| author | paulson | 
| Tue, 11 Sep 2018 16:22:04 +0100 | |
| changeset 68976 | 105bbce656a5 | 
| parent 68620 | 707437105595 | 
| child 69064 | 5840724b1d71 | 
| permissions | -rw-r--r-- | 
| 63627 | 1 | (* Title: HOL/Analysis/Euclidean_Space.thy | 
| 44133 
691c52e900ca
split Linear_Algebra.thy from Euclidean_Space.thy
 huffman parents: 
44129diff
changeset | 2 | Author: Johannes Hölzl, TU München | 
| 
691c52e900ca
split Linear_Algebra.thy from Euclidean_Space.thy
 huffman parents: 
44129diff
changeset | 3 | Author: Brian Huffman, Portland State University | 
| 33175 | 4 | *) | 
| 5 | ||
| 60420 | 6 | section \<open>Finite-Dimensional Inner Product Spaces\<close> | 
| 33175 | 7 | |
| 8 | theory Euclidean_Space | |
| 9 | imports | |
| 63971 
da89140186e2
HOL-Analysis: move Product_Vector and Inner_Product from Library
 hoelzl parents: 
63952diff
changeset | 10 | L2_Norm Product_Vector | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36778diff
changeset | 11 | begin | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36778diff
changeset | 12 | |
| 60420 | 13 | subsection \<open>Type class of Euclidean spaces\<close> | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36778diff
changeset | 14 | |
| 68617 | 15 | class euclidean_space = real_inner + | 
| 44166 
d12d89a66742
modify euclidean_space class to include basis set
 huffman parents: 
44133diff
changeset | 16 | fixes Basis :: "'a set" | 
| 
d12d89a66742
modify euclidean_space class to include basis set
 huffman parents: 
44133diff
changeset | 17 |   assumes nonempty_Basis [simp]: "Basis \<noteq> {}"
 | 
| 
d12d89a66742
modify euclidean_space class to include basis set
 huffman parents: 
44133diff
changeset | 18 | assumes finite_Basis [simp]: "finite Basis" | 
| 
d12d89a66742
modify euclidean_space class to include basis set
 huffman parents: 
44133diff
changeset | 19 | assumes inner_Basis: | 
| 
d12d89a66742
modify euclidean_space class to include basis set
 huffman parents: 
44133diff
changeset | 20 | "\<lbrakk>u \<in> Basis; v \<in> Basis\<rbrakk> \<Longrightarrow> inner u v = (if u = v then 1 else 0)" | 
| 
d12d89a66742
modify euclidean_space class to include basis set
 huffman parents: 
44133diff
changeset | 21 | assumes euclidean_all_zero_iff: | 
| 
d12d89a66742
modify euclidean_space class to include basis set
 huffman parents: 
44133diff
changeset | 22 | "(\<forall>u\<in>Basis. inner x u = 0) \<longleftrightarrow> (x = 0)" | 
| 
d12d89a66742
modify euclidean_space class to include basis set
 huffman parents: 
44133diff
changeset | 23 | |
| 63141 
7e5084ad95aa
recovered printing of DIM('a) (cf. 899c9c4e4a4c);
 wenzelm parents: 
63114diff
changeset | 24 | syntax "_type_dimension" :: "type \<Rightarrow> nat"  ("(1DIM/(1'(_')))")
 | 
| 
7e5084ad95aa
recovered printing of DIM('a) (cf. 899c9c4e4a4c);
 wenzelm parents: 
63114diff
changeset | 25 | translations "DIM('a)" \<rightharpoonup> "CONST card (CONST Basis :: 'a set)"
 | 
| 
7e5084ad95aa
recovered printing of DIM('a) (cf. 899c9c4e4a4c);
 wenzelm parents: 
63114diff
changeset | 26 | typed_print_translation \<open> | 
| 
7e5084ad95aa
recovered printing of DIM('a) (cf. 899c9c4e4a4c);
 wenzelm parents: 
63114diff
changeset | 27 |   [(@{const_syntax card},
 | 
| 
7e5084ad95aa
recovered printing of DIM('a) (cf. 899c9c4e4a4c);
 wenzelm parents: 
63114diff
changeset | 28 |     fn ctxt => fn _ => fn [Const (@{const_syntax Basis}, Type (@{type_name set}, [T]))] =>
 | 
| 
7e5084ad95aa
recovered printing of DIM('a) (cf. 899c9c4e4a4c);
 wenzelm parents: 
63114diff
changeset | 29 |       Syntax.const @{syntax_const "_type_dimension"} $ Syntax_Phases.term_of_typ ctxt T)]
 | 
| 
7e5084ad95aa
recovered printing of DIM('a) (cf. 899c9c4e4a4c);
 wenzelm parents: 
63114diff
changeset | 30 | \<close> | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36778diff
changeset | 31 | |
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44902diff
changeset | 32 | lemma (in euclidean_space) norm_Basis[simp]: "u \<in> Basis \<Longrightarrow> norm u = 1" | 
| 44166 
d12d89a66742
modify euclidean_space class to include basis set
 huffman parents: 
44133diff
changeset | 33 | unfolding norm_eq_sqrt_inner by (simp add: inner_Basis) | 
| 
d12d89a66742
modify euclidean_space class to include basis set
 huffman parents: 
44133diff
changeset | 34 | |
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44902diff
changeset | 35 | lemma (in euclidean_space) inner_same_Basis[simp]: "u \<in> Basis \<Longrightarrow> inner u u = 1" | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44902diff
changeset | 36 | by (simp add: inner_Basis) | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44902diff
changeset | 37 | |
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44902diff
changeset | 38 | lemma (in euclidean_space) inner_not_same_Basis: "u \<in> Basis \<Longrightarrow> v \<in> Basis \<Longrightarrow> u \<noteq> v \<Longrightarrow> inner u v = 0" | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44902diff
