| author | huffman | 
| Mon, 13 Apr 2009 09:29:55 -0700 | |
| changeset 30913 | 10b26965a08f | 
| parent 27361 | 24ec32bee347 | 
| child 35174 | e15040ae75d7 | 
| permissions | -rw-r--r-- | 
| 3072 
a31419014be5
Old ABP files now running under the IOA meta theory based on HOLCF;
 mueller parents: diff
changeset | 1 | (* Title: HOLCF/IOA/ABP/Correctness.thy | 
| 
a31419014be5
Old ABP files now running under the IOA meta theory based on HOLCF;
 mueller parents: diff
changeset | 2 | ID: $Id$ | 
| 12218 | 3 | Author: Olaf Müller | 
| 3072 
a31419014be5
Old ABP files now running under the IOA meta theory based on HOLCF;
 mueller parents: diff
changeset | 4 | *) | 
| 
a31419014be5
Old ABP files now running under the IOA meta theory based on HOLCF;
 mueller parents: diff
changeset | 5 | |
| 17244 | 6 | header {* The main correctness proof: System_fin implements System *}
 | 
| 7 | ||
| 8 | theory Correctness | |
| 9 | imports IOA Env Impl Impl_finite | |
| 10 | begin | |
| 3072 
a31419014be5
Old ABP files now running under the IOA meta theory based on HOLCF;
 mueller parents: diff
changeset | 11 | |
| 27361 | 12 | primrec reduce :: "'a list => 'a list" | 
| 13 | where | |
| 17244 | 14 | reduce_Nil: "reduce [] = []" | 
| 27361 | 15 | | reduce_Cons: "reduce(x#xs) = | 
| 17244 | 16 | (case xs of | 
| 17 | [] => [x] | |
| 18 | | y#ys => (if (x=y) | |
| 19 | then reduce xs | |
| 3072 
a31419014be5
Old ABP files now running under the IOA meta theory based on HOLCF;
 mueller parents: diff
changeset | 20 | else (x#(reduce xs))))" | 
| 
a31419014be5
Old ABP files now running under the IOA meta theory based on HOLCF;
 mueller parents: diff
changeset | 21 | |
| 25131 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
20918diff
changeset | 22 | definition | 
| 19689 | 23 | abs where | 
| 25131 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
20918diff
changeset | 24 | "abs = | 
| 19689 | 25 | (%p.(fst(p),(fst(snd(p)),(fst(snd(snd(p))), | 
| 26 | (reduce(fst(snd(snd(snd(p))))),reduce(snd(snd(snd(snd(p))))))))))" | |
| 17244 | 27 | |
| 25131 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
20918diff
changeset | 28 | definition | 
| 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
20918diff
changeset | 29 |   system_ioa :: "('m action, bool * 'm impl_state)ioa" where
 | 
| 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
20918diff
changeset | 30 | "system_ioa = (env_ioa || impl_ioa)" | 
| 3072 
a31419014be5
Old ABP files now running under the IOA meta theory based on HOLCF;
 mueller parents: diff
changeset | 31 | |
| 25131 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
20918diff
changeset | 32 | definition | 
| 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
20918diff
changeset | 33 |   system_fin_ioa :: "('m action, bool * 'm impl_state)ioa" where
 | 
| 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
20918diff
changeset | 34 | "system_fin_ioa = (env_ioa || impl_fin_ioa)" | 
| 17244 | 35 | |
| 3072 
a31419014be5
Old ABP files now running under the IOA meta theory based on HOLCF;
