq: | 
| 33044 | 1051 |   "(!!n::nat. (\<Union>i\<in>{0..<n}. A i) = (\<Union>i\<in>{0..<n+k}. B i)) \<Longrightarrow> (\<Union>n. A n) = (\<Union>n. B n)"
 | 
| 1052 | apply (rule subset_antisym) | |
| 1053 | apply (rule UN_finite2_subset, blast) | |
| 1054 | apply (rule UN_finite2_subset [where k=k]) | |
| 35216 | 1055 | apply (force simp add: atLeastLessThan_add_Un [of 0]) | 
| 33044 | 1056 | done | 
| 32596 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 1057 | |
| 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 1058 | |
| 14485 | 1059 | subsubsection {* Cardinality *}
 | 
| 1060 | ||
| 15045 | 1061 | lemma card_lessThan [simp]: "card {..<u} = u"
 | 
| 15251 | 1062 | by (induct u, simp_all add: lessThan_Suc) | 
| 14485 | 1063 | |
| 1064 | lemma card_atMost [simp]: "card {..u} = Suc u"
 | |
| 1065 | by (simp add: lessThan_Suc_atMost [THEN sym]) | |
| 1066 | ||
| 15045 | 1067 | lemma card_atLeastLessThan [simp]: "card {l..<u} = u - l"
 | 
| 57113 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 1068 | proof - | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 1069 |   have "{l..<u} = (%x. x + l) ` {..<u-l}"
 | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 1070 | apply (auto simp add: image_def atLeastLessThan_def lessThan_def) | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 1071 | apply (rule_tac x = "x - l" in exI) | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 1072 | apply arith | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 1073 | done | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 1074 |   then have "card {l..<u} = card {..<u-l}"
 | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 1075 | by (simp add: card_image inj_on_def) | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 1076 | then show ?thesis | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 1077 | by simp | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 1078 | qed | 
| 14485 | 1079 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 1080 | lemma card_atLeastAtMost [simp]: "card {l..u} = Suc u - l"
 | 
| 14485 | 1081 | by (subst atLeastLessThanSuc_atLeastAtMost [THEN sym], simp) | 
| 1082 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 1083 | lemma card_greaterThanAtMost [simp]: "card {l<..u} = u - l"
 | 
| 14485 | 1084 | by (subst atLeastSucAtMost_greaterThanAtMost [THEN sym], simp) | 
| 1085 | ||
| 15045 | 1086 | lemma card_greaterThanLessThan [simp]: "card {l<..<u} = u - Suc l"
 | 
| 14485 | 1087 | by (subst atLeastSucLessThan_greaterThanLessThan [THEN sym], simp) | 
| 1088 | ||
| 26105 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 1089 | lemma ex_bij_betw_nat_finite: | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 1090 |   "finite M \<Longrightarrow> \<exists>h. bij_betw h {0..<card M} M"
 | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 1091 | apply(drule finite_imp_nat_seg_image_inj_on) | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 1092 | apply(auto simp:atLeast0LessThan[symmetric] lessThan_def[symmetric] card_image bij_betw_def) | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 1093 | done | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 1094 | |
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 1095 | lemma ex_bij_betw_finite_nat: | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 1096 |   "finite M \<Longrightarrow> \<exists>h. bij_betw h M {0..<card M}"
 | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 1097 | by (blast dest: ex_bij_betw_nat_finite bij_betw_inv) | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 1098 | |
| 31438 | 1099 | lemma finite_same_card_bij: | 
| 1100 | "finite A \<Longrightarrow> finite B \<Longrightarrow> card A = card B \<Longrightarrow> EX h. bij_betw h A B" | |
| 1101 | apply(drule ex_bij_betw_finite_nat) | |
| 1102 | apply(drule ex_bij_betw_nat_finite) | |
| 1103 | apply(auto intro!:bij_betw_trans) | |
| 1104 | done | |
| 1105 | ||
| 1106 | lemma ex_bij_betw_nat_finite_1: | |
| 1107 |   "finite M \<Longrightarrow> \<exists>h. bij_betw h {1 .. card M} M"
 | |
| 1108 | by (rule finite_same_card_bij) auto | |
| 1109 | ||
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1110 | lemma bij_betw_iff_card: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1111 | assumes FIN: "finite A" and FIN': "finite B" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1112 | shows BIJ: "(\<exists>f. bij_betw f A B) \<longleftrightarrow> (card A = card B)" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1113 | using assms | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1114 | proof(auto simp add: bij_betw_same_card) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1115 | assume *: "card A = card B" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1116 |   obtain f where "bij_betw f A {0 ..< card A}"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1117 | using FIN ex_bij_betw_finite_nat by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1118 |   moreover obtain g where "bij_betw g {0 ..< card B} B"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1119 | using FIN' ex_bij_betw_nat_finite by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1120 | ultimately have "bij_betw (g o f) A B" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1121 | using * by (auto simp add: bij_betw_trans) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1122 | thus "(\<exists>f. bij_betw f A B)" by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1123 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1124 | |
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1125 | lemma inj_on_iff_card_le: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1126 | assumes FIN: "finite A" and FIN': "finite B" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1127 | shows "(\<exists>f. inj_on f A \<and> f ` A \<le> B) = (card A \<le> card B)" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1128 | proof (safe intro!: card_inj_on_le) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1129 | assume *: "card A \<le> card B" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1130 |   obtain f where 1: "inj_on f A" and 2: "f ` A = {0 ..< card A}"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1131 | using FIN ex_bij_betw_finite_nat unfolding bij_betw_def by force | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1132 |   moreover obtain g where "inj_on g {0 ..< card B}" and 3: "g ` {0 ..< card B} = B"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1133 | using FIN' ex_bij_betw_nat_finite unfolding bij_betw_def by force | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1134 | ultimately have "inj_on g (f ` A)" using subset_inj_on[of g _ "f ` A"] * by force | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1135 | hence "inj_on (g o f) A" using 1 comp_inj_on by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1136 | moreover | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1137 |   {have "{0 ..< card A} \<le> {0 ..< card B}" using * by force
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1138 |    with 2 have "f ` A  \<le> {0 ..< card B}" by blast
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1139 | hence "(g o f) ` A \<le> B" unfolding comp_def using 3 by force | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1140 | } | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1141 | ultimately show "(\<exists>f. inj_on f A \<and> f ` A \<le> B)" by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 1142 | qed (insert assms, auto) | 
| 26105 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 1143 | |
| 14485 | 1144 | subsection {* Intervals of integers *}
 | 
| 1145 | ||
| 15045 | 1146 | lemma atLeastLessThanPlusOne_atLeastAtMost_int: "{l..<u+1} = {l..(u::int)}"
 | 
| 14485 | 1147 | by (auto simp add: atLeastAtMost_def atLeastLessThan_def) | 
| 1148 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 1149 | lemma atLeastPlusOneAtMost_greaterThanAtMost_int: "{l+1..u} = {l<..(u::int)}"
 | 
| 14485 | 1150 | by (auto simp add: atLeastAtMost_def greaterThanAtMost_def) | 
| 1151 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 1152 | lemma atLeastPlusOneLessThan_greaterThanLessThan_int: | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 1153 |     "{l+1..<u} = {l<..<u::int}"