changeset | 39 | by (simp add: inner_Basis) | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44902diff
changeset | 40 | |
| 44166 
d12d89a66742
modify euclidean_space class to include basis set
 huffman parents: 
44133diff
changeset | 41 | lemma (in euclidean_space) sgn_Basis: "u \<in> Basis \<Longrightarrow> sgn u = u" | 
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44902diff
changeset | 42 | unfolding sgn_div_norm by (simp add: scaleR_one) | 
| 44166 
d12d89a66742
modify euclidean_space class to include basis set
 huffman parents: 
44133diff
changeset | 43 | |
| 
d12d89a66742
modify euclidean_space class to include basis set
 huffman parents: 
44133diff
changeset | 44 | lemma (in euclidean_space) Basis_zero [simp]: "0 \<notin> Basis" | 
| 
d12d89a66742
modify euclidean_space class to include basis set
 huffman parents: 
44133diff
changeset | 45 | proof | 
| 
d12d89a66742
modify euclidean_space class to include basis set
 huffman parents: 
44133diff
changeset | 46 | assume "0 \<in> Basis" thus "False" | 
| 
d12d89a66742
modify euclidean_space class to include basis set
 huffman parents: 
44133diff
changeset | 47 | using inner_Basis [of 0 0] by simp | 
| 
d12d89a66742
modify euclidean_space class to include basis set
 huffman parents: 
44133diff
changeset | 48 | qed | 
| 
d12d89a66742
modify euclidean_space class to include basis set
 huffman parents: 
44133diff
changeset | 49 | |
| 
d12d89a66742
modify euclidean_space class to include basis set
 huffman parents: 
44133diff
changeset | 50 | lemma (in euclidean_space) nonzero_Basis: "u \<in> Basis \<Longrightarrow> u \<noteq> 0" | 
| 
d12d89a66742
modify euclidean_space class to include basis set
 huffman parents: 
44133diff
changeset | 51 | by clarsimp | 
| 
d12d89a66742
modify euclidean_space class to include basis set
 huffman parents: 
44133diff
changeset | 52 | |
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44902diff
changeset | 53 | lemma (in euclidean_space) SOME_Basis: "(SOME i. i \<in> Basis) \<in> Basis" | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44902diff
changeset | 54 | by (metis ex_in_conv nonempty_Basis someI_ex) | 
| 44166 
d12d89a66742
modify euclidean_space class to include basis set
 huffman parents: 
44133diff
changeset | 55 | |
| 64773 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 56 | lemma norm_some_Basis [simp]: "norm (SOME i. i \<in> Basis) = 1" | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 57 | by (simp add: SOME_Basis) | 
| 
223b2ebdda79
Many new theorems, and more tidying
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 58 | |
| 64267 | 59 | lemma (in euclidean_space) inner_sum_left_Basis[simp]: | 
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44902diff
changeset | 60 | "b \<in> Basis \<Longrightarrow> inner (\<Sum>i\<in>Basis. f i *\<^sub>R i) b = f b" | 
| 64267 | 61 | by (simp add: inner_sum_left inner_Basis if_distrib comm_monoid_add_class.sum.If_cases) | 
| 44166 
d12d89a66742
modify euclidean_space class to include basis set
 huffman parents: 
44133diff
changeset | 62 | |
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44902diff
changeset | 63 | lemma (in euclidean_space) euclidean_eqI: | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44902diff
changeset | 64 | assumes b: "\<And>b. b \<in> Basis \<Longrightarrow> inner x b = inner y b" shows "x = y" | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36778diff
changeset | 65 | proof - | 
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44902diff
changeset | 66 | from b have "\<forall>b\<in>Basis. inner (x - y) b = 0" | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44902diff
changeset | 67 | by (simp add: inner_diff_left) | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44902diff
changeset | 68 | then show "x = y" | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44902diff
changeset | 69 | by (simp add: euclidean_all_zero_iff) | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36778diff
changeset | 70 | qed | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36778diff
changeset | 71 | |
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44902diff
changeset | 72 | lemma (in euclidean_space) euclidean_eq_iff: | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44902diff
changeset | 73 | "x = y \<longleftrightarrow> (\<forall>b\<in>Basis. inner x b = inner y b)" | 
| 44129 | 74 | by (auto intro: euclidean_eqI) | 
| 75 | ||
| 64267 | 76 | lemma (in euclidean_space) euclidean_representation_sum: | 
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44902diff
changeset | 77 | "(\<Sum>i\<in>Basis. f i *\<^sub>R i) = b \<longleftrightarrow> (\<forall>i\<in>Basis. f i = inner b i)" | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44902diff
