| author | haftmann | 
| Fri, 05 Feb 2010 14:33:50 +0100 | |
| changeset 35028 | 108662d50512 | 
| parent 30102 | 799b687e4aac | 
| child 37765 | 26bdfb7b680b | 
| permissions | -rw-r--r-- | 
| 30096 | 1  | 
(* Title: Archimedean_Field.thy  | 
2  | 
Author: Brian Huffman  | 
|
3  | 
*)  | 
|
4  | 
||
5  | 
header {* Archimedean Fields, Floor and Ceiling Functions *}
 | 
|
6  | 
||
7  | 
theory Archimedean_Field  | 
|
8  | 
imports Main  | 
|
9  | 
begin  | 
|
10  | 
||
11  | 
subsection {* Class of Archimedean fields *}
 | 
|
12  | 
||
13  | 
text {* Archimedean fields have no infinite elements. *}
 | 
|
14  | 
||
| 
35028
 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 
haftmann 
parents: 
30102 
diff
changeset
 | 
15  | 
class archimedean_field = linordered_field + number_ring +  | 
| 30096 | 16  | 
assumes ex_le_of_int: "\<exists>z. x \<le> of_int z"  | 
17  | 
||
18  | 
lemma ex_less_of_int:  | 
|
19  | 
fixes x :: "'a::archimedean_field" shows "\<exists>z. x < of_int z"  | 
|
20  | 
proof -  | 
|
21  | 
from ex_le_of_int obtain z where "x \<le> of_int z" ..  | 
|
22  | 
then have "x < of_int (z + 1)" by simp  | 
|
23  | 
then show ?thesis ..  | 
|
24  | 
qed  | 
|
25  | 
||
26  | 
lemma ex_of_int_less:  | 
|
27  | 
fixes x :: "'a::archimedean_field" shows "\<exists>z. of_int z < x"  | 
|
28  | 
proof -  | 
|
29  | 
from ex_less_of_int obtain z where "- x < of_int z" ..  | 
|
30  | 
then have "of_int (- z) < x" by simp  | 
|
31  | 
then show ?thesis ..  | 
|
32  | 
qed  | 
|
33  | 
||
34  | 
lemma ex_less_of_nat:  | 
|
35  | 
fixes x :: "'a::archimedean_field" shows "\<exists>n. x < of_nat n"  | 
|
36  | 
proof -  | 
|
37  | 
obtain z where "x < of_int z" using ex_less_of_int ..  | 
|
38  | 
also have "\<dots> \<le> of_int (int (nat z))" by simp  | 
|
39  | 
also have "\<dots> = of_nat (nat z)" by (simp only: of_int_of_nat_eq)  | 
|
40  | 
finally show ?thesis ..  | 
|
41  | 
qed  | 
|
42  | 
||
43  | 
lemma ex_le_of_nat:  | 
|
44  | 
fixes x :: "'a::archimedean_field" shows "\<exists>n. x \<le> of_nat n"  | 
|
45  | 
proof -  | 
|
46  | 
obtain n where "x < of_nat n" using ex_less_of_nat ..  | 
|
47  | 
then have "x \<le> of_nat n" by simp  | 
|
48  | 
then show ?thesis ..  | 
|
49  | 
qed  | 
|
50  | 
||
51  | 
text {* Archimedean fields have no infinitesimal elements. *}
 | 
|
52  | 
||
53  | 
lemma ex_inverse_of_nat_Suc_less:  | 
|
54  | 
fixes x :: "'a::archimedean_field"  | 
|
55  | 
assumes "0 < x" shows "\<exists>n. inverse (of_nat (Suc n)) < x"  | 
|
56  | 
proof -  | 
|
57  | 
from `0 < x` have "0 < inverse x"  | 
|
58  | 
by (rule positive_imp_inverse_positive)  | 
|
59  | 
obtain n where "inverse x < of_nat n"  | 