 | 
| 14485 | 1154 | by (auto simp add: atLeastLessThan_def greaterThanLessThan_def) | 
| 1155 | ||
| 1156 | subsubsection {* Finiteness *}
 | |
| 1157 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 1158 | lemma image_atLeastZeroLessThan_int: "0 \<le> u ==> | 
| 15045 | 1159 |     {(0::int)..<u} = int ` {..<nat u}"
 | 
| 14485 | 1160 | apply (unfold image_def lessThan_def) | 
| 1161 | apply auto | |
| 1162 | apply (rule_tac x = "nat x" in exI) | |
| 35216 | 1163 | apply (auto simp add: zless_nat_eq_int_zless [THEN sym]) | 
| 14485 | 1164 | done | 
| 1165 | ||
| 15045 | 1166 | lemma finite_atLeastZeroLessThan_int: "finite {(0::int)..<u}"
 | 
| 47988 | 1167 | apply (cases "0 \<le> u") | 
| 14485 | 1168 | apply (subst image_atLeastZeroLessThan_int, assumption) | 
| 1169 | apply (rule finite_imageI) | |
| 1170 | apply auto | |
| 1171 | done | |
| 1172 | ||
| 15045 | 1173 | lemma finite_atLeastLessThan_int [iff]: "finite {l..<u::int}"
 | 
| 1174 |   apply (subgoal_tac "(%x. x + l) ` {0..<u-l} = {l..<u}")
 | |
| 14485 | 1175 | apply (erule subst) | 
| 1176 | apply (rule finite_imageI) | |
| 1177 | apply (rule finite_atLeastZeroLessThan_int) | |
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1178 | apply (rule image_add_int_atLeastLessThan) | 
| 14485 | 1179 | done | 
| 1180 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 1181 | lemma finite_atLeastAtMost_int [iff]: "finite {l..(u::int)}"
 | 
| 14485 | 1182 | by (subst atLeastLessThanPlusOne_atLeastAtMost_int [THEN sym], simp) | 
| 1183 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 1184 | lemma finite_greaterThanAtMost_int [iff]: "finite {l<..(u::int)}"
 | 
| 14485 | 1185 | by (subst atLeastPlusOneAtMost_greaterThanAtMost_int [THEN sym], simp) | 
| 1186 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 1187 | lemma finite_greaterThanLessThan_int [iff]: "finite {l<..<u::int}"
 | 
| 14485 | 1188 | by (subst atLeastPlusOneLessThan_greaterThanLessThan_int [THEN sym], simp) | 
| 1189 | ||
| 24853 | 1190 | |
| 14485 | 1191 | subsubsection {* Cardinality *}
 | 
| 1192 | ||
| 15045 | 1193 | lemma card_atLeastZeroLessThan_int: "card {(0::int)..<u} = nat u"
 | 
| 47988 | 1194 | apply (cases "0 \<le> u") | 
| 14485 | 1195 | apply (subst image_atLeastZeroLessThan_int, assumption) | 
| 1196 | apply (subst card_image) | |
| 1197 | apply (auto simp add: inj_on_def) | |
| 1198 | done | |
| 1199 | ||
| 15045 | 1200 | lemma card_atLeastLessThan_int [simp]: "card {l..<u} = nat (u - l)"
 | 
| 1201 |   apply (subgoal_tac "card {l..<u} = card {0..<u-l}")
 | |
| 14485 | 1202 | apply (erule ssubst, rule card_atLeastZeroLessThan_int) | 
| 15045 | 1203 |   apply (subgoal_tac "(%x. x + l) ` {0..<u-l} = {l..<u}")
 | 
| 14485 | 1204 | apply (erule subst) | 
| 1205 | apply (rule card_image) | |
| 1206 | apply (simp add: inj_on_def) | |
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1207 | apply (rule image_add_int_atLeastLessThan) | 
| 14485 | 1208 | done | 
| 1209 | ||
| 1210 | lemma card_atLeastAtMost_int [simp]: "card {l..u} = nat (u - l + 1)"
 | |
| 29667 | 1211 | apply (subst atLeastLessThanPlusOne_atLeastAtMost_int [THEN sym]) | 
| 1212 | apply (auto simp add: algebra_simps) | |
| 1213 | done | |
| 14485 | 1214 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 1215 | lemma card_greaterThanAtMost_int [simp]: "card {l<..u} = nat (u - l)"
 | 
| 29667 | 1216 | by (subst atLeastPlusOneAtMost_greaterThanAtMost_int [THEN sym], simp) | 
| 14485 | 1217 | |
| 15045 | 1218 | lemma card_greaterThanLessThan_int [simp]: "card {l<..<u} = nat (u - (l + 1))"
 | 
| 29667 | 1219 | by (subst atLeastPlusOneLessThan_greaterThanLessThan_int [THEN sym], simp) | 
| 14485 | 1220 | |
| 27656 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1221 | lemma finite_M_bounded_by_nat: "finite {k. P k \<and> k < (i::nat)}"
 | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1222 | proof - | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1223 |   have "{k. P k \<and> k < i} \<subseteq> {..<i}" by auto
 | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1224 | with finite_lessThan[of "i"] show ?thesis by (simp add: finite_subset) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1225 | qed | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1226 | |
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1227 | lemma card_less: | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1228 | assumes zero_in_M: "0 \<in> M" | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1229 | shows "card {k \<in> M. k < Suc i} \<noteq> 0"
 | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1230 | proof - | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1231 |   from zero_in_M have "{k \<in> M. k < Suc i} \<noteq> {}" by auto
 | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1232 | with finite_M_bounded_by_nat show ?thesis by (auto simp add: card_eq_0_iff) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1233 | qed | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1234 | |
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1235 | lemma card_less_Suc2: "0 \<notin> M \<Longrightarrow> card {k. Suc k \<in> M \<and> k < i} = card {k \<in> M. k < Suc i}"
 | 
| 37388 | 1236 | apply (rule card_bij_eq [of Suc _ _ "\<lambda>x. x - Suc 0"]) | 
| 27656 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1237 | apply auto | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1238 | apply (rule inj_on_diff_nat) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1239 | apply auto | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1240 | apply (case_tac x) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1241 | apply auto | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1242 | apply (case_tac xa) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1243 | apply auto | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1244 | apply (case_tac xa) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1245 | apply auto | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1246 | done | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1247 | |
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1248 | lemma card_less_Suc: | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1249 | assumes zero_in_M: "0 \<in> M" | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1250 |     shows "Suc (card {k. Suc k \<in> M \<and> k < i}) = card {k \<in> M. k < Suc i}"
 | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1251 | proof - | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1252 |   from assms have a: "0 \<in> {k \<in> M. k < Suc i}" by simp
 | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1253 |   hence c: "{k \<in> M. k < Suc i} = insert 0 ({k \<in> M. k < Suc i} - {0})"
 | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1254 | by (auto simp only: insert_Diff) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1255 |   have b: "{k \<in> M. k < Suc i} - {0} = {k \<in> M - {0}. k < Suc i}"  by auto
 | 
| 57113 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 1256 | from finite_M_bounded_by_nat[of "\<lambda>x. x \<in> M" "Suc i"] | 
| 
7e95523302e6
New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
 paulson <lp15@cam.ac.uk> parents: 
56949diff
changeset | 1257 |   have "Suc (card {k. Suc k \<in> M \<and> k < i}) = card (insert 0 ({k \<in> M. k < Suc i} - {0}))"
 | 
| 27656 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1258 | apply (subst card_insert) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1259 | apply simp_all | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1260 | apply (subst b) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1261 | apply (subst card_less_Suc2[symmetric]) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1262 | apply simp_all | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1263 | done | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1264 | with c show ?thesis by simp | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1265 | qed | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 1266 | |
| 14485 | 1267 | |
| 13850 | 1268 | subsection {*Lemmas useful with the summation operator setsum*}
 | 
| 1269 | ||
| 16102 
c5f6726d9bb1
Locale expressions: rename with optional mixfix syntax.