changeset | 78 | by (subst euclidean_eq_iff) simp | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36778diff
changeset | 79 | |
| 64267 | 80 | lemma (in euclidean_space) euclidean_representation_sum': | 
| 54776 
db890d9fc5c2
ordered_euclidean_space compatible with more standard pointwise ordering on products; conditionally complete lattice with product order
 immler parents: 
53939diff
changeset | 81 | "b = (\<Sum>i\<in>Basis. f i *\<^sub>R i) \<longleftrightarrow> (\<forall>i\<in>Basis. f i = inner b i)" | 
| 64267 | 82 | by (auto simp add: euclidean_representation_sum[symmetric]) | 
| 54776 
db890d9fc5c2
ordered_euclidean_space compatible with more standard pointwise ordering on products; conditionally complete lattice with product order
 immler parents: 
53939diff
changeset | 83 | |
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44902diff
changeset | 84 | lemma (in euclidean_space) euclidean_representation: "(\<Sum>b\<in>Basis. inner x b *\<^sub>R b) = x" | 
| 64267 | 85 | unfolding euclidean_representation_sum by simp | 
| 44129 | 86 | |
| 67685 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67399diff
changeset | 87 | lemma (in euclidean_space) euclidean_inner: "inner x y = (\<Sum>b\<in>Basis. (inner x b) * (inner y b))" | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67399diff
changeset | 88 | by (subst (1 2) euclidean_representation [symmetric]) | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67399diff
changeset | 89 | (simp add: inner_sum_right inner_Basis ac_simps) | 
| 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 immler parents: 
67399diff
changeset | 90 | |
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44902diff
changeset | 91 | lemma (in euclidean_space) choice_Basis_iff: | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44902diff
changeset | 92 | fixes P :: "'a \<Rightarrow> real \<Rightarrow> bool" | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44902diff
changeset | 93 | shows "(\<forall>i\<in>Basis. \<exists>x. P i x) \<longleftrightarrow> (\<exists>x. \<forall>i\<in>Basis. P i (inner x i))" | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44902diff
changeset | 94 | unfolding bchoice_iff | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44902diff
changeset | 95 | proof safe | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44902diff
changeset | 96 | fix f assume "\<forall>i\<in>Basis. P i (f i)" | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44902diff
changeset | 97 | then show "\<exists>x. \<forall>i\<in>Basis. P i (inner x i)" | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44902diff
changeset | 98 | by (auto intro!: exI[of _ "\<Sum>i\<in>Basis. f i *\<^sub>R i"]) | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44902diff
changeset | 99 | qed auto | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36778diff
changeset | 100 | |
| 63952 
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63938diff
changeset | 101 | lemma (in euclidean_space) bchoice_Basis_iff: | 
| 
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63938diff
changeset | 102 | fixes P :: "'a \<Rightarrow> real \<Rightarrow> bool" | 
| 
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63938diff
changeset | 103 | shows "(\<forall>i\<in>Basis. \<exists>x\<in>A. P i x) \<longleftrightarrow> (\<exists>x. \<forall>i\<in>Basis. inner x i \<in> A \<and> P i (inner x i))" | 
| 
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63938diff
changeset | 104 | by (simp add: choice_Basis_iff Bex_def) | 
| 
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63938diff
changeset | 105 | |
| 64267 | 106 | lemma (in euclidean_space) euclidean_representation_sum_fun: | 
| 60974 
6a6f15d8fbc4
New material and fixes related to the forthcoming Stone-Weierstrass development
 paulson <lp15@cam.ac.uk> parents: 
60420diff
changeset | 107 | "(\<lambda>x. \<Sum>b\<in>Basis. inner (f x) b *\<^sub>R b) = f" | 
| 64267 | 108 | by (rule ext) (simp add: euclidean_representation_sum) | 
| 60974 
6a6f15d8fbc4
New material and fixes related to the forthcoming Stone-Weierstrass development
 paulson <lp15@cam.ac.uk> parents: 
60420diff
changeset | 109 | |
| 
6a6f15d8fbc4
New material and fixes related to the forthcoming Stone-Weierstrass development
 paulson <lp15@cam.ac.uk> parents: 
60420diff
changeset | 110 | lemma euclidean_isCont: | 
| 
6a6f15d8fbc4
New material and fixes related to the forthcoming Stone-Weierstrass development
 paulson <lp15@cam.ac.uk> parents: 
60420diff
changeset | 111 | assumes "\<And>b. b \<in> Basis \<Longrightarrow> isCont (\<lambda>x. (inner (f x) b) *\<^sub>R b) x" | 
| 
6a6f15d8fbc4
New material and fixes related to the forthcoming Stone-Weierstrass development
 paulson <lp15@cam.ac.uk> parents: 
60420diff
changeset | 112 | shows "isCont f x" | 
| 64267 | 113 | apply (subst euclidean_representation_sum_fun [symmetric]) | 
| 114 | apply (rule isCont_sum) | |