|
60  | 
using ex_less_of_nat ..  | 
|
61  | 
then obtain m where "inverse x < of_nat (Suc m)"  | 
|
62  | 
using `0 < inverse x` by (cases n) (simp_all del: of_nat_Suc)  | 
|
63  | 
then have "inverse (of_nat (Suc m)) < inverse (inverse x)"  | 
|
64  | 
using `0 < inverse x` by (rule less_imp_inverse_less)  | 
|
65  | 
then have "inverse (of_nat (Suc m)) < x"  | 
|
66  | 
using `0 < x` by (simp add: nonzero_inverse_inverse_eq)  | 
|
67  | 
then show ?thesis ..  | 
|
68  | 
qed  | 
|
69  | 
||
70  | 
lemma ex_inverse_of_nat_less:  | 
|
71  | 
fixes x :: "'a::archimedean_field"  | 
|
72  | 
assumes "0 < x" shows "\<exists>n>0. inverse (of_nat n) < x"  | 
|
73  | 
using ex_inverse_of_nat_Suc_less [OF `0 < x`] by auto  | 
|
74  | 
||
75  | 
lemma ex_less_of_nat_mult:  | 
|
76  | 
fixes x :: "'a::archimedean_field"  | 
|
77  | 
assumes "0 < x" shows "\<exists>n. y < of_nat n * x"  | 
|
78  | 
proof -  | 
|
79  | 
obtain n where "y / x < of_nat n" using ex_less_of_nat ..  | 
|
80  | 
with `0 < x` have "y < of_nat n * x" by (simp add: pos_divide_less_eq)  | 
|
81  | 
then show ?thesis ..  | 
|
82  | 
qed  | 
|
83  | 
||
84  | 
||
85  | 
subsection {* Existence and uniqueness of floor function *}
 | 
|
86  | 
||
87  | 
lemma exists_least_lemma:  | 
|
88  | 
assumes "\<not> P 0" and "\<exists>n. P n"  | 
|
89  | 
shows "\<exists>n. \<not> P n \<and> P (Suc n)"  | 
|
90  | 
proof -  | 
|
91  | 
from `\<exists>n. P n` have "P (Least P)" by (rule LeastI_ex)  | 
|
92  | 
with `\<not> P 0` obtain n where "Least P = Suc n"  | 
|
93  | 
by (cases "Least P") auto  | 
|
94  | 
then have "n < Least P" by simp  | 
|
95  | 
then have "\<not> P n" by (rule not_less_Least)  | 
|
96  | 
then have "\<not> P n \<and> P (Suc n)"  | 
|
97  | 
using `P (Least P)` `Least P = Suc n` by simp  | 
|
98  | 
then show ?thesis ..  | 
|
99  | 
qed  | 
|
100  | 
||
101  | 
lemma floor_exists:  | 
|
102  | 
fixes x :: "'a::archimedean_field"  | 
|
103  | 
shows "\<exists>z. of_int z \<le> x \<and> x < of_int (z + 1)"  | 
|
104  | 
proof (cases)  | 
|
105  | 
assume "0 \<le> x"  | 
|
106  | 
then have "\<not> x < of_nat 0" by simp  | 
|
107  | 
then have "\<exists>n. \<not> x < of_nat n \<and> x < of_nat (Suc n)"  | 
|
108  | 
using ex_less_of_nat by (rule exists_least_lemma)  | 
|
109  | 
then obtain n where "\<not> x < of_nat n \<and> x < of_nat (Suc n)" ..  | 
|
110  | 
then have "of_int (int n) \<le> x \<and> x < of_int (int n + 1)" by simp  | 
|
111  | 
then show ?thesis ..  | 
|
112  | 
next  | 
|
113  | 
assume "\<not> 0 \<le> x"  | 
|
114  | 
then have "\<not> - x \<le> of_nat 0" by simp  | 
|
115  | 
then have "\<exists>n. \<not> - x \<le> of_nat n \<and> - x \<le> of_nat (Suc n)"  | 