 ballarin parents: 
16052diff
changeset | 1270 | text {* For examples, see Algebra/poly/UnivPoly2.thy *}
 | 
| 13735 | 1271 | |
| 14577 | 1272 | subsubsection {* Disjoint Unions *}
 | 
| 13735 | 1273 | |
| 14577 | 1274 | text {* Singletons and open intervals *}
 | 
| 13735 | 1275 | |
| 1276 | lemma ivl_disj_un_singleton: | |
| 15045 | 1277 |   "{l::'a::linorder} Un {l<..} = {l..}"
 | 
| 1278 |   "{..<u} Un {u::'a::linorder} = {..u}"
 | |
| 1279 |   "(l::'a::linorder) < u ==> {l} Un {l<..<u} = {l..<u}"
 | |
| 1280 |   "(l::'a::linorder) < u ==> {l<..<u} Un {u} = {l<..u}"
 | |
| 1281 |   "(l::'a::linorder) <= u ==> {l} Un {l<..u} = {l..u}"
 | |
| 1282 |   "(l::'a::linorder) <= u ==> {l..<u} Un {u} = {l..u}"
 | |
| 14398 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 ballarin parents: 
13850diff
changeset | 1283 | by auto | 
| 13735 | 1284 | |
| 14577 | 1285 | text {* One- and two-sided intervals *}
 | 
| 13735 | 1286 | |
| 1287 | lemma ivl_disj_un_one: | |
| 15045 | 1288 |   "(l::'a::linorder) < u ==> {..l} Un {l<..<u} = {..<u}"
 | 
| 1289 |   "(l::'a::linorder) <= u ==> {..<l} Un {l..<u} = {..<u}"
 | |
| 1290 |   "(l::'a::linorder) <= u ==> {..l} Un {l<..u} = {..u}"
 | |
| 1291 |   "(l::'a::linorder) <= u ==> {..<l} Un {l..u} = {..u}"
 | |
| 1292 |   "(l::'a::linorder) <= u ==> {l<..u} Un {u<..} = {l<..}"
 | |
| 1293 |   "(l::'a::linorder) < u ==> {l<..<u} Un {u..} = {l<..}"
 | |
| 1294 |   "(l::'a::linorder) <= u ==> {l..u} Un {u<..} = {l..}"
 | |
| 1295 |   "(l::'a::linorder) <= u ==> {l..<u} Un {u..} = {l..}"
 | |
| 14398 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 ballarin parents: 
13850diff
changeset | 1296 | by auto | 
| 13735 | 1297 | |
| 14577 | 1298 | text {* Two- and two-sided intervals *}
 | 
| 13735 | 1299 | |
| 1300 | lemma ivl_disj_un_two: | |
| 15045 | 1301 |   "[| (l::'a::linorder) < m; m <= u |] ==> {l<..<m} Un {m..<u} = {l<..<u}"
 | 
| 1302 |   "[| (l::'a::linorder) <= m; m < u |] ==> {l<..m} Un {m<..<u} = {l<..<u}"
 | |
| 1303 |   "[| (l::'a::linorder) <= m; m <= u |] ==> {l..<m} Un {m..<u} = {l..<u}"
 | |
| 1304 |   "[| (l::'a::linorder) <= m; m < u |] ==> {l..m} Un {m<..<u} = {l..<u}"
 | |
| 1305 |   "[| (l::'a::linorder) < m; m <= u |] ==> {l<..<m} Un {m..u} = {l<..u}"
 | |
| 1306 |   "[| (l::'a::linorder) <= m; m <= u |] ==> {l<..m} Un {m<..u} = {l<..u}"
 | |
| 1307 |   "[| (l::'a::linorder) <= m; m <= u |] ==> {l..<m} Un {m..u} = {l..u}"
 | |
| 1308 |   "[| (l::'a::linorder) <= m; m <= u |] ==> {l..m} Un {m<..u} = {l..u}"
 | |
| 14398 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 ballarin parents: 
13850diff
changeset | 1309 | by auto | 
| 13735 | 1310 | |
| 60150 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1311 | lemma ivl_disj_un_two_touch: | 
| 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1312 |   "[| (l::'a::linorder) < m; m < u |] ==> {l<..m} Un {m..<u} = {l<..<u}"
 | 
| 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1313 |   "[| (l::'a::linorder) <= m; m < u |] ==> {l..m} Un {m..<u} = {l..<u}"
 | 
| 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1314 |   "[| (l::'a::linorder) < m; m <= u |] ==> {l<..m} Un {m..u} = {l<..u}"
 | 
| 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1315 |   "[| (l::'a::linorder) <= m; m <= u |] ==> {l..m} Un {m..u} = {l..u}"
 | 
| 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1316 | by auto | 
| 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1317 | |
| 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1318 | lemmas ivl_disj_un = ivl_disj_un_singleton ivl_disj_un_one ivl_disj_un_two ivl_disj_un_two_touch | 
| 13735 | 1319 | |
| 14577 | 1320 | subsubsection {* Disjoint Intersections *}
 | 
| 13735 | 1321 | |
| 14577 | 1322 | text {* One- and two-sided intervals *}
 | 
| 13735 | 1323 | |
| 1324 | lemma ivl_disj_int_one: | |
| 15045 | 1325 |   "{..l::'a::order} Int {l<..<u} = {}"
 | 
| 1326 |   "{..<l} Int {l..<u} = {}"
 | |
| 1327 |   "{..l} Int {l<..u} = {}"
 | |
| 1328 |   "{..<l} Int {l..u} = {}"
 | |
| 1329 |   "{l<..u} Int {u<..} = {}"
 | |
| 1330 |   "{l<..<u} Int {u..} = {}"
 | |
| 1331 |   "{l..u} Int {u<..} = {}"
 | |
| 1332 |   "{l..<u} Int {u..} = {}"
 | |
| 14398 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 ballarin parents: 
13850diff
changeset | 1333 | by auto | 
| 13735 | 1334 | |
| 14577 | 1335 | text {* Two- and two-sided intervals *}
 | 
| 13735 | 1336 | |
| 1337 | lemma ivl_disj_int_two: | |
| 15045 | 1338 |   "{l::'a::order<..<m} Int {m..<u} = {}"
 | 
| 1339 |   "{l<..m} Int {m<..<u} = {}"
 | |
| 1340 |   "{l..<m} Int {m..<u} = {}"
 | |
| 1341 |   "{l..m} Int {m<..<u} = {}"
 | |
| 1342 |   "{l<..<m} Int {m..u} = {}"
 | |
| 1343 |   "{l<..m} Int {m<..u} = {}"
 | |
| 1344 |   "{l..<m} Int {m..u} = {}"
 | |
| 1345 |   "{l..m} Int {m<..u} = {}"
 | |
| 14398 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 ballarin parents: 
13850diff
changeset | 1346 | by auto | 
| 13735 | 1347 | |
| 32456 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 1348 | lemmas ivl_disj_int = ivl_disj_int_one ivl_disj_int_two | 
| 13735 | 1349 | |
| 15542 | 1350 | subsubsection {* Some Differences *}
 | 
| 1351 | ||
| 1352 | lemma ivl_diff[simp]: | |
| 1353 |  "i \<le> n \<Longrightarrow> {i..<m} - {i..<n} = {n..<(m::'a::linorder)}"
 | |
| 1354 | by(auto) | |
| 1355 | ||
| 56194 | 1356 | lemma (in linorder) lessThan_minus_lessThan [simp]: | 
| 1357 |   "{..< n} - {..< m} = {m ..< n}"
 | |
| 1358 | by auto | |
| 1359 | ||
| 15542 | 1360 | |
| 1361 | subsubsection {* Some Subset Conditions *}
 | |
| 1362 | ||
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53374diff
changeset | 1363 | lemma ivl_subset [simp]: | 
| 15542 | 1364 |  "({i..<j} \<subseteq> {m..<n}) = (j \<le> i | m \<le> i & j \<le> (n::'a::linorder))"
 | 
| 1365 | apply(auto simp:linorder_not_le) | |
| 1366 | apply(rule ccontr) | |
| 1367 | apply(insert linorder_le_less_linear[of i n]) | |
| 1368 | apply(clarsimp simp:linorder_not_le) | |
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44008diff
changeset | 1369 | apply(fastforce) | 
| 15542 | 1370 | done | 
| 1371 | ||
| 15041 
a6b1f0cef7b3
Got rid of Summation and made it a translation into setsum instead.