| 60974 
6a6f15d8fbc4
New material and fixes related to the forthcoming Stone-Weierstrass development
 paulson <lp15@cam.ac.uk> parents: 
60420diff
changeset | 115 | apply (blast intro: assms) | 
| 
6a6f15d8fbc4
New material and fixes related to the forthcoming Stone-Weierstrass development
 paulson <lp15@cam.ac.uk> parents: 
60420diff
changeset | 116 | done | 
| 
6a6f15d8fbc4
New material and fixes related to the forthcoming Stone-Weierstrass development
 paulson <lp15@cam.ac.uk> parents: 
60420diff
changeset | 117 | |
| 63938 | 118 | lemma DIM_positive [simp]: "0 < DIM('a::euclidean_space)"
 | 
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44902diff
changeset | 119 | by (simp add: card_gt_0_iff) | 
| 44628 
bd17b7543af1
move lemmas from Topology_Euclidean_Space to Euclidean_Space
 huffman parents: 
44571diff
changeset | 120 | |
| 63938 | 121 | lemma DIM_ge_Suc0 [simp]: "Suc 0 \<le> card Basis" | 
| 63007 
aa894a49f77d
new theorems about convex hulls, etc.; also, renamed some theorems
 paulson <lp15@cam.ac.uk> parents: 
62390diff
changeset | 122 | by (meson DIM_positive Suc_leI) | 
| 
aa894a49f77d
new theorems about convex hulls, etc.; also, renamed some theorems
 paulson <lp15@cam.ac.uk> parents: 
62390diff
changeset | 123 | |
| 63114 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63040diff
changeset | 124 | |
| 64267 | 125 | lemma sum_inner_Basis_scaleR [simp]: | 
| 63114 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63040diff
changeset | 126 | fixes f :: "'a::euclidean_space \<Rightarrow> 'b::real_vector" | 
| 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63040diff
changeset | 127 | assumes "b \<in> Basis" shows "(\<Sum>i\<in>Basis. (inner i b) *\<^sub>R f i) = f b" | 
| 64267 | 128 | by (simp add: comm_monoid_add_class.sum.remove [OF finite_Basis assms] | 
| 129 | assms inner_not_same_Basis comm_monoid_add_class.sum.neutral) | |
| 63114 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63040diff
changeset | 130 | |
| 64267 | 131 | lemma sum_inner_Basis_eq [simp]: | 
| 63114 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63040diff
changeset | 132 | assumes "b \<in> Basis" shows "(\<Sum>i\<in>Basis. (inner i b) * f i) = f b" | 
| 64267 | 133 | by (simp add: comm_monoid_add_class.sum.remove [OF finite_Basis assms] | 
| 134 | assms inner_not_same_Basis comm_monoid_add_class.sum.neutral) | |
| 63114 
27afe7af7379
Lots of new material for multivariate analysis
 paulson <lp15@cam.ac.uk> parents: 
63040diff
changeset | 135 | |
| 66154 
bc5e6461f759
Tidying up integration theory and some new theorems
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 136 | lemma sum_if_inner [simp]: | 
| 
bc5e6461f759
Tidying up integration theory and some new theorems
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 137 | assumes "i \<in> Basis" "j \<in> Basis" | 
| 
bc5e6461f759
Tidying up integration theory and some new theorems
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 138 | shows "inner (\<Sum>k\<in>Basis. if k = i then f i *\<^sub>R i else g k *\<^sub>R k) j = (if j=i then f j else g j)" | 
| 
bc5e6461f759
Tidying up integration theory and some new theorems
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 139 | proof (cases "i=j") | 
| 
bc5e6461f759
Tidying up integration theory and some new theorems
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 140 | case True | 
| 
bc5e6461f759
Tidying up integration theory and some new theorems
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 141 | with assms show ?thesis | 
| 
bc5e6461f759
Tidying up integration theory and some new theorems
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 142 | by (auto simp: inner_sum_left if_distrib [of "\<lambda>x. inner x j"] inner_Basis cong: if_cong) | 
| 
bc5e6461f759
Tidying up integration theory and some new theorems
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 143 | next | 
| 
bc5e6461f759
Tidying up integration theory and some new theorems
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 144 | case False | 
| 
bc5e6461f759
Tidying up integration theory and some new theorems
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 145 | have "(\<Sum>k\<in>Basis. inner (if k = i then f i *\<^sub>R i else g k *\<^sub>R k) j) = | 
| 
bc5e6461f759
Tidying up integration theory and some new theorems
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 146 | (\<Sum>k\<in>Basis. if k = j then g k else 0)" | 
| 
bc5e6461f759
Tidying up integration theory and some new theorems
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 147 | apply (rule sum.cong) | 
| 
bc5e6461f759
Tidying up integration theory and some new theorems
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 148 | using False assms by (auto simp: inner_Basis) | 
| 
bc5e6461f759
Tidying up integration theory and some new theorems
