src/HOL/Limits.thy
author wenzelm
Sun, 28 Feb 2016 19:56:57 +0100
changeset 62456 11e06f5283bc
parent 62393 a620a8756b7c
child 63040 eb4ddd18d635
permissions -rw-r--r--
proper document source;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
52265
bb907eba5902 tuned headers;
wenzelm
parents: 51642
diff changeset
     1
(*  Title:      HOL/Limits.thy
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
     2
    Author:     Brian Huffman
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
     3
    Author:     Jacques D. Fleuriot, University of Cambridge
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
     4
    Author:     Lawrence C Paulson
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
     5
    Author:     Jeremy Avigad
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
     6
*)
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
     7
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
     8
section \<open>Limits on Real Vector Spaces\<close>
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
     9
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
    10
theory Limits
51524
7cb5ac44ca9e rename RealVector.thy to Real_Vector_Spaces.thy
hoelzl
parents: 51478
diff changeset
    11
imports Real_Vector_Spaces
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
    12
begin
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
    13
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
    14
subsection \<open>Filter going to infinity norm\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
    15
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
    16
definition at_infinity :: "'a::real_normed_vector filter" where
57276
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
    17
  "at_infinity = (INF r. principal {x. r \<le> norm x})"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
    18
57276
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
    19
lemma eventually_at_infinity: "eventually P at_infinity \<longleftrightarrow> (\<exists>b. \<forall>x. b \<le> norm x \<longrightarrow> P x)"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
    20
  unfolding at_infinity_def
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
    21
  by (subst eventually_INF_base)
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
    22
     (auto simp: subset_eq eventually_principal intro!: exI[of _ "max a b" for a b])
31392
69570155ddf8 replace filters with filter bases
huffman
parents: 31357
diff changeset
    23
62379
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62369
diff changeset
    24
corollary eventually_at_infinity_pos:
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62369
diff changeset
    25
   "eventually p at_infinity \<longleftrightarrow> (\<exists>b. 0 < b \<and> (\<forall>x. norm x \<ge> b \<longrightarrow> p x))"
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62369
diff changeset
    26
apply (simp add: eventually_at_infinity, auto)
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62369
diff changeset
    27
apply (case_tac "b \<le> 0")
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62369
diff changeset
    28
using norm_ge_zero order_trans zero_less_one apply blast
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62369
diff changeset
    29
apply (force simp:)
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62369
diff changeset
    30
done
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62369
diff changeset
    31
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
    32
lemma at_infinity_eq_at_top_bot:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60974
diff changeset
    33
  "(at_infinity :: real filter) = sup at_top at_bot"
57276
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
    34
  apply (simp add: filter_eq_iff eventually_sup eventually_at_infinity
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
    35
                   eventually_at_top_linorder eventually_at_bot_linorder)
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
    36
  apply safe
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
    37
  apply (rule_tac x="b" in exI, simp)
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
    38
  apply (rule_tac x="- b" in exI, simp)
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
    39
  apply (rule_tac x="max (- Na) N" in exI, auto simp: abs_real_def)
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
    40
  done
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
    41
57276
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
    42
lemma at_top_le_at_infinity: "at_top \<le> (at_infinity :: real filter)"
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
    43
  unfolding at_infinity_eq_at_top_bot by simp
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
    44
57276
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
    45
lemma at_bot_le_at_infinity: "at_bot \<le> (at_infinity :: real filter)"
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
    46
  unfolding at_infinity_eq_at_top_bot by simp
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
    47
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56541
diff changeset
    48
lemma filterlim_at_top_imp_at_infinity:
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56541
diff changeset
    49
  fixes f :: "_ \<Rightarrow> real"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56541
diff changeset
    50
  shows "filterlim f at_top F \<Longrightarrow> filterlim f at_infinity F"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56541
diff changeset
    51
  by (rule filterlim_mono[OF _ at_top_le_at_infinity order_refl])
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56541
diff changeset
    52
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
    53
lemma lim_infinity_imp_sequentially:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
    54
  "(f \<longlongrightarrow> l) at_infinity \<Longrightarrow> ((\<lambda>n. f(n)) \<longlongrightarrow> l) sequentially"
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
    55
by (simp add: filterlim_at_top_imp_at_infinity filterlim_compose filterlim_real_sequentially)
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
    56
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
    57
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
    58
subsubsection \<open>Boundedness\<close>
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    59
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    60
definition Bfun :: "('a \<Rightarrow> 'b::metric_space) \<Rightarrow> 'a filter \<Rightarrow> bool" where
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    61
  Bfun_metric_def: "Bfun f F = (\<exists>y. \<exists>K>0. eventually (\<lambda>x. dist (f x) y \<le> K) F)"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    62
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    63
abbreviation Bseq :: "(nat \<Rightarrow> 'a::metric_space) \<Rightarrow> bool" where
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    64
  "Bseq X \<equiv> Bfun X sequentially"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    65
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    66
lemma Bseq_conv_Bfun: "Bseq X \<longleftrightarrow> Bfun X sequentially" ..