 nipkow parents: 
14846diff
changeset | 1372 | |
| 15042 | 1373 | subsection {* Summation indexed over intervals *}
 | 
| 1374 | ||
| 1375 | syntax | |
| 1376 |   "_from_to_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(SUM _ = _.._./ _)" [0,0,0,10] 10)
 | |
| 15048 | 1377 |   "_from_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(SUM _ = _..<_./ _)" [0,0,0,10] 10)
 | 
| 16052 | 1378 |   "_upt_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(SUM _<_./ _)" [0,0,10] 10)
 | 
| 1379 |   "_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(SUM _<=_./ _)" [0,0,10] 10)
 | |
| 15042 | 1380 | syntax (xsymbols) | 
| 1381 |   "_from_to_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_ = _.._./ _)" [0,0,0,10] 10)
 | |
| 15048 | 1382 |   "_from_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_ = _..<_./ _)" [0,0,0,10] 10)
 | 
| 16052 | 1383 |   "_upt_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_<_./ _)" [0,0,10] 10)
 | 
| 1384 |   "_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_\<le>_./ _)" [0,0,10] 10)
 | |
| 15042 | 1385 | syntax (HTML output) | 
| 1386 |   "_from_to_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_ = _.._./ _)" [0,0,0,10] 10)
 | |
| 15048 | 1387 |   "_from_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_ = _..<_./ _)" [0,0,0,10] 10)
 | 
| 16052 | 1388 |   "_upt_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_<_./ _)" [0,0,10] 10)
 | 
| 1389 |   "_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_\<le>_./ _)" [0,0,10] 10)
 | |
| 15056 | 1390 | syntax (latex_sum output) | 
| 15052 | 1391 | "_from_to_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 1392 |  ("(3\<^raw:$\sum_{>_ = _\<^raw:}^{>_\<^raw:}$> _)" [0,0,0,10] 10)
 | |
| 1393 | "_from_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | |
| 1394 |  ("(3\<^raw:$\sum_{>_ = _\<^raw:}^{<>_\<^raw:}$> _)" [0,0,0,10] 10)
 | |
| 16052 | 1395 | "_upt_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 1396 |  ("(3\<^raw:$\sum_{>_ < _\<^raw:}$> _)" [0,0,10] 10)
 | |
| 15052 | 1397 | "_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 16052 | 1398 |  ("(3\<^raw:$\sum_{>_ \<le> _\<^raw:}$> _)" [0,0,10] 10)
 | 
| 15041 
a6b1f0cef7b3
Got rid of Summation and made it a translation into setsum instead.
 nipkow parents: 
14846diff
changeset | 1399 | |
| 15048 | 1400 | translations | 
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28068diff
changeset | 1401 |   "\<Sum>x=a..b. t" == "CONST setsum (%x. t) {a..b}"
 | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28068diff
changeset | 1402 |   "\<Sum>x=a..<b. t" == "CONST setsum (%x. t) {a..<b}"
 | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28068diff
changeset | 1403 |   "\<Sum>i\<le>n. t" == "CONST setsum (\<lambda>i. t) {..n}"
 | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28068diff
changeset | 1404 |   "\<Sum>i<n. t" == "CONST setsum (\<lambda>i. t) {..<n}"
 | 
| 15041 
a6b1f0cef7b3
Got rid of Summation and made it a translation into setsum instead.
 nipkow parents: 
14846diff
changeset | 1405 | |
| 15052 | 1406 | text{* The above introduces some pretty alternative syntaxes for
 | 
| 15056 | 1407 | summation over intervals: | 
| 15052 | 1408 | \begin{center}
 | 
| 1409 | \begin{tabular}{lll}
 | |
| 15056 | 1410 | Old & New & \LaTeX\\ | 
| 1411 | @{term[source]"\<Sum>x\<in>{a..b}. e"} & @{term"\<Sum>x=a..b. e"} & @{term[mode=latex_sum]"\<Sum>x=a..b. e"}\\
 | |
| 1412 | @{term[source]"\<Sum>x\<in>{a..<b}. e"} & @{term"\<Sum>x=a..<b. e"} & @{term[mode=latex_sum]"\<Sum>x=a..<b. e"}\\
 | |
| 16052 | 1413 | @{term[source]"\<Sum>x\<in>{..b}. e"} & @{term"\<Sum>x\<le>b. e"} & @{term[mode=latex_sum]"\<Sum>x\<le>b. e"}\\
 | 
| 15056 | 1414 | @{term[source]"\<Sum>x\<in>{..<b}. e"} & @{term"\<Sum>x<b. e"} & @{term[mode=latex_sum]"\<Sum>x<b. e"}
 | 
| 15052 | 1415 | \end{tabular}
 | 
| 1416 | \end{center}
 | |
| 15056 | 1417 | The left column shows the term before introduction of the new syntax, | 
| 1418 | the middle column shows the new (default) syntax, and the right column | |
| 1419 | shows a special syntax. The latter is only meaningful for latex output | |
| 1420 | and has to be activated explicitly by setting the print mode to | |
| 21502 | 1421 | @{text latex_sum} (e.g.\ via @{text "mode = latex_sum"} in
 | 
| 15056 | 1422 | antiquotations). It is not the default \LaTeX\ output because it only | 
| 1423 | works well with italic-style formulae, not tt-style. | |
| 15052 | 1424 | |
| 1425 | Note that for uniformity on @{typ nat} it is better to use
 | |
| 1426 | @{term"\<Sum>x::nat=0..<n. e"} rather than @{text"\<Sum>x<n. e"}: @{text setsum} may
 | |
| 1427 | not provide all lemmas available for @{term"{m..<n}"} also in the
 | |
| 1428 | special form for @{term"{..<n}"}. *}
 | |
| 1429 | ||
| 15542 | 1430 | text{* This congruence rule should be used for sums over intervals as
 | 
| 57418 | 1431 | the standard theorem @{text[source]setsum.cong} does not work well
 | 
| 15542 | 1432 | with the simplifier who adds the unsimplified premise @{term"x:B"} to
 | 
| 1433 | the context. *} | |
| 1434 | ||
| 1435 | lemma setsum_ivl_cong: | |
| 1436 | "\<lbrakk>a = c; b = d; !!x. \<lbrakk> c \<le> x; x < d \<rbrakk> \<Longrightarrow> f x = g x \<rbrakk> \<Longrightarrow> | |
| 1437 |  setsum f {a..<b} = setsum g {c..<d}"
 | |
| 57418 | 1438 | by(rule setsum.cong, simp_all) | 
| 15041 
a6b1f0cef7b3
Got rid of Summation and made it a translation into setsum instead.
 nipkow parents: 
14846diff
changeset | 1439 | |
| 16041 | 1440 | (* FIXME why are the following simp rules but the corresponding eqns | 
| 1441 | on intervals are not? *) | |
| 1442 | ||
| 16052 | 1443 | lemma setsum_atMost_Suc[simp]: "(\<Sum>i \<le> Suc n. f i) = (\<Sum>i \<le> n. f i) + f(Suc n)" | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 1444 | by (simp add:atMost_Suc ac_simps) | 
| 16052 | 1445 | |
| 16041 | 1446 | lemma setsum_lessThan_Suc[simp]: "(\<Sum>i < Suc n. f i) = (\<Sum>i < n. f i) + f n" | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 1447 | by (simp add:lessThan_Suc ac_simps) | 
| 15041 
a6b1f0cef7b3
Got rid of Summation and made it a translation into setsum instead.