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 149 | also have "... = g j" | 
| 
bc5e6461f759
Tidying up integration theory and some new theorems
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 150 | using assms by auto | 
| 
bc5e6461f759
Tidying up integration theory and some new theorems
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 151 | finally show ?thesis | 
| 
bc5e6461f759
Tidying up integration theory and some new theorems
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 152 | using False by (auto simp: inner_sum_left) | 
| 
bc5e6461f759
Tidying up integration theory and some new theorems
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 153 | qed | 
| 
bc5e6461f759
Tidying up integration theory and some new theorems
 paulson <lp15@cam.ac.uk> parents: 
64773diff
changeset | 154 | |
| 68072 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 155 | lemma norm_le_componentwise: | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 156 | "(\<And>b. b \<in> Basis \<Longrightarrow> abs(inner x b) \<le> abs(inner y b)) \<Longrightarrow> norm x \<le> norm y" | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 157 | by (auto simp: norm_le euclidean_inner [of x x] euclidean_inner [of y y] abs_le_square_iff power2_eq_square intro!: sum_mono) | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 158 | |
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 159 | lemma Basis_le_norm: "b \<in> Basis \<Longrightarrow> \<bar>inner x b\<bar> \<le> norm x" | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 160 | by (rule order_trans [OF Cauchy_Schwarz_ineq2]) simp | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 161 | |
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 162 | lemma norm_bound_Basis_le: "b \<in> Basis \<Longrightarrow> norm x \<le> e \<Longrightarrow> \<bar>inner x b\<bar> \<le> e" | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 163 | by (metis Basis_le_norm order_trans) | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 164 | |
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 165 | lemma norm_bound_Basis_lt: "b \<in> Basis \<Longrightarrow> norm x < e \<Longrightarrow> \<bar>inner x b\<bar> < e" | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 166 | by (metis Basis_le_norm le_less_trans) | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 167 | |
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 168 | lemma norm_le_l1: "norm x \<le> (\<Sum>b\<in>Basis. \<bar>inner x b\<bar>)" | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 169 | apply (subst euclidean_representation[of x, symmetric]) | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 170 | apply (rule order_trans[OF norm_sum]) | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 171 | apply (auto intro!: sum_mono) | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 172 | done | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 173 | |
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 174 | lemma sum_norm_allsubsets_bound: | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 175 | fixes f :: "'a \<Rightarrow> 'n::euclidean_space" | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 176 | assumes fP: "finite P" | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 177 | and fPs: "\<And>Q. Q \<subseteq> P \<Longrightarrow> norm (sum f Q) \<le> e" | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 178 |   shows "(\<Sum>x\<in>P. norm (f x)) \<le> 2 * real DIM('n) * e"
 | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 179 | proof - | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 180 | have "(\<Sum>x\<in>P. norm (f x)) \<le> (\<Sum>x\<in>P. \<Sum>b\<in>Basis. \<bar>inner (f x) b\<bar>)" | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 181 | by (rule sum_mono) (rule norm_le_l1) | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 182 | also have "(\<Sum>x\<in>P. \<Sum>b\<in>Basis. \<bar>inner (f x) b\<bar>) = (\<Sum>b\<in>Basis. \<Sum>x\<in>P. \<bar>inner (f x) b\<bar>)" | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 183 | by (rule sum.swap) | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 184 | also have "\<dots> \<le> of_nat (card (Basis :: 'n set)) * (2 * e)" | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 185 | proof (rule sum_bounded_above) | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 186 | fix i :: 'n | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 187 | assume i: "i \<in> Basis" | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 188 | have "norm (\<Sum>x\<in>P. \<bar>inner (f x) i\<bar>) \<le> | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 189 |       norm (inner (\<Sum>x\<in>P \<inter> - {x. inner (f x) i < 0}. f x) i) + norm (inner (\<Sum>x\<in>P \<inter> {x. inner (f x) i < 0}. f x) i)"
 | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 190 | by (simp add: abs_real_def sum.If_cases[OF fP] sum_negf norm_triangle_ineq4 inner_sum_left | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 191 | del: real_norm_def) | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 192 | also have "\<dots> \<le> e + e" | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 193 | unfolding real_norm_def | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 194 | by (intro add_mono norm_bound_Basis_le i fPs) auto | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 195 | finally show "(\<Sum>x\<in>P. \<bar>inner (f x) i\<bar>) \<le> 2*e" by simp | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 196 | qed | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 197 |   also have "\<dots> = 2 * real DIM('n) * e" by simp
 | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 198 | finally show ?thesis . | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 199 | qed | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 200 | |
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 201 | |
| 67962 | 202 | subsection%unimportant \<open>Subclass relationships\<close> | 
| 44571 | 203 | |
| 204 | instance euclidean_space \<subseteq> perfect_space | |
| 205 | proof | |
| 206 |   fix x :: 'a show "\<not> open {x}"
 | |
| 207 | proof | |
| 208 |     assume "open {x}"
 | |
| 209 | then obtain e where "0 < e" and e: "\<forall>y. dist y x < e \<longrightarrow> y = x" | |
| 210 | unfolding open_dist by fast | |
| 63040 | 211 | define y where "y = x + scaleR (e/2) (SOME b. b \<in> Basis)" | 
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44902diff
changeset | 212 | have [simp]: "(SOME b. b \<in> Basis) \<in> Basis" | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44902diff
changeset | 213 | by (rule someI_ex) (auto simp: ex_in_conv) | 
| 60420 | 214 | from \<open>0 < e\<close> have "y \<noteq> x" | 
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44902diff
changeset | 215 | unfolding y_def by (auto intro!: nonzero_Basis) | 
| 60420 | 216 | from \<open>0 < e\<close> have "dist y x < e" | 
| 53939 | 217 | unfolding y_def by (simp add: dist_norm) | 
| 60420 | 218 | from \<open>y \<noteq> x\<close> and \<open>dist y x < e\<close> show "False" | 
| 44571 | 219 | using e by simp | 
| 220 | qed | |
| 221 | qed | |
| 222 | ||
| 60420 | 223 | subsection \<open>Class instances\<close> | 
| 33175 | 224 | |
| 67962 | 225 | subsubsection%unimportant \<open>Type @{typ real}\<close>
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36778diff
changeset | 226 | |
| 68617 | 227 | instantiation real :: euclidean_space | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36778diff
changeset | 228 | begin | 
| 44129 | 229 | |
| 63627 | 230 | definition | 
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44902diff
changeset | 231 |   [simp]: "Basis = {1::real}"
 | 
| 44129 | 232 | |
| 233 | instance | |
| 61169 | 234 | by standard auto | 
| 44129 | 235 | |
| 236 | end | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36778diff
changeset | 237 | |
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44902diff
changeset | 238 | lemma DIM_real[simp]: "DIM(real) = 1" | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44902diff
changeset | 239 | by simp | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44902diff
changeset | 240 | |
| 67962 | 241 | subsubsection%unimportant \<open>Type @{typ complex}\<close>
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36778diff
changeset | 242 | |
| 68617 | 243 | instantiation complex :: euclidean_space | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36778diff
changeset | 244 | begin | 
| 44129 | 245 | |
| 63589 | 246 | definition Basis_complex_def: "Basis = {1, \<i>}"
 | 
| 44166 
d12d89a66742
modify euclidean_space class to include basis set
 huffman parents: 
44133diff
changeset | 247 | |
| 
d12d89a66742
modify euclidean_space class to include basis set
 huffman parents: 
44133diff
changeset | 248 | instance | 
| 62390 | 249 | by standard (auto simp add: Basis_complex_def intro: complex_eqI split: if_split_asm) | 
| 44129 | 250 | |
| 251 | end | |
| 252 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36778diff
changeset | 253 | lemma DIM_complex[simp]: "DIM(complex) = 2" | 
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44902diff
changeset | 254 | unfolding Basis_complex_def by simp | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36778diff
changeset | 255 | |
| 68310 | 256 | lemma complex_Basis_1 [iff]: "(1::complex) \<in> Basis" | 
| 257 | by (simp add: Basis_complex_def) | |
| 258 | ||
| 259 | lemma complex_Basis_i [iff]: "\<i> \<in> Basis" | |
| 260 | by (simp add: Basis_complex_def) | |
| 261 | ||
| 67962 | 262 | subsubsection%unimportant \<open>Type @{typ "'a \<times> 'b"}\<close>
 | 
| 38656 | 263 | |
| 68617 | 264 | instantiation prod :: (euclidean_space, euclidean_space) euclidean_space | 
| 38656 | 265 | begin | 
| 266 | ||