 mueller parents: diff
changeset | 36 | |
| 25131 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
20918diff
changeset | 37 | axiomatization where | 
| 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
20918diff
changeset | 38 | sys_IOA: "IOA system_ioa" and | 
| 17244 | 39 | sys_fin_IOA: "IOA system_fin_ioa" | 
| 40 | ||
| 19738 | 41 | |
| 42 | ||
| 43 | declare split_paired_All [simp del] Collect_empty_eq [simp del] | |
| 44 | ||
| 45 | lemmas [simp] = | |
| 46 | srch_asig_def rsch_asig_def rsch_ioa_def srch_ioa_def ch_ioa_def | |
| 47 | ch_asig_def srch_actions_def rsch_actions_def rename_def rename_set_def asig_of_def | |
| 48 | actions_def exis_elim srch_trans_def rsch_trans_def ch_trans_def | |
| 49 | trans_of_def asig_projections set_lemmas | |
| 50 | ||
| 51 | lemmas abschannel_fin [simp] = | |
| 52 | srch_fin_asig_def rsch_fin_asig_def | |
| 53 | rsch_fin_ioa_def srch_fin_ioa_def | |
| 54 | ch_fin_ioa_def ch_fin_trans_def ch_fin_asig_def | |
| 55 | ||
| 56 | lemmas impl_ioas = sender_ioa_def receiver_ioa_def | |
| 57 | and impl_trans = sender_trans_def receiver_trans_def | |
| 58 | and impl_asigs = sender_asig_def receiver_asig_def | |
| 59 | ||
| 60 | declare let_weak_cong [cong] | |
| 61 | declare Let_def [simp] ioa_triple_proj [simp] starts_of_par [simp] | |
| 62 | ||
| 63 | lemmas env_ioas = env_ioa_def env_asig_def env_trans_def | |
| 20918 | 64 | lemmas hom_ioas [simp] = env_ioas impl_ioas impl_trans impl_asigs asig_projections set_lemmas | 
| 19738 | 65 | |
| 66 | ||
| 67 | subsection {* lemmas about reduce *}
 | |
| 68 | ||
| 69 | lemma l_iff_red_nil: "(reduce l = []) = (l = [])" | |
| 70 | by (induct l) (auto split: list.split) | |
| 71 | ||
| 72 | lemma hd_is_reduce_hd: "s ~= [] --> hd s = hd (reduce s)" | |
| 73 | by (induct s) (auto split: list.split) | |
| 74 | ||
| 75 | text {* to be used in the following Lemma *}
 | |
| 76 | lemma rev_red_not_nil [rule_format]: | |
| 77 | "l ~= [] --> reverse (reduce l) ~= []" | |
| 78 | by (induct l) (auto split: list.split) | |
| 79 | ||
| 80 | text {* shows applicability of the induction hypothesis of the following Lemma 1 *}
 | |
| 81 | lemma last_ind_on_first: | |
| 82 | "l ~= [] ==> hd (reverse (reduce (a # l))) = hd (reverse (reduce l))" | |
| 83 | apply simp | |
| 26342 | 84 |   apply (tactic {* auto_tac (@{claset},
 | 
| 26649 | 85 |     HOL_ss addsplits [@{thm list.split}]
 | 
| 86 |     addsimps (@{thms reverse.simps} @ [@{thm hd_append}, @{thm rev_red_not_nil}])) *})
 | |
| 19738 | 87 | done | 
| 88 | ||
| 89 | text {* Main Lemma 1 for @{text "S_pkt"} in showing that reduce is refinement. *}
 | |
| 90 | lemma reduce_hd: | |
| 91 | "if x=hd(reverse(reduce(l))) & reduce(l)~=[] then | |
| 92 | reduce(l@[x])=reduce(l) else | |
| 93 | reduce(l@[x])=reduce(l)@[x]" | |
| 94 | apply (simplesubst split_if) | |
| 95 | apply (rule conjI) | |
| 96 | txt {* @{text "-->"} *}
 | |
| 97 | apply (induct_tac "l") | |
| 98 | apply (simp (no_asm)) | |
| 99 | apply (case_tac "list=[]") | |
| 100 | apply (simp add: reverse.simps) | |
| 101 | apply (rule impI) | |