 nipkow parents: 
14846diff
changeset | 1448 | |
| 15911 | 1449 | lemma setsum_cl_ivl_Suc[simp]: | 
| 15561 | 1450 |   "setsum f {m..Suc n} = (if Suc n < m then 0 else setsum f {m..n} + f(Suc n))"
 | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 1451 | by (auto simp:ac_simps atLeastAtMostSuc_conv) | 
| 15561 | 1452 | |
| 15911 | 1453 | lemma setsum_op_ivl_Suc[simp]: | 
| 15561 | 1454 |   "setsum f {m..<Suc n} = (if n < m then 0 else setsum f {m..<n} + f(n))"
 | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 1455 | by (auto simp:ac_simps atLeastLessThanSuc) | 
| 16041 | 1456 | (* | 
| 15561 | 1457 | lemma setsum_cl_ivl_add_one_nat: "(n::nat) <= m + 1 ==> | 
| 1458 | (\<Sum>i=n..m+1. f i) = (\<Sum>i=n..m. f i) + f(m + 1)" | |
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 1459 | by (auto simp:ac_simps atLeastAtMostSuc_conv) | 
| 16041 | 1460 | *) | 
| 28068 | 1461 | |
| 1462 | lemma setsum_head: | |
| 1463 | fixes n :: nat | |
| 1464 | assumes mn: "m <= n" | |
| 1465 |   shows "(\<Sum>x\<in>{m..n}. P x) = P m + (\<Sum>x\<in>{m<..n}. P x)" (is "?lhs = ?rhs")
 | |
| 1466 | proof - | |
| 1467 | from mn | |
| 1468 |   have "{m..n} = {m} \<union> {m<..n}"
 | |
| 1469 | by (auto intro: ivl_disj_un_singleton) | |
| 1470 |   hence "?lhs = (\<Sum>x\<in>{m} \<union> {m<..n}. P x)"
 | |
| 1471 | by (simp add: atLeast0LessThan) | |
| 1472 | also have "\<dots> = ?rhs" by simp | |
| 1473 | finally show ?thesis . | |
| 1474 | qed | |
| 1475 | ||
| 1476 | lemma setsum_head_Suc: | |
| 1477 |   "m \<le> n \<Longrightarrow> setsum f {m..n} = f m + setsum f {Suc m..n}"
 | |
| 1478 | by (simp add: setsum_head atLeastSucAtMost_greaterThanAtMost) | |
| 1479 | ||
| 1480 | lemma setsum_head_upt_Suc: | |
| 1481 |   "m < n \<Longrightarrow> setsum f {m..<n} = f m + setsum f {Suc m..<n}"
 | |
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
29960diff
changeset | 1482 | apply(insert setsum_head_Suc[of m "n - Suc 0" f]) | 
| 29667 | 1483 | apply (simp add: atLeastLessThanSuc_atLeastAtMost[symmetric] algebra_simps) | 
| 28068 | 1484 | done | 
| 1485 | ||
| 31501 | 1486 | lemma setsum_ub_add_nat: assumes "(m::nat) \<le> n + 1" | 
| 1487 |   shows "setsum f {m..n + p} = setsum f {m..n} + setsum f {n + 1..n + p}"
 | |
| 1488 | proof- | |
| 1489 |   have "{m .. n+p} = {m..n} \<union> {n+1..n+p}" using `m \<le> n+1` by auto
 | |
| 57418 | 1490 | thus ?thesis by (auto simp: ivl_disj_int setsum.union_disjoint | 
| 31501 | 1491 | atLeastSucAtMost_greaterThanAtMost) | 
| 1492 | qed | |
| 28068 | 1493 | |
| 15539 | 1494 | lemma setsum_add_nat_ivl: "\<lbrakk> m \<le> n; n \<le> p \<rbrakk> \<Longrightarrow> | 
| 1495 |   setsum f {m..<n} + setsum f {n..<p} = setsum f {m..<p::nat}"
 | |
| 57418 | 1496 | by (simp add:setsum.union_disjoint[symmetric] ivl_disj_int ivl_disj_un) | 
| 15539 | 1497 | |
| 1498 | lemma setsum_diff_nat_ivl: | |
| 1499 | fixes f :: "nat \<Rightarrow> 'a::ab_group_add" | |
| 1500 | shows "\<lbrakk> m \<le> n; n \<le> p \<rbrakk> \<Longrightarrow> | |
| 1501 |   setsum f {m..<p} - setsum f {m..<n} = setsum f {n..<p}"
 | |
| 1502 | using setsum_add_nat_ivl [of m n p f,symmetric] | |
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 1503 | apply (simp add: ac_simps) | 
| 15539 | 1504 | done | 
| 1505 | ||
| 31505 | 1506 | lemma setsum_natinterval_difff: | 
| 1507 |   fixes f:: "nat \<Rightarrow> ('a::ab_group_add)"
 | |
| 1508 |   shows  "setsum (\<lambda>k. f k - f(k + 1)) {(m::nat) .. n} =
 | |
| 1509 | (if m <= n then f m - f(n + 1) else 0)" | |
| 1510 | by (induct n, auto simp add: algebra_simps not_le le_Suc_eq) | |
| 1511 | ||
| 56194 | 1512 | lemma setsum_nat_group: "(\<Sum>m<n::nat. setsum f {m * k ..< m*k + k}) = setsum f {..< n * k}"
 | 
| 1513 | apply (subgoal_tac "k = 0 | 0 < k", auto) | |
| 1514 | apply (induct "n") | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57448diff
changeset | 1515 | apply (simp_all add: setsum_add_nat_ivl add.commute atLeast0LessThan[symmetric]) | 
| 56194 | 1516 | done | 
| 28068 | 1517 | |
| 60150 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1518 | lemma setsum_triangle_reindex: | 
| 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1519 | fixes n :: nat | 
| 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1520 |   shows "(\<Sum>(i,j)\<in>{(i,j). i+j < n}. f i j) = (\<Sum>k<n. \<Sum>i\<le>k. f i (k - i))"
 | 
| 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1521 | apply (simp add: setsum.Sigma) | 
| 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1522 | apply (rule setsum.reindex_bij_witness[where j="\<lambda>(i, j). (i+j, i)" and i="\<lambda>(k, i). (i, k - i)"]) | 
| 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1523 | apply auto | 
| 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1524 | done | 
| 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1525 | |
| 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1526 | lemma setsum_triangle_reindex_eq: | 
| 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1527 | fixes n :: nat | 
| 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1528 |   shows "(\<Sum>(i,j)\<in>{(i,j). i+j \<le> n}. f i j) = (\<Sum>k\<le>n. \<Sum>i\<le>k. f i (k - i))"
 | 
| 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1529 | using setsum_triangle_reindex [of f "Suc n"] | 
| 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1530 | by (simp only: Nat.less_Suc_eq_le lessThan_Suc_atMost) | 
| 
bd773c47ad0b
New material about complex transcendental functions (especially Ln, Arg) and polynomials
 paulson <lp15@cam.ac.uk> parents: 
60017diff
changeset | 1531 | |
| 60162 | 1532 | lemma nat_diff_setsum_reindex: "(\<Sum>i<n. f (n - Suc i)) = (\<Sum>i<n. f i)" | 
| 1533 | by (rule setsum.reindex_bij_witness[where i="\<lambda>i. n - Suc i" and j="\<lambda>i. n - Suc i"]) auto | |
| 1534 | ||
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1535 | subsection{* Shifting bounds *}
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1536 | |
| 15539 | 1537 | lemma setsum_shift_bounds_nat_ivl: | 
| 1538 |   "setsum f {m+k..<n+k} = setsum (%i. f(i + k)){m..<n::nat}"
 | |
| 1539 | by (induct "n", auto simp:atLeastLessThanSuc) | |
| 1540 | ||
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1541 | lemma setsum_shift_bounds_cl_nat_ivl: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1542 |   "setsum f {m+k..n+k} = setsum (%i. f(i + k)){m..n::nat}"
 | 
| 57129 
7edb7550663e
introduce more powerful reindexing rules for big operators
 hoelzl parents: 
57113diff
changeset | 1543 | by (rule setsum.reindex_bij_witness[where i="\<lambda>i. i + k" and j="\<lambda>i. i - k"]) auto | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1544 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1545 | corollary setsum_shift_bounds_cl_Suc_ivl: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1546 |   "setsum f {Suc m..Suc n} = setsum (%i. f(Suc i)){m..n}"
 | 
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
29960diff
changeset | 1547 | by (simp add:setsum_shift_bounds_cl_nat_ivl[where k="Suc 0", simplified]) | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1548 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1549 | corollary setsum_shift_bounds_Suc_ivl: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1550 |   "setsum f {Suc m..<Suc n} = setsum (%i. f(Suc i)){m..<n}"
 | 
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
29960diff
changeset | 1551 | by (simp add:setsum_shift_bounds_nat_ivl[where k="Suc 0", simplified]) | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1552 | |
| 28068 | 1553 | lemma setsum_shift_lb_Suc0_0: | 
| 1554 |   "f(0::nat) = (0::nat) \<Longrightarrow> setsum f {Suc 0..k} = setsum f {0..k}"
 | |
| 1555 | by(simp add:setsum_head_Suc) | |
| 19106 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 1556 | |
| 28068 | 1557 | lemma setsum_shift_lb_Suc0_0_upt: | 
| 1558 |   "f(0::nat) = 0 \<Longrightarrow> setsum f {Suc 0..<k} = setsum f {0..<k}"
 | |
| 1559 | apply(cases k)apply simp | |
| 1560 | apply(simp add:setsum_head_upt_Suc) | |
| 1561 | done | |
| 19022 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1562 | |
| 52380 | 1563 | lemma setsum_atMost_Suc_shift: | 
| 1564 | fixes f :: "nat \<Rightarrow> 'a::comm_monoid_add" | |
| 1565 | shows "(\<Sum>i\<le>Suc n. f i) = f 0 + (\<Sum>i\<le>n. f (Suc i))" | |
| 1566 | proof (induct n) | |
| 1567 | case 0 show ?case by simp | |
| 1568 | next | |
| 1569 | case (Suc n) note IH = this | |
| 1570 | have "(\<Sum>i\<le>Suc (Suc n). f i) = (\<Sum>i\<le>Suc n. f i) + f (Suc (Suc n))" | |
| 1571 | by (rule setsum_atMost_Suc) | |
| 1572 | also have "(\<Sum>i\<le>Suc n. f i) = f 0 + (\<Sum>i\<le>n. f (Suc i))" | |
| 1573 | by (rule IH) | |
| 1574 | also have "f 0 + (\<Sum>i\<le>n. f (Suc i)) + f (Suc (Suc n)) = | |
| 1575 | f 0 + ((\<Sum>i\<le>n. f (Suc i)) + f (Suc (Suc n)))" | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57448diff
changeset | 1576 | by (rule add.assoc) | 
| 52380 | 1577 | also have "(\<Sum>i\<le>n. f (Suc i)) + f (Suc (Suc n)) = (\<Sum>i\<le>Suc n. f (Suc i))" | 
| 1578 | by (rule setsum_atMost_Suc [symmetric]) | |
| 1579 | finally show ?case . | |
| 1580 | qed | |
| 1581 | ||
| 56238 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56215diff
changeset | 1582 | lemma setsum_last_plus: fixes n::nat shows "m <= n \<Longrightarrow> (\<Sum>i = m..n. f i) = f n + (\<Sum>i = m..<n. f i)" | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57448diff
changeset | 1583 | by (cases n) (auto simp: atLeastLessThanSuc_atLeastAtMost add.commute) | 
| 56238 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56215diff
changeset | 1584 | |
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56215diff
changeset | 1585 | lemma setsum_Suc_diff: | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56215diff
changeset | 1586 | fixes f :: "nat \<Rightarrow> 'a::ab_group_add" | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56215diff
changeset | 1587 | assumes "m \<le> Suc n" | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56215diff
changeset | 1588 | shows "(\<Sum>i = m..n. f(Suc i) - f i) = f (Suc n) - f m" | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56215diff
changeset | 1589 | using assms by (induct n) (auto simp: le_Suc_eq) | 
| 55718 
34618f031ba9
A few lemmas about summations, etc.
