| 
0
 | 
     1  | 
(*  Title:      CCL/set.thy
  | 
| 
 | 
     2  | 
    ID:         $Id$
  | 
| 
 | 
     3  | 
  | 
| 
 | 
     4  | 
Modified version of HOL/set.thy that extends FOL
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
*)
  | 
| 
 | 
     7  | 
  | 
| 
 | 
     8  | 
Set = FOL +
  | 
| 
 | 
     9  | 
  | 
| 
3935
 | 
    10  | 
global
  | 
| 
 | 
    11  | 
  | 
| 
0
 | 
    12  | 
types
  | 
| 
278
 | 
    13  | 
  'a set
  | 
| 
0
 | 
    14  | 
  | 
| 
 | 
    15  | 
arities
  | 
| 
 | 
    16  | 
  set :: (term) term
  | 
| 
 | 
    17  | 
  | 
| 
 | 
    18  | 
consts
  | 
| 
 | 
    19  | 
  Collect       :: "['a => o] => 'a set"                    (*comprehension*)
  | 
| 
 | 
    20  | 
  Compl         :: "('a set) => 'a set"                     (*complement*)
 | 
| 
 | 
    21  | 
  Int           :: "['a set, 'a set] => 'a set"         (infixl 70)
  | 
| 
 | 
    22  | 
  Un            :: "['a set, 'a set] => 'a set"         (infixl 65)
  | 
| 
 | 
    23  | 
  Union, Inter  :: "(('a set)set) => 'a set"                (*...of a set*)
 | 
| 
 | 
    24  | 
  UNION, INTER  :: "['a set, 'a => 'b set] => 'b set"       (*general*)
  | 
| 
 | 
    25  | 
  Ball, Bex     :: "['a set, 'a => o] => o"                 (*bounded quants*)
  | 
| 
 | 
    26  | 
  mono          :: "['a set => 'b set] => o"                (*monotonicity*)
  | 
| 
 | 
    27  | 
  ":"           :: "['a, 'a set] => o"                  (infixl 50) (*membership*)
  | 
| 
 | 
    28  | 
  "<="          :: "['a set, 'a set] => o"              (infixl 50)
  | 
| 
 | 
    29  | 
  singleton     :: "'a => 'a set"                       ("{_}")
 | 
| 
 | 
    30  | 
  empty         :: "'a set"                             ("{}")
 | 
| 
 | 
    31  | 
  "oo"          :: "['b => 'c, 'a => 'b, 'a] => 'c"     (infixr 50) (*composition*)
  | 
| 
 | 
    32  | 
  | 
| 
3935
 | 
    33  | 
syntax
  | 
| 
0
 | 
    34  | 
  "@Coll"       :: "[idt, o] => 'a set"                 ("(1{_./ _})") (*collection*)
 | 
| 
 | 
    35  | 
  | 
| 
 | 
    36  | 
  (* Big Intersection / Union *)
  | 
| 
 | 
    37  | 
  | 
| 
 | 
    38  | 
  "@INTER"      :: "[idt, 'a set, 'b set] => 'b set"    ("(INT _:_./ _)" [0, 0, 0] 10)
 | 
| 
 | 
    39  | 
  "@UNION"      :: "[idt, 'a set, 'b set] => 'b set"    ("(UN _:_./ _)" [0, 0, 0] 10)
 | 
| 
 | 
    40  | 
  | 
| 
 | 
    41  | 
  (* Bounded Quantifiers *)
  | 
| 
 | 
    42  | 
  | 
| 
 | 
    43  | 
  "@Ball"       :: "[idt, 'a set, o] => o"              ("(ALL _:_./ _)" [0, 0, 0] 10)
 | 
| 
 | 
    44  | 
  "@Bex"        :: "[idt, 'a set, o] => o"              ("(EX _:_./ _)" [0, 0, 0] 10)
 | 
| 
 | 
    45  | 
  | 
| 
 | 
    46  | 
  | 
| 
 | 
    47  | 
translations
  | 
| 
 | 
    48  | 
  "{x. P}"      == "Collect(%x. P)"
 | 
| 
 | 
    49  | 
  "INT x:A. B"  == "INTER(A, %x. B)"
  | 
| 
 | 
    50  | 
  "UN x:A. B"   == "UNION(A, %x. B)"
  | 
| 
 | 
    51  | 
  "ALL x:A. P"  == "Ball(A, %x. P)"
  | 
| 
 | 
    52  | 
  "EX x:A. P"   == "Bex(A, %x. P)"
  | 
| 
 | 
    53  | 
  | 
| 
3935
 | 
    54  | 
local
  | 
| 
0
 | 
    55  | 
  | 
| 
 | 
    56  | 
rules
  | 
| 
3837
 | 
    57  | 
  mem_Collect_iff       "(a : {x. P(x)}) <-> P(a)"
 | 
| 
 | 
    58  | 
  set_extension         "A=B <-> (ALL x. x:A <-> x:B)"
  | 
| 
0
 | 
    59  | 
  | 
| 
 | 
    60  | 
  Ball_def      "Ball(A, P)  == ALL x. x:A --> P(x)"
  | 
| 
 | 
    61  | 
  Bex_def       "Bex(A, P)   == EX x. x:A & P(x)"
  | 
| 
 | 
    62  | 
  mono_def      "mono(f)     == (ALL A B. A <= B --> f(A) <= f(B))"
  | 
| 
 | 
    63  | 
  subset_def    "A <= B      == ALL x:A. x:B"
  | 
| 
3837
 | 
    64  | 
  singleton_def "{a}         == {x. x=a}"
 | 
| 
 | 
    65  | 
  empty_def     "{}          == {x. False}"
 | 
| 
 | 
    66  | 
  Un_def        "A Un B      == {x. x:A | x:B}"
 | 
| 
 | 
    67  | 
  Int_def       "A Int B     == {x. x:A & x:B}"
 | 
| 
0
 | 
    68  | 
  Compl_def     "Compl(A)    == {x. ~x:A}"
 | 
| 
 | 
    69  | 
  INTER_def     "INTER(A, B) == {y. ALL x:A. y: B(x)}"
 | 
| 
 | 
    70  | 
  UNION_def     "UNION(A, B) == {y. EX x:A. y: B(x)}"
 | 
| 
 | 
    71  | 
  Inter_def     "Inter(S)    == (INT x:S. x)"
  | 
| 
 | 
    72  | 
  Union_def     "Union(S)    == (UN x:S. x)"
  | 
| 
 | 
    73  | 
  | 
| 
 | 
    74  | 
end
  | 
| 
 | 
    75  | 
  |