|
116  | 
using ex_le_of_nat by (rule exists_least_lemma)  | 
|
117  | 
then obtain n where "\<not> - x \<le> of_nat n \<and> - x \<le> of_nat (Suc n)" ..  | 
|
118  | 
then have "of_int (- int n - 1) \<le> x \<and> x < of_int (- int n - 1 + 1)" by simp  | 
|
119  | 
then show ?thesis ..  | 
|
120  | 
qed  | 
|
121  | 
||
122  | 
lemma floor_exists1:  | 
|
123  | 
fixes x :: "'a::archimedean_field"  | 
|
124  | 
shows "\<exists>!z. of_int z \<le> x \<and> x < of_int (z + 1)"  | 
|
125  | 
proof (rule ex_ex1I)  | 
|
126  | 
show "\<exists>z. of_int z \<le> x \<and> x < of_int (z + 1)"  | 
|
127  | 
by (rule floor_exists)  | 
|
128  | 
next  | 
|
129  | 
fix y z assume  | 
|
130  | 
"of_int y \<le> x \<and> x < of_int (y + 1)"  | 
|
131  | 
"of_int z \<le> x \<and> x < of_int (z + 1)"  | 
|
132  | 
then have  | 
|
133  | 
"of_int y \<le> x" "x < of_int (y + 1)"  | 
|
134  | 
"of_int z \<le> x" "x < of_int (z + 1)"  | 
|
135  | 
by simp_all  | 
|
136  | 
from le_less_trans [OF `of_int y \<le> x` `x < of_int (z + 1)`]  | 
|
137  | 
le_less_trans [OF `of_int z \<le> x` `x < of_int (y + 1)`]  | 
|
138  | 
show "y = z" by (simp del: of_int_add)  | 
|
139  | 
qed  | 
|
140  | 
||
141  | 
||
142  | 
subsection {* Floor function *}
 | 
|
143  | 
||
144  | 
definition  | 
|
145  | 
floor :: "'a::archimedean_field \<Rightarrow> int" where  | 
|
146  | 
[code del]: "floor x = (THE z. of_int z \<le> x \<and> x < of_int (z + 1))"  | 
|
147  | 
||
148  | 
notation (xsymbols)  | 
|
149  | 
  floor  ("\<lfloor>_\<rfloor>")
 | 
|
150  | 
||
151  | 
notation (HTML output)  | 
|
152  | 
  floor  ("\<lfloor>_\<rfloor>")
 | 
|
153  | 
||
154  | 
lemma floor_correct: "of_int (floor x) \<le> x \<and> x < of_int (floor x + 1)"  | 
|
155  | 
unfolding floor_def using floor_exists1 by (rule theI')  | 
|
156  | 
||
157  | 
lemma floor_unique: "\<lbrakk>of_int z \<le> x; x < of_int z + 1\<rbrakk> \<Longrightarrow> floor x = z"  | 
|
158  | 
using floor_correct [of x] floor_exists1 [of x] by auto  | 
|
159  | 
||
160  | 
lemma of_int_floor_le: "of_int (floor x) \<le> x"  | 
|
161  | 
using floor_correct ..  | 
|
162  | 
||
163  | 
lemma le_floor_iff: "z \<le> floor x \<longleftrightarrow> of_int z \<le> x"  | 
|
164  | 
proof  | 
|
165  | 
assume "z \<le> floor x"  | 
|
166  | 
then have "(of_int z :: 'a) \<le> of_int (floor x)" by simp  | 
|
167  | 
also have "of_int (floor x) \<le> x" by (rule of_int_floor_le)  | 
|
168  | 
finally show "of_int z \<le> x" .  | 
|
169  | 
next  | 
|
170  | 
assume "of_int z \<le> x"  | 
|
171  | 
also have "x < of_int (floor x + 1)" using floor_correct ..  | 
|
172  | 