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    67
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    68
lemma Bseq_ignore_initial_segment: "Bseq X \<Longrightarrow> Bseq (\<lambda>n. X (n + k))"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    69
  unfolding Bfun_metric_def by (subst eventually_sequentially_seg)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    70
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    71
lemma Bseq_offset: "Bseq (\<lambda>n. X (n + k)) \<Longrightarrow> Bseq X"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    72
  unfolding Bfun_metric_def by (subst (asm) eventually_sequentially_seg)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
    73
51474
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51472
diff changeset
    74
lemma Bfun_def:
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51472
diff changeset
    75
  "Bfun f F \<longleftrightarrow> (\<exists>K>0. eventually (\<lambda>x. norm (f x) \<le> K) F)"
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51472
diff changeset
    76
  unfolding Bfun_metric_def norm_conv_dist
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51472
diff changeset
    77
proof safe
62379
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62369
diff changeset
    78
  fix y K assume K: "0 < K" and *: "eventually (\<lambda>x. dist (f x) y \<le> K) F"
51474
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51472
diff changeset
    79
  moreover have "eventually (\<lambda>x. dist (f x) 0 \<le> dist (f x) y + dist 0 y) F"
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51472
diff changeset
    80
    by (intro always_eventually) (metis dist_commute dist_triangle)
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51472
diff changeset
    81
  with * have "eventually (\<lambda>x. dist (f x) 0 \<le> K + dist 0 y) F"
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51472
diff changeset
    82
    by eventually_elim auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
    83
  with \<open>0 < K\<close> show "\<exists>K>0. eventually (\<lambda>x. dist (f x) 0 \<le> K) F"
51474
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51472
diff changeset
    84
    by (intro exI[of _ "K + dist 0 y"] add_pos_nonneg conjI zero_le_dist) auto
62379
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62369
diff changeset
    85
qed (force simp del: norm_conv_dist [symmetric])
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
    86
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
    87
lemma BfunI:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
    88
  assumes K: "eventually (\<lambda>x. norm (f x) \<le> K) F" shows "Bfun f F"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
    89
unfolding Bfun_def
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
    90
proof (intro exI conjI allI)
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
    91
  show "0 < max K 1" by simp
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
    92
next
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
    93
  show "eventually (\<lambda>x. norm (f x) \<le> max K 1) F"
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61806
diff changeset
    94
    using K by (rule eventually_mono, simp)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
    95
qed
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
    96
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
    97
lemma BfunE:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
    98
  assumes "Bfun f F"
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
    99
  obtains B where "0 < B" and "eventually (\<lambda>x. norm (f x) \<le> B) F"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
   100
using assms unfolding Bfun_def by blast
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   101
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   102
lemma Cauchy_Bseq: "Cauchy X \<Longrightarrow> Bseq X"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   103
  unfolding Cauchy_def Bfun_metric_def eventually_sequentially
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   104
  apply (erule_tac x=1 in allE)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   105
  apply simp
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   106
  apply safe
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   107
  apply (rule_tac x="X M" in exI)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   108
  apply (rule_tac x=1 in exI)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   109
  apply (erule_tac x=M in allE)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   110
  apply simp
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   111
  apply (rule_tac x=M in exI)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   112
  apply (auto simp: dist_commute)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   113
  done
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   114
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   115
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   116
subsubsection \<open>Bounded Sequences\<close>
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   117
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   118
lemma BseqI': "(\<And>n. norm (X n) \<le> K) \<Longrightarrow> Bseq X"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   119
  by (intro BfunI) (auto simp: eventually_sequentially)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   120
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   121
lemma BseqI2': "\<forall>n\<ge>N. norm (X n) \<le> K \<Longrightarrow> Bseq X"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   122
  by (intro BfunI) (auto simp: eventually_sequentially)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   123
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   124