| 44129 | 267 | definition | 
| 44166 
d12d89a66742
modify euclidean_space class to include basis set
 huffman parents: 
44133diff
changeset | 268 | "Basis = (\<lambda>u. (u, 0)) ` Basis \<union> (\<lambda>v. (0, v)) ` Basis" | 
| 
d12d89a66742
modify euclidean_space class to include basis set
 huffman parents: 
44133diff
changeset | 269 | |
| 64267 | 270 | lemma sum_Basis_prod_eq: | 
| 54781 | 271 |   fixes f::"('a*'b)\<Rightarrow>('a*'b)"
 | 
| 64267 | 272 | shows "sum f Basis = sum (\<lambda>i. f (i, 0)) Basis + sum (\<lambda>i. f (0, i)) Basis" | 
| 54781 | 273 | proof - | 
| 274 | have "inj_on (\<lambda>u. (u::'a, 0::'b)) Basis" "inj_on (\<lambda>u. (0::'a, u::'b)) Basis" | |
| 275 | by (auto intro!: inj_onI Pair_inject) | |
| 276 | thus ?thesis | |
| 277 | unfolding Basis_prod_def | |
| 64267 | 278 | by (subst sum.union_disjoint) (auto simp: Basis_prod_def sum.reindex) | 
| 54781 | 279 | qed | 
| 280 | ||
| 44129 | 281 | instance proof | 
| 44166 
d12d89a66742
modify euclidean_space class to include basis set
 huffman parents: 
44133diff
changeset | 282 |   show "(Basis :: ('a \<times> 'b) set) \<noteq> {}"
 | 
| 
d12d89a66742
modify euclidean_space class to include basis set
 huffman parents: 
44133diff
changeset | 283 | unfolding Basis_prod_def by simp | 
| 44129 | 284 | next | 
| 44166 
d12d89a66742
modify euclidean_space class to include basis set
 huffman parents: 
44133diff
changeset | 285 |   show "finite (Basis :: ('a \<times> 'b) set)"
 | 
| 
d12d89a66742
modify euclidean_space class to include basis set
 huffman parents: 
44133diff
changeset | 286 | unfolding Basis_prod_def by simp | 
| 44129 | 287 | next | 
| 44166 
d12d89a66742
modify euclidean_space class to include basis set
 huffman parents: 
44133diff
changeset | 288 | fix u v :: "'a \<times> 'b" | 
| 
d12d89a66742
modify euclidean_space class to include basis set
 huffman parents: 
44133diff
changeset | 289 | assume "u \<in> Basis" and "v \<in> Basis" | 
| 
d12d89a66742
modify euclidean_space class to include basis set
 huffman parents: 
44133diff
changeset | 290 | thus "inner u v = (if u = v then 1 else 0)" | 
| 
d12d89a66742
modify euclidean_space class to include basis set
 huffman parents: 
44133diff
changeset | 291 | unfolding Basis_prod_def inner_prod_def | 
| 62390 | 292 | by (auto simp add: inner_Basis split: if_split_asm) | 
| 44129 | 293 | next | 
| 294 | fix x :: "'a \<times> 'b" | |
| 44166 
d12d89a66742
modify euclidean_space class to include basis set
 huffman parents: 
44133diff
changeset | 295 | show "(\<forall>u\<in>Basis. inner x u = 0) \<longleftrightarrow> x = 0" | 
| 
d12d89a66742
modify euclidean_space class to include basis set
 huffman parents: 
44133diff
changeset | 296 | unfolding Basis_prod_def ball_Un ball_simps | 
| 
d12d89a66742
modify euclidean_space class to include basis set
 huffman parents: 
44133diff
changeset | 297 | by (simp add: inner_prod_def prod_eq_iff euclidean_all_zero_iff) | 
| 38656 | 298 | qed | 
| 44129 | 299 | |
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44902diff
changeset | 300 | lemma DIM_prod[simp]: "DIM('a \<times> 'b) = DIM('a) + DIM('b)"
 | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44902diff
changeset | 301 | unfolding Basis_prod_def | 
| 67399 | 302 | by (subst card_Un_disjoint) (auto intro!: card_image arg_cong2[where f="(+)"] inj_onI) | 
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44902diff
changeset | 303 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36778diff
changeset | 304 | end | 
| 38656 | 305 | |
| 68072 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 306 | |
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 307 | subsection \<open>Locale instances\<close> | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 308 | |
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 309 | lemma finite_dimensional_vector_space_euclidean: | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 310 | "finite_dimensional_vector_space ( *\<^sub>R) Basis" | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 311 | proof unfold_locales | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 312 | show "finite (Basis::'a set)" by (metis finite_Basis) | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 313 | show "real_vector.independent (Basis::'a set)" | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 314 | unfolding dependent_def dependent_raw_def[symmetric] | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 315 | apply (subst span_finite) | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 316 | apply simp | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 317 | apply clarify | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 318 | apply (drule_tac f="inner a" in arg_cong) | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 319 | apply (simp add: inner_Basis inner_sum_right eq_commute) | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 320 | done | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 321 | show "module.span ( *\<^sub>R) Basis = UNIV" | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 322 | unfolding span_finite [OF finite_Basis] span_raw_def[symmetric] | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 323 | by (auto intro!: euclidean_representation[symmetric]) | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 324 | qed | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 325 | |