| 102 | apply (simp (no_asm)) | |
| 103 | apply (cut_tac l = "list" in cons_not_nil) | |
| 104 | apply (simp del: reduce_Cons) | |
| 105 | apply (erule exE)+ | |
| 106 | apply hypsubst | |
| 107 | apply (simp del: reduce_Cons add: last_ind_on_first l_iff_red_nil) | |
| 108 | txt {* @{text "<--"} *}
 | |
| 109 | apply (simp (no_asm) add: and_de_morgan_and_absorbe l_iff_red_nil) | |
| 110 | apply (induct_tac "l") | |
| 111 | apply (simp (no_asm)) | |
| 112 | apply (case_tac "list=[]") | |
| 113 | apply (cut_tac [2] l = "list" in cons_not_nil) | |
| 114 | apply simp | |
| 115 | apply (auto simp del: reduce_Cons simp add: last_ind_on_first l_iff_red_nil split: split_if) | |
| 116 | apply simp | |
| 117 | done | |
| 118 | ||
| 119 | ||
| 120 | text {* Main Lemma 2 for R_pkt in showing that reduce is refinement. *}
 | |
| 121 | lemma reduce_tl: "s~=[] ==> | |
| 122 | if hd(s)=hd(tl(s)) & tl(s)~=[] then | |
| 123 | reduce(tl(s))=reduce(s) else | |
| 124 | reduce(tl(s))=tl(reduce(s))" | |
| 125 | apply (cut_tac l = "s" in cons_not_nil) | |
| 126 | apply simp | |
| 127 | apply (erule exE)+ | |
| 128 | apply (auto split: list.split) | |
| 129 | done | |
| 130 | ||
| 131 | ||
| 132 | subsection {* Channel Abstraction *}
 | |
| 133 | ||
| 134 | declare split_if [split del] | |
| 135 | ||
| 136 | lemma channel_abstraction: "is_weak_ref_map reduce ch_ioa ch_fin_ioa" | |
| 137 | apply (simp (no_asm) add: is_weak_ref_map_def) | |
| 138 | txt {* main-part *}
 | |
| 139 | apply (rule allI)+ | |
| 140 | apply (rule imp_conj_lemma) | |
| 141 | apply (induct_tac "a") | |
| 142 | txt {* 2 cases *}
 | |
| 143 | apply (simp_all (no_asm) cong del: if_weak_cong add: externals_def) | |
| 144 | txt {* fst case *}
 | |
| 145 | apply (rule impI) | |
| 146 | apply (rule disjI2) | |
| 147 | apply (rule reduce_hd) | |
| 148 | txt {* snd case *}
 | |
| 149 | apply (rule impI) | |
| 150 | apply (erule conjE)+ | |
| 151 | apply (erule disjE) | |
| 152 | apply (simp add: l_iff_red_nil) | |
| 153 | apply (erule hd_is_reduce_hd [THEN mp]) | |
| 154 | apply (simp add: l_iff_red_nil) | |
| 155 | apply (rule conjI) | |
| 156 | apply (erule hd_is_reduce_hd [THEN mp]) | |
| 157 | apply (rule bool_if_impl_or [THEN mp]) | |
| 158 | apply (erule reduce_tl) | |
| 159 | done | |
| 160 | ||
| 161 | declare split_if [split] | |
| 162 | ||
| 163 | lemma sender_abstraction: "is_weak_ref_map reduce srch_ioa srch_fin_ioa" | |
| 164 | apply (tactic {*
 | |
| 165 | simp_tac (HOL_ss addsimps [thm "srch_fin_ioa_def", thm "rsch_fin_ioa_def", | |
| 166 | thm "srch_ioa_def", thm "rsch_ioa_def", thm "rename_through_pmap", | |
| 167 | thm "channel_abstraction"]) 1 *}) | |
| 168 | done | |
| 169 | ||
| 170 | lemma receiver_abstraction: "is_weak_ref_map reduce rsch_ioa rsch_fin_ioa" | |
| 171 | apply (tactic {*
 | |
| 172 | simp_tac (HOL_ss addsimps [thm "srch_fin_ioa_def", thm "rsch_fin_ioa_def", | |
| 173 | thm "srch_ioa_def", thm "rsch_ioa_def", thm "rename_through_pmap", | |
| 174 | thm "channel_abstraction"]) 1 *}) | |
| 175 | done | |
| 176 | ||
| 177 | ||