lemma Bseq_def: "Bseq X \<longleftrightarrow> (\<exists>K>0. \<forall>n. norm (X n) \<le> K)"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   125
  unfolding Bfun_def eventually_sequentially
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   126
proof safe
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   127
  fix N K assume "0 < K" "\<forall>n\<ge>N. norm (X n) \<le> K"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   128
  then show "\<exists>K>0. \<forall>n. norm (X n) \<le> K"
54863
82acc20ded73 prefer more canonical names for lemmas on min/max
haftmann
parents: 54263
diff changeset
   129
    by (intro exI[of _ "max (Max (norm ` X ` {..N})) K"] max.strict_coboundedI2)
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   130
       (auto intro!: imageI not_less[where 'a=nat, THEN iffD1] Max_ge simp: le_max_iff_disj)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   131
qed auto
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   132
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   133
lemma BseqE: "\<lbrakk>Bseq X; \<And>K. \<lbrakk>0 < K; \<forall>n. norm (X n) \<le> K\<rbrakk> \<Longrightarrow> Q\<rbrakk> \<Longrightarrow> Q"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   134
unfolding Bseq_def by auto
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   135
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   136
lemma BseqD: "Bseq X ==> \<exists>K. 0 < K & (\<forall>n. norm (X n) \<le> K)"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   137
by (simp add: Bseq_def)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   138
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   139
lemma BseqI: "[| 0 < K; \<forall>n. norm (X n) \<le> K |] ==> Bseq X"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   140
by (auto simp add: Bseq_def)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   141
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   142
lemma Bseq_bdd_above: "Bseq (X::nat \<Rightarrow> real) \<Longrightarrow> bdd_above (range X)"
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   143
proof (elim BseqE, intro bdd_aboveI2)
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   144
  fix K n assume "0 < K" "\<forall>n. norm (X n) \<le> K" then show "X n \<le> K"
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   145
    by (auto elim!: allE[of _ n])
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   146
qed
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   147
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
   148
lemma Bseq_bdd_above':
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   149
  "Bseq (X::nat \<Rightarrow> 'a :: real_normed_vector) \<Longrightarrow> bdd_above (range (\<lambda>n. norm (X n)))"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   150
proof (elim BseqE, intro bdd_aboveI2)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   151
  fix K n assume "0 < K" "\<forall>n. norm (X n) \<le> K" then show "norm (X n) \<le> K"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   152
    by (auto elim!: allE[of _ n])
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   153
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   154
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   155
lemma Bseq_bdd_below: "Bseq (X::nat \<Rightarrow> real) \<Longrightarrow> bdd_below (range X)"
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   156
proof (elim BseqE, intro bdd_belowI2)
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   157
  fix K n assume "0 < K" "\<forall>n. norm (X n) \<le> K" then show "- K \<le> X n"
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   158
    by (auto elim!: allE[of _ n])
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   159
qed
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   160
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   161
lemma Bseq_eventually_mono:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   162
  assumes "eventually (\<lambda>n. norm (f n) \<le> norm (g n)) sequentially" "Bseq g"
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
   163
  shows   "Bseq f"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   164
proof -
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   165
  from assms(1) obtain N where N: "\<And>n. n \<ge> N \<Longrightarrow> norm (f n) \<le> norm (g n)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   166
    by (auto simp: eventually_at_top_linorder)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   167
  moreover from assms(2) obtain K where K: "\<And>n. norm (g n) \<le> K" by (blast elim!: BseqE)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   168
  ultimately have "norm (f n) \<le> max K (Max {norm (f n) |n. n < N})" for n
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   169
    apply (cases "n < N")
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   170
    apply (rule max.coboundedI2, rule Max.coboundedI, auto) []
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   171
    apply (rule max.coboundedI1, force intro: order.trans[OF N K])
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   172
    done
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
   173
  thus ?thesis by (blast intro: BseqI')
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   174
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   175
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   176
lemma lemma_NBseq_def:
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   177
  "(\<exists>K > 0. \<forall>n. norm (X n) \<le> K) = (\<exists>N. \<forall>n. norm (X n) \<le> real(Suc N))"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   178
proof safe
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   179
  fix K :: real
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   180
  from reals_Archimedean2 obtain n :: nat where "K < real n" ..