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 326 | interpretation eucl?: finite_dimensional_vector_space "scaleR :: real => 'a => 'a::euclidean_space" "Basis" | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 327 | rewrites "module.dependent ( *\<^sub>R) = dependent" | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 328 | and "module.representation ( *\<^sub>R) = representation" | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 329 | and "module.subspace ( *\<^sub>R) = subspace" | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 330 | and "module.span ( *\<^sub>R) = span" | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 331 | and "vector_space.extend_basis ( *\<^sub>R) = extend_basis" | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 332 | and "vector_space.dim ( *\<^sub>R) = dim" | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 333 | and "Vector_Spaces.linear ( *\<^sub>R) ( *\<^sub>R) = linear" | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 334 | and "Vector_Spaces.linear ( * ) ( *\<^sub>R) = linear" | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 335 |     and "finite_dimensional_vector_space.dimension Basis = DIM('a)"
 | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 336 |     and "dimension = DIM('a)"
 | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 337 | by (auto simp add: dependent_raw_def representation_raw_def | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 338 | subspace_raw_def span_raw_def extend_basis_raw_def dim_raw_def linear_def | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 339 | real_scaleR_def[abs_def] | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 340 | finite_dimensional_vector_space.dimension_def | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 341 | intro!: finite_dimensional_vector_space.dimension_def | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 342 | finite_dimensional_vector_space_euclidean) | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 343 | |
| 68620 
707437105595
relaxed assumptions for dim_image_eq and dim_image_le
 immler parents: 
68617diff
changeset | 344 | interpretation eucl?: finite_dimensional_vector_space_pair_1 | 
| 
707437105595
relaxed assumptions for dim_image_eq and dim_image_le
 immler parents: 
68617diff
changeset | 345 | "scaleR::real\<Rightarrow>'a::euclidean_space\<Rightarrow>'a" Basis | 
| 
707437105595
relaxed assumptions for dim_image_eq and dim_image_le
 immler parents: 
68617diff
changeset | 346 | "scaleR::real\<Rightarrow>'b::real_vector \<Rightarrow> 'b" | 
| 
707437105595
relaxed assumptions for dim_image_eq and dim_image_le
 immler parents: 
68617diff
changeset | 347 | by unfold_locales | 
| 
707437105595
relaxed assumptions for dim_image_eq and dim_image_le
 immler parents: 
68617diff
changeset | 348 | |
| 68072 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 349 | interpretation eucl?: finite_dimensional_vector_space_prod scaleR scaleR Basis Basis | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 350 | rewrites "Basis_pair = Basis" | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 351 |     and "module_prod.scale ( *\<^sub>R) ( *\<^sub>R) = (scaleR::_\<Rightarrow>_\<Rightarrow>('a \<times> 'b))"
 | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 352 | proof - | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 353 | show "finite_dimensional_vector_space_prod ( *\<^sub>R) ( *\<^sub>R) Basis Basis" | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 354 | by unfold_locales | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 355 | interpret finite_dimensional_vector_space_prod "( *\<^sub>R)" "( *\<^sub>R)" "Basis::'a set" "Basis::'b set" | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 356 | by fact | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 357 | show "Basis_pair = Basis" | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 358 | unfolding Basis_pair_def Basis_prod_def by auto | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 359 | show "module_prod.scale ( *\<^sub>R) ( *\<^sub>R) = scaleR" | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 360 | by (fact module_prod_scale_eq_scaleR) | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 361 | qed | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67962diff
changeset | 362 | |
| 38656 | 363 | end |