 paulson <lp15@cam.ac.uk> parents: 
55242diff
changeset | 1590 | |
| 
34618f031ba9
A few lemmas about summations, etc.
 paulson <lp15@cam.ac.uk> parents: 
55242diff
changeset | 1591 | lemma nested_setsum_swap: | 
| 
34618f031ba9
A few lemmas about summations, etc.
 paulson <lp15@cam.ac.uk> parents: 
55242diff
changeset | 1592 | "(\<Sum>i = 0..n. (\<Sum>j = 0..<i. a i j)) = (\<Sum>j = 0..<n. \<Sum>i = Suc j..n. a i j)" | 
| 57418 | 1593 | by (induction n) (auto simp: setsum.distrib) | 
| 55718 
34618f031ba9
A few lemmas about summations, etc.
 paulson <lp15@cam.ac.uk> parents: 
55242diff
changeset | 1594 | |
| 56215 | 1595 | lemma nested_setsum_swap': | 
| 1596 | "(\<Sum>i\<le>n. (\<Sum>j<i. a i j)) = (\<Sum>j<n. \<Sum>i = Suc j..n. a i j)" | |
| 57418 | 1597 | by (induction n) (auto simp: setsum.distrib) | 
| 56215 | 1598 | |
| 56238 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56215diff
changeset | 1599 | lemma setsum_zero_power' [simp]: | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56215diff
changeset | 1600 | fixes c :: "nat \<Rightarrow> 'a::field" | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56215diff
changeset | 1601 | shows "(\<Sum>i\<in>A. c i * 0^i / d i) = (if finite A \<and> 0 \<in> A then c 0 / d 0 else 0)" | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56215diff
changeset | 1602 | using setsum_zero_power [of "\<lambda>i. c i / d i" A] | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56215diff
changeset | 1603 | by auto | 
| 
5d147e1e18d1
a few new lemmas and generalisations of old ones
 paulson <lp15@cam.ac.uk> parents: 
56215diff
changeset | 1604 | |
| 52380 | 1605 | |
| 17149 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 1606 | subsection {* The formula for geometric sums *}
 | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 1607 | |
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 1608 | lemma geometric_sum: | 
| 36307 
1732232f9b27
sharpened constraint (c.f. 4e7f5b22dd7d); explicit is better than implicit
 haftmann parents: 
35828diff
changeset | 1609 | assumes "x \<noteq> 1" | 
| 56193 
c726ecfb22b6
cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
 hoelzl parents: 
55719diff
changeset | 1610 | shows "(\<Sum>i<n. x ^ i) = (x ^ n - 1) / (x - 1::'a::field)" | 
| 36307 
1732232f9b27
sharpened constraint (c.f. 4e7f5b22dd7d); explicit is better than implicit
 haftmann parents: 
35828diff
changeset | 1611 | proof - | 
| 
1732232f9b27
sharpened constraint (c.f. 4e7f5b22dd7d); explicit is better than implicit
 haftmann parents: 
35828diff
changeset | 1612 | from assms obtain y where "y = x - 1" and "y \<noteq> 0" by simp_all | 
| 56193 
c726ecfb22b6
cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
 hoelzl parents: 
55719diff
changeset | 1613 | moreover have "(\<Sum>i<n. (y + 1) ^ i) = ((y + 1) ^ n - 1) / y" | 
| 60162 | 1614 | by (induct n) (simp_all add: power_Suc field_simps `y \<noteq> 0`) | 
| 36307 
1732232f9b27
sharpened constraint (c.f. 4e7f5b22dd7d); explicit is better than implicit
 haftmann parents: 
35828diff
changeset | 1615 | ultimately show ?thesis by simp | 
| 
1732232f9b27
sharpened constraint (c.f. 4e7f5b22dd7d); explicit is better than implicit
 haftmann parents: 
35828diff
changeset | 1616 | qed | 
| 
1732232f9b27
sharpened constraint (c.f. 4e7f5b22dd7d); explicit is better than implicit
 haftmann parents: 
35828diff
changeset | 1617 | |
| 60162 | 1618 | lemma diff_power_eq_setsum: | 
| 1619 |   fixes y :: "'a::{comm_ring,monoid_mult}"
 | |
| 1620 | shows | |
| 1621 | "x ^ (Suc n) - y ^ (Suc n) = | |
| 1622 | (x - y) * (\<Sum>p<Suc n. (x ^ p) * y ^ (n - p))" | |
| 1623 | proof (induct n) | |
| 1624 | case (Suc n) | |
| 1625 | have "x ^ Suc (Suc n) - y ^ Suc (Suc n) = x * (x * x^n) - y * (y * y ^ n)" | |
| 1626 | by (simp add: power_Suc) | |
| 1627 | also have "... = y * (x ^ (Suc n) - y ^ (Suc n)) + (x - y) * (x * x^n)" | |
| 1628 | by (simp add: power_Suc algebra_simps) | |
| 1629 | also have "... = y * ((x - y) * (\<Sum>p<Suc n. (x ^ p) * y ^ (n - p))) + (x - y) * (x * x^n)" | |
| 1630 | by (simp only: Suc) | |
| 1631 | also have "... = (x - y) * (y * (\<Sum>p<Suc n. (x ^ p) * y ^ (n - p))) + (x - y) * (x * x^n)" | |
| 1632 | by (simp only: mult.left_commute) | |
| 1633 | also have "... = (x - y) * (\<Sum>p<Suc (Suc n). x ^ p * y ^ (Suc n - p))" | |
| 1634 | by (simp add: power_Suc field_simps Suc_diff_le setsum_left_distrib setsum_right_distrib) | |
| 1635 | finally show ?case . | |
| 1636 | qed simp | |
| 1637 | ||
| 1638 | corollary power_diff_sumr2: --{* @{text COMPLEX_POLYFUN} in HOL Light *}
 | |
| 1639 |   fixes x :: "'a::{comm_ring,monoid_mult}"
 | |
| 1640 | shows "x^n - y^n = (x - y) * (\<Sum>i<n. y^(n - Suc i) * x^i)" | |
| 1641 | using diff_power_eq_setsum[of x "n - 1" y] | |
| 1642 | by (cases "n = 0") (simp_all add: field_simps) | |
| 1643 | ||
| 1644 | lemma power_diff_1_eq: | |
| 1645 |   fixes x :: "'a::{comm_ring,monoid_mult}"
 | |
| 1646 | shows "n \<noteq> 0 \<Longrightarrow> x^n - 1 = (x - 1) * (\<Sum>i<n. (x^i))" | |
| 1647 | using diff_power_eq_setsum [of x _ 1] | |
| 1648 | by (cases n) auto | |
| 1649 | ||
| 1650 | lemma one_diff_power_eq': | |
| 1651 |   fixes x :: "'a::{comm_ring,monoid_mult}"
 | |
| 1652 | shows "n \<noteq> 0 \<Longrightarrow> 1 - x^n = (1 - x) * (\<Sum>i<n. x^(n - Suc i))" | |
| 1653 | using diff_power_eq_setsum [of 1 _ x] | |
| 1654 | by (cases n) auto | |
| 1655 | ||
| 1656 | lemma one_diff_power_eq: | |
| 1657 |   fixes x :: "'a::{comm_ring,monoid_mult}"
 | |
| 1658 | shows "n \<noteq> 0 \<Longrightarrow> 1 - x^n = (1 - x) * (\<Sum>i<n. x^i)" | |
| 1659 | by (metis one_diff_power_eq' [of n x] nat_diff_setsum_reindex) | |
| 1660 | ||
| 17149 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 1661 | |
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1662 | subsection {* The formula for arithmetic sums *}
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1663 | |
| 47222 
1b7c909a6fad
rephrase lemmas about arithmetic series using numeral '2'
 huffman parents: 
47108diff
changeset | 1664 | lemma gauss_sum: | 
| 56193 
c726ecfb22b6
cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
 hoelzl parents: 
55719diff
changeset | 1665 |   "(2::'a::comm_semiring_1)*(\<Sum>i\<in>{1..n}. of_nat i) = of_nat n*((of_nat n)+1)"
 | 
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1666 | proof (induct n) | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1667 | case 0 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1668 | show ?case by simp | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1669 | next | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1670 | case (Suc n) | 
| 47222 
1b7c909a6fad
rephrase lemmas about arithmetic series using numeral '2'
 huffman parents: 
47108diff
changeset | 1671 | then show ?case | 
| 
1b7c909a6fad
rephrase lemmas about arithmetic series using numeral '2'
 huffman parents: 
47108diff
changeset | 1672 | by (simp add: algebra_simps add: one_add_one [symmetric] del: one_add_one) | 
| 
1b7c909a6fad
rephrase lemmas about arithmetic series using numeral '2'
 huffman parents: 
47108diff
changeset | 1673 | (* FIXME: make numeral cancellation simprocs work for semirings *) | 
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1674 | qed | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1675 | |
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1676 | theorem arith_series_general: | 
| 47222 
1b7c909a6fad
rephrase lemmas about arithmetic series using numeral '2'
 huffman parents: 
47108diff
changeset | 1677 |   "(2::'a::comm_semiring_1) * (\<Sum>i\<in>{..<n}. a + of_nat i * d) =