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   181
  then have "K \<le> real (Suc n)" by auto
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   182
  moreover assume "\<forall>m. norm (X m) \<le> K"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   183
  ultimately have "\<forall>m. norm (X m) \<le> real (Suc n)"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   184
    by (blast intro: order_trans)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   185
  then show "\<exists>N. \<forall>n. norm (X n) \<le> real (Suc N)" ..
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
   186
next
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
   187
  show "\<And>N. \<forall>n. norm (X n) \<le> real (Suc N) \<Longrightarrow> \<exists>K>0. \<forall>n. norm (X n) \<le> K"
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
   188
    using of_nat_0_less_iff by blast
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
   189
qed
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   190
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   191
text\<open>alternative definition for Bseq\<close>
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   192
lemma Bseq_iff: "Bseq X = (\<exists>N. \<forall>n. norm (X n) \<le> real(Suc N))"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   193
apply (simp add: Bseq_def)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   194
apply (simp (no_asm) add: lemma_NBseq_def)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   195
done
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   196
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   197
lemma lemma_NBseq_def2:
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   198
     "(\<exists>K > 0. \<forall>n. norm (X n) \<le> K) = (\<exists>N. \<forall>n. norm (X n) < real(Suc N))"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   199
apply (subst lemma_NBseq_def, auto)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   200
apply (rule_tac x = "Suc N" in exI)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   201
apply (rule_tac [2] x = N in exI)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
   202
apply (auto simp add: of_nat_Suc)
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   203
 prefer 2 apply (blast intro: order_less_imp_le)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   204
apply (drule_tac x = n in spec, simp)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   205
done
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   206
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   207
(* yet another definition for Bseq *)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   208
lemma Bseq_iff1a: "Bseq X = (\<exists>N. \<forall>n. norm (X n) < real(Suc N))"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   209
by (simp add: Bseq_def lemma_NBseq_def2)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   210
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   211
subsubsection\<open>A Few More Equivalence Theorems for Boundedness\<close>
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   212
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   213
text\<open>alternative formulation for boundedness\<close>
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   214
lemma Bseq_iff2: "Bseq X = (\<exists>k > 0. \<exists>x. \<forall>n. norm (X(n) + -x) \<le> k)"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   215
apply (unfold Bseq_def, safe)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   216
apply (rule_tac [2] x = "k + norm x" in exI)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   217
apply (rule_tac x = K in exI, simp)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   218
apply (rule exI [where x = 0], auto)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   219
apply (erule order_less_le_trans, simp)
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
   220
apply (drule_tac x=n in spec)
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   221
apply (drule order_trans [OF norm_triangle_ineq2])
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   222
apply simp
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   223
done
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   224
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   225
text\<open>alternative formulation for boundedness\<close>
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53381
diff changeset
   226
lemma Bseq_iff3:
0ae3db699a3e tuned proofs
haftmann
parents: 53381
diff changeset
   227
  "Bseq X \<longleftrightarrow> (\<exists>k>0. \<exists>N. \<forall>n. norm (X n + - X N) \<le> k)" (is "?P \<longleftrightarrow> ?Q")
0ae3db699a3e tuned proofs
haftmann
parents: 53381
diff changeset
   228
proof
0ae3db699a3e tuned proofs
haftmann
parents: 53381
diff changeset
   229
  assume ?P
0ae3db699a3e tuned proofs
haftmann
parents: 53381
diff changeset
   230
  then obtain K
0ae3db699a3e tuned proofs
haftmann
parents: 53381
diff changeset
   231
    where *: "0 < K" and **: "\<And>n. norm (X n) \<le> K" by (auto simp add: Bseq_def)
0ae3db699a3e tuned proofs
haftmann
parents: 53381
diff changeset
   232
  from * have "0 < K + norm (X 0)" by (rule order_less_le_trans) simp
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
   233
  from ** have "\<forall>n. norm (X n - X 0) \<le> K + norm (X 0)"
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
   234
    by (auto intro: order_trans norm_triangle_ineq4)
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
   235
  then have "\<forall>n. norm (X n + - X 0) \<le> K + norm (X 0)"
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
   236
    by simp
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   237
  with \<open>0 < K + norm (X 0)\<close> show ?Q by blast
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53381
diff changeset
   238
next
0ae3db699a3e tuned proofs
haftmann
parents: 53381
diff changeset
   239
  assume ?Q then show ?P by (auto simp add: Bseq_iff2)
0ae3db699a3e tuned proofs
haftmann
parents: 53381
diff changeset
   240
qed
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   241
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   242
lemma BseqI2: "(\<forall>n. k \<le> f n & f n \<le> (K::real)) ==> Bseq f"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   243
apply (simp add: Bseq_def)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   244
apply (rule_tac x = " (\<bar>k\<bar> + \<bar>K\<bar>) + 1" in exI, auto)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   245
apply (drule_tac x = n in spec, arith)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   246
done
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   247