finally show "z \<le> floor x" by (simp del: of_int_add)  | 
|
173  | 
qed  | 
|
174  | 
||
175  | 
lemma floor_less_iff: "floor x < z \<longleftrightarrow> x < of_int z"  | 
|
176  | 
by (simp add: not_le [symmetric] le_floor_iff)  | 
|
177  | 
||
178  | 
lemma less_floor_iff: "z < floor x \<longleftrightarrow> of_int z + 1 \<le> x"  | 
|
179  | 
using le_floor_iff [of "z + 1" x] by auto  | 
|
180  | 
||
181  | 
lemma floor_le_iff: "floor x \<le> z \<longleftrightarrow> x < of_int z + 1"  | 
|
182  | 
by (simp add: not_less [symmetric] less_floor_iff)  | 
|
183  | 
||
184  | 
lemma floor_mono: assumes "x \<le> y" shows "floor x \<le> floor y"  | 
|
185  | 
proof -  | 
|
186  | 
have "of_int (floor x) \<le> x" by (rule of_int_floor_le)  | 
|
187  | 
also note `x \<le> y`  | 
|
188  | 
finally show ?thesis by (simp add: le_floor_iff)  | 
|
189  | 
qed  | 
|
190  | 
||
191  | 
lemma floor_less_cancel: "floor x < floor y \<Longrightarrow> x < y"  | 
|
192  | 
by (auto simp add: not_le [symmetric] floor_mono)  | 
|
193  | 
||
194  | 
lemma floor_of_int [simp]: "floor (of_int z) = z"  | 
|
195  | 
by (rule floor_unique) simp_all  | 
|
196  | 
||
197  | 
lemma floor_of_nat [simp]: "floor (of_nat n) = int n"  | 
|
198  | 
using floor_of_int [of "of_nat n"] by simp  | 
|
199  | 
||
200  | 
text {* Floor with numerals *}
 | 
|
201  | 
||
202  | 
lemma floor_zero [simp]: "floor 0 = 0"  | 
|
203  | 
using floor_of_int [of 0] by simp  | 
|
204  | 
||
205  | 
lemma floor_one [simp]: "floor 1 = 1"  | 
|
206  | 
using floor_of_int [of 1] by simp  | 
|
207  | 
||
208  | 
lemma floor_number_of [simp]: "floor (number_of v) = number_of v"  | 
|
209  | 
using floor_of_int [of "number_of v"] by simp  | 
|
210  | 
||
211  | 
lemma zero_le_floor [simp]: "0 \<le> floor x \<longleftrightarrow> 0 \<le> x"  | 
|
212  | 
by (simp add: le_floor_iff)  | 
|
213  | 
||
214  | 
lemma one_le_floor [simp]: "1 \<le> floor x \<longleftrightarrow> 1 \<le> x"  | 
|
215  | 
by (simp add: le_floor_iff)  | 
|
216  | 
||
217  | 
lemma number_of_le_floor [simp]: "number_of v \<le> floor x \<longleftrightarrow> number_of v \<le> x"  | 
|
218  | 
by (simp add: le_floor_iff)  | 
|
219  | 
||
220  | 
lemma zero_less_floor [simp]: "0 < floor x \<longleftrightarrow> 1 \<le> x"  | 
|
221  | 
by (simp add: less_floor_iff)  | 
|
222  | 
||
223  | 
lemma one_less_floor [simp]: "1 < floor x \<longleftrightarrow> 2 \<le> x"  | 
|
224  | 
by (simp add: less_floor_iff)  | 
|
225  | 
||
226  | 
lemma number_of_less_floor [simp]:  | 
|
227  | 
"number_of v < floor x \<longleftrightarrow> number_of v + 1 \<le> x"  | 
|
228  | 
by (simp add: less_floor_iff)  | 
|
229  | 
||
230  | 