 | 
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1678 | of_nat n * (a + (a + of_nat(n - 1)*d))" | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1679 | proof cases | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1680 | assume ngt1: "n > 1" | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1681 | let ?I = "\<lambda>i. of_nat i" and ?n = "of_nat n" | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1682 | have | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1683 |     "(\<Sum>i\<in>{..<n}. a+?I i*d) =
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1684 |      ((\<Sum>i\<in>{..<n}. a) + (\<Sum>i\<in>{..<n}. ?I i*d))"
 | 
| 57418 | 1685 | by (rule setsum.distrib) | 
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1686 |   also from ngt1 have "\<dots> = ?n*a + (\<Sum>i\<in>{..<n}. ?I i*d)" by simp
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1687 |   also from ngt1 have "\<dots> = (?n*a + d*(\<Sum>i\<in>{1..<n}. ?I i))"
 | 
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
29960diff
changeset | 1688 | unfolding One_nat_def | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 1689 | by (simp add: setsum_right_distrib atLeast0LessThan[symmetric] setsum_shift_lb_Suc0_0_upt ac_simps) | 
| 47222 
1b7c909a6fad
rephrase lemmas about arithmetic series using numeral '2'
 huffman parents: 
47108diff
changeset | 1690 |   also have "2*\<dots> = 2*?n*a + d*2*(\<Sum>i\<in>{1..<n}. ?I i)"
 | 
| 
1b7c909a6fad
rephrase lemmas about arithmetic series using numeral '2'
 huffman parents: 
47108diff
changeset | 1691 | by (simp add: algebra_simps) | 
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1692 |   also from ngt1 have "{1..<n} = {1..n - 1}"
 | 
| 28068 | 1693 | by (cases n) (auto simp: atLeastLessThanSuc_atLeastAtMost) | 
| 1694 | also from ngt1 | |
| 47222 
1b7c909a6fad
rephrase lemmas about arithmetic series using numeral '2'
 huffman parents: 
47108diff
changeset | 1695 |   have "2*?n*a + d*2*(\<Sum>i\<in>{1..n - 1}. ?I i) = (2*?n*a + d*?I (n - 1)*?I n)"
 | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 1696 | by (simp only: mult.assoc gauss_sum [of "n - 1"], unfold One_nat_def) | 
| 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 1697 | (simp add: mult.commute trans [OF add.commute of_nat_Suc [symmetric]]) | 
| 47222 
1b7c909a6fad
rephrase lemmas about arithmetic series using numeral '2'
 huffman parents: 
47108diff
changeset | 1698 | finally show ?thesis | 
| 
1b7c909a6fad
rephrase lemmas about arithmetic series using numeral '2'
 huffman parents: 
47108diff
changeset | 1699 | unfolding mult_2 by (simp add: algebra_simps) | 
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1700 | next | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1701 | assume "\<not>(n > 1)" | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1702 | hence "n = 1 \<or> n = 0" by auto | 
| 47222 
1b7c909a6fad
rephrase lemmas about arithmetic series using numeral '2'
 huffman parents: 
47108diff
changeset | 1703 | thus ?thesis by (auto simp: mult_2) | 
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1704 | qed | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1705 | |
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1706 | lemma arith_series_nat: | 
| 47222 
1b7c909a6fad
rephrase lemmas about arithmetic series using numeral '2'
 huffman parents: 
47108diff
changeset | 1707 |   "(2::nat) * (\<Sum>i\<in>{..<n}. a+i*d) = n * (a + (a+(n - 1)*d))"
 | 
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1708 | proof - | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1709 | have | 
| 47222 
1b7c909a6fad
rephrase lemmas about arithmetic series using numeral '2'
 huffman parents: 
47108diff
changeset | 1710 |     "2 * (\<Sum>i\<in>{..<n::nat}. a + of_nat(i)*d) =
 | 
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1711 | of_nat(n) * (a + (a + of_nat(n - 1)*d))" | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1712 | by (rule arith_series_general) | 
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
29960diff
changeset | 1713 | thus ?thesis | 
| 35216 | 1714 | unfolding One_nat_def by auto | 
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1715 | qed | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1716 | |
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1717 | lemma arith_series_int: | 
| 47222 
1b7c909a6fad
rephrase lemmas about arithmetic series using numeral '2'
 huffman parents: 
47108diff
changeset | 1718 |   "2 * (\<Sum>i\<in>{..<n}. a + int i * d) = int n * (a + (a + int(n - 1)*d))"
 | 
| 
1b7c909a6fad
rephrase lemmas about arithmetic series using numeral '2'
 huffman parents: 
47108diff
changeset | 1719 | by (fact arith_series_general) (* FIXME: duplicate *) | 
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 1720 | |
| 59416 
fde2659085e1
generalized sum_diff_distrib to setsum_subtractf_nat
 hoelzl parents: 
59000diff
changeset | 1721 | lemma sum_diff_distrib: "\<forall>x. Q x \<le> P x \<Longrightarrow> (\<Sum>x<n. P x) - (\<Sum>x<n. Q x) = (\<Sum>x<n. P x - Q x :: nat)" | 
| 
fde2659085e1
generalized sum_diff_distrib to setsum_subtractf_nat
 hoelzl parents: 
59000diff
changeset | 1722 | by (subst setsum_subtractf_nat) auto | 
| 19022 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1723 | |
| 29960 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1724 | subsection {* Products indexed over intervals *}
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1725 | |
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1726 | syntax | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1727 |   "_from_to_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(PROD _ = _.._./ _)" [0,0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1728 |   "_from_upto_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(PROD _ = _..<_./ _)" [0,0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1729 |   "_upt_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(PROD _<_./ _)" [0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1730 |   "_upto_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(PROD _<=_./ _)" [0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1731 | syntax (xsymbols) | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1732 |   "_from_to_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Prod>_ = _.._./ _)" [0,0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1733 |   "_from_upto_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Prod>_ = _..<_./ _)" [0,0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1734 |   "_upt_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Prod>_<_./ _)" [0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1735 |   "_upto_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Prod>_\<le>_./ _)" [0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1736 | syntax (HTML output) | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1737 |   "_from_to_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Prod>_ = _.._./ _)" [0,0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1738 |   "_from_upto_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Prod>_ = _..<_./ _)" [0,0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1739 |   "_upt_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Prod>_<_./ _)" [0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1740 |   "_upto_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Prod>_\<le>_./ _)" [0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1741 | syntax (latex_prod output) | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1742 | "_from_to_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1743 |  ("(3\<^raw:$\prod_{>_ = _\<^raw:}^{>_\<^raw:}$> _)" [0,0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1744 | "_from_upto_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1745 |  ("(3\<^raw:$\prod_{>_ = _\<^raw:}^{<>_\<^raw:}$> _)" [0,0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1746 | "_upt_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1747 |  ("(3\<^raw:$\prod_{>_ < _\<^raw:}$> _)" [0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1748 | "_upto_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1749 |  ("(3\<^raw:$\prod_{>_ \<le> _\<^raw:}$> _)" [0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1750 | |