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
   248
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   249
subsubsection\<open>Upper Bounds and Lubs of Bounded Sequences\<close>
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   250
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   251
lemma Bseq_minus_iff: "Bseq (%n. -(X n) :: 'a :: real_normed_vector) = Bseq X"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   252
  by (simp add: Bseq_def)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   253
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
   254
lemma Bseq_add:
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   255
  assumes "Bseq (f :: nat \<Rightarrow> 'a :: real_normed_vector)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   256
  shows   "Bseq (\<lambda>x. f x + c)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   257
proof -
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   258
  from assms obtain K where K: "\<And>x. norm (f x) \<le> K" unfolding Bseq_def by blast
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   259
  {
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   260
    fix x :: nat
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   261
    have "norm (f x + c) \<le> norm (f x) + norm c" by (rule norm_triangle_ineq)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   262
    also have "norm (f x) \<le> K" by (rule K)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   263
    finally have "norm (f x + c) \<le> K + norm c" by simp
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   264
  }
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   265
  thus ?thesis by (rule BseqI')
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   266
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   267
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   268
lemma Bseq_add_iff: "Bseq (\<lambda>x. f x + c) \<longleftrightarrow> Bseq (f :: nat \<Rightarrow> 'a :: real_normed_vector)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   269
  using Bseq_add[of f c] Bseq_add[of "\<lambda>x. f x + c" "-c"] by auto
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   270
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
   271
lemma Bseq_mult:
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   272
  assumes "Bseq (f :: nat \<Rightarrow> 'a :: real_normed_field)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   273
  assumes "Bseq (g :: nat \<Rightarrow> 'a :: real_normed_field)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   274
  shows   "Bseq (\<lambda>x. f x * g x)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   275
proof -
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
   276
  from assms obtain K1 K2 where K: "\<And>x. norm (f x) \<le> K1" "K1 > 0" "\<And>x. norm (g x) \<le> K2" "K2 > 0"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   277
    unfolding Bseq_def by blast
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   278
  hence "\<And>x. norm (f x * g x) \<le> K1 * K2" by (auto simp: norm_mult intro!: mult_mono)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   279
  thus ?thesis by (rule BseqI')
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   280
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   281
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   282
lemma Bfun_const [simp]: "Bfun (\<lambda>_. c) F"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   283
  unfolding Bfun_metric_def by (auto intro!: exI[of _ c] exI[of _ "1::real"])
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   284
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   285
lemma Bseq_cmult_iff: "(c :: 'a :: real_normed_field) \<noteq> 0 \<Longrightarrow> Bseq (\<lambda>x. c * f x) \<longleftrightarrow> Bseq f"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   286
proof
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   287
  assume "c \<noteq> 0" "Bseq (\<lambda>x. c * f x)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   288
  find_theorems "Bfun (\<lambda>_. ?c) _"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   289
  from Bfun_const this(2) have "Bseq (\<lambda>x. inverse c * (c * f x))" by (rule Bseq_mult)
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61738
diff changeset
   290
  with \<open>c \<noteq> 0\<close> show "Bseq f" by (simp add: divide_simps)
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   291
qed (intro Bseq_mult Bfun_const)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   292
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   293
lemma Bseq_subseq: "Bseq (f :: nat \<Rightarrow> 'a :: real_normed_vector) \<Longrightarrow> Bseq (\<lambda>x. f (g x))"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   294
  unfolding Bseq_def by auto
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   295
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   296
lemma Bseq_Suc_iff: "Bseq (\<lambda>n. f (Suc n)) \<longleftrightarrow> Bseq (f :: nat \<Rightarrow> 'a :: real_normed_vector)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   297
  using Bseq_offset[of f 1] by (auto intro: Bseq_subseq)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   298
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   299
lemma increasing_Bseq_subseq_iff:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   300
  assumes "\<And>x y. x \<le> y \<Longrightarrow> norm (f x :: 'a :: real_normed_vector) \<le> norm (f y)" "subseq g"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   301
  shows   "Bseq (\<lambda>x. f (g x)) \<longleftrightarrow> Bseq f"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   302
proof
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   303
  assume "Bseq (\<lambda>x. f (g x))"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   304
  then obtain K where K: "\<And>x. norm (f (g x)) \<le> K" unfolding Bseq_def by auto
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   305
  {
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   306
    fix x :: nat
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   307
    from filterlim_subseq[OF assms(2)] obtain y where "g y \<ge> x"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   308
      by (auto simp: filterlim_at_top eventually_at_top_linorder)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   309
    hence "norm (f x) \<le> norm (f (g y))" using assms(1) by blast
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   310
    also have "norm (f (g y)) \<le> K" by (rule K)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   311
    finally have "norm (f x) \<le> K" .