| 178 | text {* 3 thms that do not hold generally! The lucky restriction here is
 | |
| 179 | the absence of internal actions. *} | |
| 180 | lemma sender_unchanged: "is_weak_ref_map (%id. id) sender_ioa sender_ioa" | |
| 181 | apply (simp (no_asm) add: is_weak_ref_map_def) | |
| 182 | txt {* main-part *}
 | |
| 183 | apply (rule allI)+ | |
| 184 | apply (induct_tac a) | |
| 185 | txt {* 7 cases *}
 | |
| 186 | apply (simp_all (no_asm) add: externals_def) | |
| 187 | done | |
| 188 | ||
| 189 | text {* 2 copies of before *}
 | |
| 190 | lemma receiver_unchanged: "is_weak_ref_map (%id. id) receiver_ioa receiver_ioa" | |
| 191 | apply (simp (no_asm) add: is_weak_ref_map_def) | |
| 192 | txt {* main-part *}
 | |
| 193 | apply (rule allI)+ | |
| 194 | apply (induct_tac a) | |
| 195 | txt {* 7 cases *}
 | |
| 196 | apply (simp_all (no_asm) add: externals_def) | |
| 197 | done | |
| 198 | ||
| 199 | lemma env_unchanged: "is_weak_ref_map (%id. id) env_ioa env_ioa" | |
| 200 | apply (simp (no_asm) add: is_weak_ref_map_def) | |
| 201 | txt {* main-part *}
 | |
| 202 | apply (rule allI)+ | |
| 203 | apply (induct_tac a) | |
| 204 | txt {* 7 cases *}
 | |
| 205 | apply (simp_all (no_asm) add: externals_def) | |
| 206 | done | |
| 207 | ||
| 208 | ||
| 209 | lemma compat_single_ch: "compatible srch_ioa rsch_ioa" | |
| 210 | apply (simp add: compatible_def Int_def) | |
| 211 | apply (rule set_ext) | |
| 212 | apply (induct_tac x) | |
| 213 | apply simp_all | |
| 214 | done | |
| 215 | ||
| 216 | text {* totally the same as before *}
 | |
| 217 | lemma compat_single_fin_ch: "compatible srch_fin_ioa rsch_fin_ioa" | |
| 218 | apply (simp add: compatible_def Int_def) | |
| 219 | apply (rule set_ext) | |
| 220 | apply (induct_tac x) | |
| 221 | apply simp_all | |
| 222 | done | |
| 223 | ||
| 224 | lemmas del_simps = trans_of_def srch_asig_def rsch_asig_def | |
| 225 | asig_of_def actions_def srch_trans_def rsch_trans_def srch_ioa_def | |
| 226 | srch_fin_ioa_def rsch_fin_ioa_def rsch_ioa_def sender_trans_def | |
| 227 | receiver_trans_def set_lemmas | |
| 228 | ||
| 229 | lemma compat_rec: "compatible receiver_ioa (srch_ioa || rsch_ioa)" | |
| 230 | apply (simp del: del_simps | |
| 231 | add: compatible_def asig_of_par asig_comp_def actions_def Int_def) | |
| 232 | apply simp | |
| 233 | apply (rule set_ext) | |
| 234 | apply (induct_tac x) | |
| 235 | apply simp_all | |
| 236 | done | |
| 237 | ||
| 238 | text {* 5 proofs totally the same as before *}
 | |
| 239 | lemma compat_rec_fin: "compatible receiver_ioa (srch_fin_ioa || rsch_fin_ioa)" | |
| 240 | apply (simp del: del_simps | |
| 241 | add: compatible_def asig_of_par asig_comp_def actions_def Int_def) | |
| 242 | apply simp | |
| 243 | apply (rule set_ext) | |
| 244 | apply (induct_tac x) | |
| 245 | apply simp_all | |
| 246 | done | |
| 247 | ||
| 248 | lemma compat_sen: "compatible sender_ioa | |
| 249 | (receiver_ioa || srch_ioa || rsch_ioa)" | |
| 250 | apply (simp del: del_simps | |
| 251 | add: compatible_def asig_of_par asig_comp_def actions_def Int_def) | |