lemma floor_le_zero [simp]: "floor x \<le> 0 \<longleftrightarrow> x < 1"  | 
|
231  | 
by (simp add: floor_le_iff)  | 
|
232  | 
||
233  | 
lemma floor_le_one [simp]: "floor x \<le> 1 \<longleftrightarrow> x < 2"  | 
|
234  | 
by (simp add: floor_le_iff)  | 
|
235  | 
||
236  | 
lemma floor_le_number_of [simp]:  | 
|
237  | 
"floor x \<le> number_of v \<longleftrightarrow> x < number_of v + 1"  | 
|
238  | 
by (simp add: floor_le_iff)  | 
|
239  | 
||
240  | 
lemma floor_less_zero [simp]: "floor x < 0 \<longleftrightarrow> x < 0"  | 
|
241  | 
by (simp add: floor_less_iff)  | 
|
242  | 
||
243  | 
lemma floor_less_one [simp]: "floor x < 1 \<longleftrightarrow> x < 1"  | 
|
244  | 
by (simp add: floor_less_iff)  | 
|
245  | 
||
246  | 
lemma floor_less_number_of [simp]:  | 
|
247  | 
"floor x < number_of v \<longleftrightarrow> x < number_of v"  | 
|
248  | 
by (simp add: floor_less_iff)  | 
|
249  | 
||
250  | 
text {* Addition and subtraction of integers *}
 | 
|
251  | 
||
252  | 
lemma floor_add_of_int [simp]: "floor (x + of_int z) = floor x + z"  | 
|
253  | 
using floor_correct [of x] by (simp add: floor_unique)  | 
|
254  | 
||
255  | 
lemma floor_add_number_of [simp]:  | 
|
256  | 
"floor (x + number_of v) = floor x + number_of v"  | 
|
257  | 
using floor_add_of_int [of x "number_of v"] by simp  | 
|
258  | 
||
259  | 
lemma floor_add_one [simp]: "floor (x + 1) = floor x + 1"  | 
|
260  | 
using floor_add_of_int [of x 1] by simp  | 
|
261  | 
||
262  | 
lemma floor_diff_of_int [simp]: "floor (x - of_int z) = floor x - z"  | 
|
263  | 
using floor_add_of_int [of x "- z"] by (simp add: algebra_simps)  | 
|
264  | 
||
265  | 
lemma floor_diff_number_of [simp]:  | 
|
266  | 
"floor (x - number_of v) = floor x - number_of v"  | 
|
267  | 
using floor_diff_of_int [of x "number_of v"] by simp  | 
|
268  | 
||
269  | 
lemma floor_diff_one [simp]: "floor (x - 1) = floor x - 1"  | 
|
270  | 
using floor_diff_of_int [of x 1] by simp  | 
|
271  | 
||
272  | 
||
273  | 
subsection {* Ceiling function *}
 | 
|
274  | 
||
275  | 
definition  | 
|
276  | 
ceiling :: "'a::archimedean_field \<Rightarrow> int" where  | 
|
277  | 
[code del]: "ceiling x = - floor (- x)"  | 
|
278  | 
||
279  | 
notation (xsymbols)  | 
|
280  | 
  ceiling  ("\<lceil>_\<rceil>")
 | 
|
281  | 
||
282  | 
notation (HTML output)  | 
|
283  | 
  ceiling  ("\<lceil>_\<rceil>")
 | 
|
284  | 
||
285  | 
lemma ceiling_correct: "of_int (ceiling x) - 1 < x \<and> x \<le> of_int (ceiling x)"  | 
|
286  | 
unfolding ceiling_def using floor_correct [of "- x"] by simp  | 
|
287  | 
||
288  | 
lemma ceiling_unique: "\<lbrakk>of_int z - 1 < x; x \<le> of_int z\<rbrakk> \<Longrightarrow> ceiling x = z"  | 