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   312
  }
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   313
  thus "Bseq f" by (rule BseqI')
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   314
qed (insert Bseq_subseq[of f g], simp_all)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   315
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   316
lemma nonneg_incseq_Bseq_subseq_iff:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   317
  assumes "\<And>x. f x \<ge> 0" "incseq (f :: nat \<Rightarrow> real)" "subseq g"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   318
  shows   "Bseq (\<lambda>x. f (g x)) \<longleftrightarrow> Bseq f"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   319
  using assms by (intro increasing_Bseq_subseq_iff) (auto simp: incseq_def)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   320
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   321
lemma Bseq_eq_bounded: "range f \<subseteq> {a .. b::real} \<Longrightarrow> Bseq f"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   322
  apply (simp add: subset_eq)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   323
  apply (rule BseqI'[where K="max (norm a) (norm b)"])
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   324
  apply (erule_tac x=n in allE)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   325
  apply auto
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   326
  done
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   327
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   328
lemma incseq_bounded: "incseq X \<Longrightarrow> \<forall>i. X i \<le> (B::real) \<Longrightarrow> Bseq X"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   329
  by (intro Bseq_eq_bounded[of X "X 0" B]) (auto simp: incseq_def)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   330
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   331
lemma decseq_bounded: "decseq X \<Longrightarrow> \<forall>i. (B::real) \<le> X i \<Longrightarrow> Bseq X"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   332
  by (intro Bseq_eq_bounded[of X B "X 0"]) (auto simp: decseq_def)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   333
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   334
subsection \<open>Bounded Monotonic Sequences\<close>
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   335
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   336
subsubsection\<open>A Bounded and Monotonic Sequence Converges\<close>
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   337
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   338
(* TODO: delete *)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   339
(* FIXME: one use in NSA/HSEQ.thy *)
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
   340
lemma Bmonoseq_LIMSEQ: "\<forall>n. m \<le> n --> X n = X m ==> \<exists>L. (X \<longlonglongrightarrow> L)"
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   341
  apply (rule_tac x="X m" in exI)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   342
  apply (rule filterlim_cong[THEN iffD2, OF refl refl _ tendsto_const])
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   343
  unfolding eventually_sequentially
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   344
  apply blast
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   345
  done
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   346
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   347
subsection \<open>Convergence to Zero\<close>
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   348
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   349
definition Zfun :: "('a \<Rightarrow> 'b::real_normed_vector) \<Rightarrow> 'a filter \<Rightarrow> bool"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   350
  where "Zfun f F = (\<forall>r>0. eventually (\<lambda>x. norm (f x) < r) F)"
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   351
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   352
lemma ZfunI:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   353
  "(\<And>r. 0 < r \<Longrightarrow> eventually (\<lambda>x. norm (f x) < r) F) \<Longrightarrow> Zfun f F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   354
  unfolding Zfun_def by simp
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   355
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   356
lemma ZfunD:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   357
  "\<lbrakk>Zfun f F; 0 < r\<rbrakk> \<Longrightarrow> eventually (\<lambda>x. norm (f x) < r) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   358
  unfolding Zfun_def by simp
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   359
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   360
lemma Zfun_ssubst:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   361
  "eventually (\<lambda>x. f x = g x) F \<Longrightarrow> Zfun g F \<Longrightarrow> Zfun f F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   362
  unfolding Zfun_def by (auto elim!: eventually_rev_mp)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   363
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   364
lemma Zfun_zero: "Zfun (\<lambda>x. 0) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   365
  unfolding Zfun_def by simp
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   366
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   367
lemma Zfun_norm_iff: "Zfun (\<lambda>x. norm (f x)) F = Zfun (\<lambda>x. f x) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   368
  unfolding Zfun_def by simp
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   369
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   370
lemma Zfun_imp_Zfun:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   371
  assumes f: "Zfun f F"
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   372
  assumes g: "eventually (\<lambda>x. norm (g x) \<le> norm (f x) * K) F"
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   373
  shows "Zfun (\<lambda>x. g x) F"
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   374
proof (cases)
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   375
  assume K: "0 < K"
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   376
  show ?thesis
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   377
  proof (rule ZfunI)
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   378
    fix r::real assume "0 < r"
56541
0e3abadbef39 made divide_pos_pos a simp rule
nipkow
parents: 56536
diff changeset
   379
    hence "0 < r / K" using K by simp