| 252 | apply simp | |
| 253 | apply (rule set_ext) | |
| 254 | apply (induct_tac x) | |
| 255 | apply simp_all | |
| 256 | done | |
| 257 | ||
| 258 | lemma compat_sen_fin: "compatible sender_ioa | |
| 259 | (receiver_ioa || srch_fin_ioa || rsch_fin_ioa)" | |
| 260 | apply (simp del: del_simps | |
| 261 | add: compatible_def asig_of_par asig_comp_def actions_def Int_def) | |
| 262 | apply simp | |
| 263 | apply (rule set_ext) | |
| 264 | apply (induct_tac x) | |
| 265 | apply simp_all | |
| 266 | done | |
| 267 | ||
| 268 | lemma compat_env: "compatible env_ioa | |
| 269 | (sender_ioa || receiver_ioa || srch_ioa || rsch_ioa)" | |
| 270 | apply (simp del: del_simps | |
| 271 | add: compatible_def asig_of_par asig_comp_def actions_def Int_def) | |
| 272 | apply simp | |
| 273 | apply (rule set_ext) | |
| 274 | apply (induct_tac x) | |
| 275 | apply simp_all | |
| 276 | done | |
| 277 | ||
| 278 | lemma compat_env_fin: "compatible env_ioa | |
| 279 | (sender_ioa || receiver_ioa || srch_fin_ioa || rsch_fin_ioa)" | |
| 280 | apply (simp del: del_simps | |
| 281 | add: compatible_def asig_of_par asig_comp_def actions_def Int_def) | |
| 282 | apply simp | |
| 283 | apply (rule set_ext) | |
| 284 | apply (induct_tac x) | |
| 285 | apply simp_all | |
| 286 | done | |
| 287 | ||
| 288 | ||
| 289 | text {* lemmata about externals of channels *}
 | |
| 290 | lemma ext_single_ch: "externals(asig_of(srch_fin_ioa)) = externals(asig_of(srch_ioa)) & | |
| 291 | externals(asig_of(rsch_fin_ioa)) = externals(asig_of(rsch_ioa))" | |
| 292 | by (simp add: externals_def) | |
| 293 | ||
| 294 | ||
| 295 | subsection {* Soundness of Abstraction *}
 | |
| 296 | ||
| 297 | lemmas ext_simps = externals_of_par ext_single_ch | |
| 298 | and compat_simps = compat_single_ch compat_single_fin_ch compat_rec | |
| 299 | compat_rec_fin compat_sen compat_sen_fin compat_env compat_env_fin | |
| 300 | and abstractions = env_unchanged sender_unchanged | |
| 301 | receiver_unchanged sender_abstraction receiver_abstraction | |
| 302 | ||
| 303 | ||
| 304 | (* FIX: this proof should be done with compositionality on trace level, not on | |
| 305 | weak_ref_map level, as done here with fxg_is_weak_ref_map_of_product_IOA | |
| 306 | ||
| 307 | Goal "is_weak_ref_map abs system_ioa system_fin_ioa" | |
| 308 | ||
| 309 | by (simp_tac (impl_ss delsimps ([srch_ioa_def, rsch_ioa_def, srch_fin_ioa_def, | |
| 310 | rsch_fin_ioa_def] @ env_ioas @ impl_ioas) | |
| 311 | addsimps [system_def, system_fin_def, abs_def, | |
| 312 | impl_ioa_def, impl_fin_ioa_def, sys_IOA, | |
| 313 | sys_fin_IOA]) 1); | |
| 314 | ||
| 315 | by (REPEAT (EVERY[rtac fxg_is_weak_ref_map_of_product_IOA 1, | |
| 316 | simp_tac (ss addsimps abstractions) 1, | |
| 317 | rtac conjI 1])); | |
| 318 | ||
| 319 | by (ALLGOALS (simp_tac (ss addsimps ext_ss @ compat_ss))); | |
| 320 | ||
| 321 | qed "system_refinement"; | |
| 322 | *) | |
| 17244 | 323 | |
| 3072 
a31419014be5
Old ABP files now running under the IOA meta theory based on HOLCF;
 mueller parents: diff
changeset | 324 | end |