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1751 | translations | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1752 |   "\<Prod>x=a..b. t" == "CONST setprod (%x. t) {a..b}"
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1753 |   "\<Prod>x=a..<b. t" == "CONST setprod (%x. t) {a..<b}"
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1754 |   "\<Prod>i\<le>n. t" == "CONST setprod (\<lambda>i. t) {..n}"
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1755 |   "\<Prod>i<n. t" == "CONST setprod (\<lambda>i. t) {..<n}"
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1756 | |
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1757 | subsection {* Transfer setup *}
 | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1758 | |
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1759 | lemma transfer_nat_int_set_functions: | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1760 |     "{..n} = nat ` {0..int n}"
 | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1761 |     "{m..n} = nat ` {int m..int n}"  (* need all variants of these! *)
 | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1762 | apply (auto simp add: image_def) | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1763 | apply (rule_tac x = "int x" in bexI) | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1764 | apply auto | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1765 | apply (rule_tac x = "int x" in bexI) | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1766 | apply auto | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1767 | done | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1768 | |
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1769 | lemma transfer_nat_int_set_function_closures: | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1770 |     "x >= 0 \<Longrightarrow> nat_set {x..y}"
 | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1771 | by (simp add: nat_set_def) | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1772 | |
| 35644 | 1773 | declare transfer_morphism_nat_int[transfer add | 
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1774 | return: transfer_nat_int_set_functions | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1775 | transfer_nat_int_set_function_closures | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1776 | ] | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1777 | |
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1778 | lemma transfer_int_nat_set_functions: | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1779 |     "is_nat m \<Longrightarrow> is_nat n \<Longrightarrow> {m..n} = int ` {nat m..nat n}"
 | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1780 | by (simp only: is_nat_def transfer_nat_int_set_functions | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1781 | transfer_nat_int_set_function_closures | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1782 | transfer_nat_int_set_return_embed nat_0_le | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1783 | cong: transfer_nat_int_set_cong) | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1784 | |
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1785 | lemma transfer_int_nat_set_function_closures: | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1786 |     "is_nat x \<Longrightarrow> nat_set {x..y}"
 | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1787 | by (simp only: transfer_nat_int_set_function_closures is_nat_def) | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1788 | |
| 35644 | 1789 | declare transfer_morphism_int_nat[transfer add | 
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1790 | return: transfer_int_nat_set_functions | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1791 | transfer_int_nat_set_function_closures | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1792 | ] | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1793 | |
| 55242 
413ec965f95d
Number_Theory: prime is no longer overloaded, but only for nat. Automatic coercion to int enabled.
 paulson <lp15@cam.ac.uk> parents: 
55143diff
changeset | 1794 | lemma setprod_int_plus_eq: "setprod int {i..i+j} =  \<Prod>{int i..int (i+j)}"
 | 
| 
413ec965f95d
Number_Theory: prime is no longer overloaded, but only for nat. Automatic coercion to int enabled.
 paulson <lp15@cam.ac.uk> parents: 
55143diff
changeset | 1795 | by (induct j) (auto simp add: atLeastAtMostSuc_conv atLeastAtMostPlus1_int_conv) | 
| 
413ec965f95d
Number_Theory: prime is no longer overloaded, but only for nat. Automatic coercion to int enabled.
 paulson <lp15@cam.ac.uk> parents: 
55143diff
changeset | 1796 | |
| 
413ec965f95d
Number_Theory: prime is no longer overloaded, but only for nat. Automatic coercion to int enabled.
 paulson <lp15@cam.ac.uk> parents: 
55143diff
changeset | 1797 | lemma setprod_int_eq: "setprod int {i..j} =  \<Prod>{int i..int j}"
 | 
| 
413ec965f95d
Number_Theory: prime is no longer overloaded, but only for nat. Automatic coercion to int enabled.
 paulson <lp15@cam.ac.uk> parents: 
55143diff
changeset | 1798 | proof (cases "i \<le> j") | 
| 
413ec965f95d
Number_Theory: prime is no longer overloaded, but only for nat. Automatic coercion to int enabled.
 paulson <lp15@cam.ac.uk> parents: 
55143diff
changeset | 1799 | case True | 
| 
413ec965f95d
Number_Theory: prime is no longer overloaded, but only for nat. Automatic coercion to int enabled.
 paulson <lp15@cam.ac.uk> parents: 
55143diff
changeset | 1800 | then show ?thesis | 
| 
413ec965f95d
Number_Theory: prime is no longer overloaded, but only for nat. Automatic coercion to int enabled.
 paulson <lp15@cam.ac.uk> parents: 
55143diff
changeset | 1801 | by (metis Nat.le_iff_add setprod_int_plus_eq) | 
| 
413ec965f95d
Number_Theory: prime is no longer overloaded, but only for nat. Automatic coercion to int enabled.
 paulson <lp15@cam.ac.uk> parents: 
55143diff
changeset | 1802 | next | 
| 
413ec965f95d
Number_Theory: prime is no longer overloaded, but only for nat. Automatic coercion to int enabled.
 paulson <lp15@cam.ac.uk> parents: 
55143diff
changeset | 1803 | case False | 
| 
413ec965f95d
Number_Theory: prime is no longer overloaded, but only for nat. Automatic coercion to int enabled.
 paulson <lp15@cam.ac.uk> parents: 
55143diff
changeset | 1804 | then show ?thesis | 
| 
413ec965f95d
Number_Theory: prime is no longer overloaded, but only for nat. Automatic coercion to int enabled.
 paulson <lp15@cam.ac.uk> parents: 
55143diff
changeset | 1805 | by auto | 
| 
413ec965f95d
Number_Theory: prime is no longer overloaded, but only for nat. Automatic coercion to int enabled.
 paulson <lp15@cam.ac.uk> parents: 
55143diff
changeset | 1806 | qed | 
| 
413ec965f95d
Number_Theory: prime is no longer overloaded, but only for nat. Automatic coercion to int enabled.
 paulson <lp15@cam.ac.uk> parents: 
55143diff
changeset | 1807 | |
| 8924 | 1808 | end |