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   380
    then have "eventually (\<lambda>x. norm (f x) < r / K) F"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
   381
      using ZfunD [OF f] by blast
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   382
    with g show "eventually (\<lambda>x. norm (g x) < r) F"
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   383
    proof eventually_elim
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   384
      case (elim x)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   385
      hence "norm (f x) * K < r"
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   386
        by (simp add: pos_less_divide_eq K)
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   387
      thus ?case
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   388
        by (simp add: order_le_less_trans [OF elim(1)])
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   389
    qed
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   390
  qed
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   391
next
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   392
  assume "\<not> 0 < K"
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   393
  hence K: "K \<le> 0" by (simp only: not_less)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   394
  show ?thesis
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   395
  proof (rule ZfunI)
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   396
    fix r :: real
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   397
    assume "0 < r"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   398
    from g show "eventually (\<lambda>x. norm (g x) < r) F"
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   399
    proof eventually_elim
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   400
      case (elim x)
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   401
      also have "norm (f x) * K \<le> norm (f x) * 0"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   402
        using K norm_ge_zero by (rule mult_left_mono)
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   403
      finally show ?case
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   404
        using \<open>0 < r\<close> by simp
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   405
    qed
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   406
  qed
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   407
qed
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   408
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   409
lemma Zfun_le: "\<lbrakk>Zfun g F; \<forall>x. norm (f x) \<le> norm (g x)\<rbrakk> \<Longrightarrow> Zfun f F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   410
  by (erule_tac K="1" in Zfun_imp_Zfun, simp)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   411
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   412
lemma Zfun_add:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   413
  assumes f: "Zfun f F" and g: "Zfun g F"
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   414
  shows "Zfun (\<lambda>x. f x + g x) F"
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   415
proof (rule ZfunI)
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   416
  fix r::real assume "0 < r"
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   417
  hence r: "0 < r / 2" by simp
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   418
  have "eventually (\<lambda>x. norm (f x) < r/2) F"
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   419
    using f r by (rule ZfunD)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   420
  moreover
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   421
  have "eventually (\<lambda>x. norm (g x) < r/2) F"
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   422
    using g r by (rule ZfunD)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   423
  ultimately
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   424
  show "eventually (\<lambda>x. norm (f x + g x) < r) F"
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   425
  proof eventually_elim
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   426
    case (elim x)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   427
    have "norm (f x + g x) \<le> norm (f x) + norm (g x)"
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   428
      by (rule norm_triangle_ineq)
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   429
    also have "\<dots> < r/2 + r/2"
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   430
      using elim by (rule add_strict_mono)
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   431
    finally show ?case
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   432
      by simp
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   433
  qed
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   434
qed
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   435
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   436
lemma Zfun_minus: "Zfun f F \<Longrightarrow> Zfun (\<lambda>x. - f x) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   437
  unfolding Zfun_def by simp
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   438
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   439
lemma Zfun_diff: "\<lbrakk>Zfun f F; Zfun g F\<rbrakk> \<Longrightarrow> Zfun (\<lambda>x. f x - g x) F"
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
   440
  using Zfun_add [of f F "\<lambda>x. - g x"] by (simp add: Zfun_minus)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   441
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   442
lemma (in bounded_linear) Zfun:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   443
  assumes g: "Zfun g F"
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   444
  shows "Zfun (\<lambda>x. f (g x)) F"
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   445
proof -
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   446
  obtain K where "\<And>x. norm (f x) \<le> norm x * K"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
   447
    using bounded by blast
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   448
  then have "eventually (\<lambda>x. norm (f (g x)) \<le> norm (g x) * K) F"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   449
    by simp
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   450
  with g show ?thesis
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   451
    by (rule Zfun_imp_Zfun)