|
289  | 
unfolding ceiling_def using floor_unique [of "- z" "- x"] by simp  | 
|
290  | 
||
291  | 
lemma le_of_int_ceiling: "x \<le> of_int (ceiling x)"  | 
|
292  | 
using ceiling_correct ..  | 
|
293  | 
||
294  | 
lemma ceiling_le_iff: "ceiling x \<le> z \<longleftrightarrow> x \<le> of_int z"  | 
|
295  | 
unfolding ceiling_def using le_floor_iff [of "- z" "- x"] by auto  | 
|
296  | 
||
297  | 
lemma less_ceiling_iff: "z < ceiling x \<longleftrightarrow> of_int z < x"  | 
|
298  | 
by (simp add: not_le [symmetric] ceiling_le_iff)  | 
|
299  | 
||
300  | 
lemma ceiling_less_iff: "ceiling x < z \<longleftrightarrow> x \<le> of_int z - 1"  | 
|
301  | 
using ceiling_le_iff [of x "z - 1"] by simp  | 
|
302  | 
||
303  | 
lemma le_ceiling_iff: "z \<le> ceiling x \<longleftrightarrow> of_int z - 1 < x"  | 
|
304  | 
by (simp add: not_less [symmetric] ceiling_less_iff)  | 
|
305  | 
||
306  | 
lemma ceiling_mono: "x \<ge> y \<Longrightarrow> ceiling x \<ge> ceiling y"  | 
|
307  | 
unfolding ceiling_def by (simp add: floor_mono)  | 
|
308  | 
||
309  | 
lemma ceiling_less_cancel: "ceiling x < ceiling y \<Longrightarrow> x < y"  | 
|
310  | 
by (auto simp add: not_le [symmetric] ceiling_mono)  | 
|
311  | 
||
312  | 
lemma ceiling_of_int [simp]: "ceiling (of_int z) = z"  | 
|
313  | 
by (rule ceiling_unique) simp_all  | 
|
314  | 
||
315  | 
lemma ceiling_of_nat [simp]: "ceiling (of_nat n) = int n"  | 
|
316  | 
using ceiling_of_int [of "of_nat n"] by simp  | 
|
317  | 
||
318  | 
text {* Ceiling with numerals *}
 | 
|
319  | 
||
320  | 
lemma ceiling_zero [simp]: "ceiling 0 = 0"  | 
|
321  | 
using ceiling_of_int [of 0] by simp  | 
|
322  | 
||
323  | 
lemma ceiling_one [simp]: "ceiling 1 = 1"  | 
|
324  | 
using ceiling_of_int [of 1] by simp  | 
|
325  | 
||
326  | 
lemma ceiling_number_of [simp]: "ceiling (number_of v) = number_of v"  | 
|
327  | 
using ceiling_of_int [of "number_of v"] by simp  | 
|
328  | 
||
329  | 
lemma ceiling_le_zero [simp]: "ceiling x \<le> 0 \<longleftrightarrow> x \<le> 0"  | 
|
330  | 
by (simp add: ceiling_le_iff)  | 
|
331  | 
||
332  | 
lemma ceiling_le_one [simp]: "ceiling x \<le> 1 \<longleftrightarrow> x \<le> 1"  | 
|
333  | 
by (simp add: ceiling_le_iff)  | 
|
334  | 
||
335  | 
lemma ceiling_le_number_of [simp]:  | 
|
336  | 
"ceiling x \<le> number_of v \<longleftrightarrow> x \<le> number_of v"  | 
|
337  | 
by (simp add: ceiling_le_iff)  | 
|
338  | 
||
339  | 
lemma ceiling_less_zero [simp]: "ceiling x < 0 \<longleftrightarrow> x \<le> -1"  | 
|
340  | 
by (simp add: ceiling_less_iff)  | 
|
341  | 
||
342  | 
lemma ceiling_less_one [simp]: "ceiling x < 1 \<longleftrightarrow> x \<le> 0"  | 
|
343  | 
by (simp add: ceiling_less_iff)  | 
|
344  | 
||
345  | 
lemma ceiling_less_number_of [simp]:  | 
|
346  | 
"ceiling x < number_of v \<longleftrightarrow> x \<le> number_of v - 1"  | 
|
347  | 
by (simp add: ceiling_less_iff)  | 
|
348  | 
||
349  | 
lemma zero_le_ceiling [simp]: "0 \<le> ceiling x \<longleftrightarrow> -1 < x"  | 
|
350  | 
by (simp add: le_ceiling_iff)  | 
|
351  | 
||
352  | 
lemma one_le_ceiling [simp]: "1 \<le> ceiling x \<longleftrightarrow> 0 < x"  | 
|
353  | 
by (simp add: le_ceiling_iff)  | 
|
354  | 
||
355  | 
lemma number_of_le_ceiling [simp]:  | 
|
356  | 
"number_of v \<le> ceiling x\<longleftrightarrow> number_of v - 1 < x"  | 
|
357  | 
by (simp add: le_ceiling_iff)  | 
|
358  | 
||
359  | 
lemma zero_less_ceiling [simp]: "0 < ceiling x \<longleftrightarrow> 0 < x"  | 
|
360  | 
by (simp add: less_ceiling_iff)  | 
|
361  | 
||
362  | 
lemma one_less_ceiling [simp]: "1 < ceiling x \<longleftrightarrow> 1 < x"  | 
|
363  | 
by (simp add: less_ceiling_iff)  | 
|
364  | 
||
365  | 
lemma number_of_less_ceiling [simp]:  | 
|
366  | 
"number_of v < ceiling x \<longleftrightarrow> number_of v < x"  | 
|
367  | 
by (simp add: less_ceiling_iff)  | 
|
368  | 
||
369  | 
text {* Addition and subtraction of integers *}
 | 
|
370  | 
||
371  | 
lemma ceiling_add_of_int [simp]: "ceiling (x + of_int z) = ceiling x + z"  | 
|
372  | 
using ceiling_correct [of x] by (simp add: ceiling_unique)  | 
|
373  | 
||
374  | 
lemma ceiling_add_number_of [simp]:  | 
|
375  | 
"ceiling (x + number_of v) = ceiling x + number_of v"  | 
|
376  | 
using ceiling_add_of_int [of x "number_of v"] by simp  | 
|
377  | 
||
378  | 
lemma ceiling_add_one [simp]: "ceiling (x + 1) = ceiling x + 1"  | 
|
379  | 
using ceiling_add_of_int [of x 1] by simp  | 
|
380  | 
||
381  | 
lemma ceiling_diff_of_int [simp]: "ceiling (x - of_int z) = ceiling x - z"  | 
|
382  | 
using ceiling_add_of_int [of x "- z"] by (simp add: algebra_simps)  | 
|
383  | 
||
384  | 
lemma ceiling_diff_number_of [simp]:  | 
|
385  | 
"ceiling (x - number_of v) = ceiling x - number_of v"  | 
|
386  | 
using ceiling_diff_of_int [of x "number_of v"] by simp  | 
|
387  | 
||
388  | 
lemma ceiling_diff_one [simp]: "ceiling (x - 1) = ceiling x - 1"  | 
|
389  | 
using ceiling_diff_of_int [of x 1] by simp  | 
|
390  | 
||
391  | 
||
392  | 
subsection {* Negation *}
 | 
|
393  | 
||
| 30102 | 394  | 
lemma floor_minus: "floor (- x) = - ceiling x"  | 
| 30096 | 395  | 
unfolding ceiling_def by simp  | 
396  | 
||
| 30102 | 397  | 
lemma ceiling_minus: "ceiling (- x) = - floor x"  | 
| 30096 | 398  | 
unfolding ceiling_def by simp  | 
399  | 
||
400  | 
end  |