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   452
qed
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   453
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   454
lemma (in bounded_bilinear) Zfun:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   455
  assumes f: "Zfun f F"
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   456
  assumes g: "Zfun g F"
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   457
  shows "Zfun (\<lambda>x. f x ** g x) F"
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   458
proof (rule ZfunI)
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   459
  fix r::real assume r: "0 < r"
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   460
  obtain K where K: "0 < K"
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   461
    and norm_le: "\<And>x y. norm (x ** y) \<le> norm x * norm y * K"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
   462
    using pos_bounded by blast
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   463
  from K have K': "0 < inverse K"
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   464
    by (rule positive_imp_inverse_positive)
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   465
  have "eventually (\<lambda>x. norm (f x) < r) F"
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   466
    using f r by (rule ZfunD)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   467
  moreover
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   468
  have "eventually (\<lambda>x. norm (g x) < inverse K) F"
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   469
    using g K' by (rule ZfunD)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   470
  ultimately
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   471
  show "eventually (\<lambda>x. norm (f x ** g x) < r) F"
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   472
  proof eventually_elim
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   473
    case (elim x)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   474
    have "norm (f x ** g x) \<le> norm (f x) * norm (g x) * K"
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   475
      by (rule norm_le)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   476
    also have "norm (f x) * norm (g x) * K < r * inverse K * K"
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   477
      by (intro mult_strict_right_mono mult_strict_mono' norm_ge_zero elim K)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   478
    also from K have "r * inverse K * K = r"
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   479
      by simp
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   480
    finally show ?case .
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   481
  qed
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   482
qed
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   483
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   484
lemma (in bounded_bilinear) Zfun_left:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   485
  "Zfun f F \<Longrightarrow> Zfun (\<lambda>x. f x ** a) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   486
  by (rule bounded_linear_left [THEN bounded_linear.Zfun])
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   487
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   488
lemma (in bounded_bilinear) Zfun_right:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   489
  "Zfun f F \<Longrightarrow> Zfun (\<lambda>x. a ** f x) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   490
  by (rule bounded_linear_right [THEN bounded_linear.Zfun])
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   491
44282
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   492
lemmas Zfun_mult = bounded_bilinear.Zfun [OF bounded_bilinear_mult]
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   493
lemmas Zfun_mult_right = bounded_bilinear.Zfun_right [OF bounded_bilinear_mult]
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   494
lemmas Zfun_mult_left = bounded_bilinear.Zfun_left [OF bounded_bilinear_mult]
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   495
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   496
lemma tendsto_Zfun_iff: "(f \<longlongrightarrow> a) F = Zfun (\<lambda>x. f x - a) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   497
  by (simp only: tendsto_iff Zfun_def dist_norm)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   498
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   499
lemma tendsto_0_le: "\<lbrakk>(f \<longlongrightarrow> 0) F; eventually (\<lambda>x. norm (g x) \<le> norm (f x) * K) F\<rbrakk>
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   500
                     \<Longrightarrow> (g \<longlongrightarrow> 0) F"
56366
0362c3bb4d02 new theorem about zero limits
paulson <lp15@cam.ac.uk>
parents: 56330
diff changeset
   501
  by (simp add: Zfun_imp_Zfun tendsto_Zfun_iff)
0362c3bb4d02 new theorem about zero limits
paulson <lp15@cam.ac.uk>
parents: 56330
diff changeset
   502
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   503
subsubsection \<open>Distance and norms\<close>
36662
621122eeb138 generalize types of LIMSEQ and LIM; generalize many lemmas
huffman
parents: 36656
diff changeset
   504
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   505
lemma tendsto_dist [tendsto_intros]:
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   506
  fixes l m :: "'a :: metric_space"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   507
  assumes f: "(f \<longlongrightarrow> l) F" and g: "(g \<longlongrightarrow> m) F"
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   508
  shows "((\<lambda>x. dist (f x) (g x)) \<longlongrightarrow> dist l m) F"
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   509
proof (rule tendstoI)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   510
  fix e :: real assume "0 < e"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   511
  hence e2: "0 < e/2" by simp
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   512
  from tendstoD [OF f e2] tendstoD [OF g e2]
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   513
  show "eventually (\<lambda>x. dist (dist (f x) (g x)) (dist l m) < e) F"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   514
  proof (eventually_elim)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   515
    case (elim x)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   516
    then show "dist (dist (f x) (g x)) (dist l m) < e"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   517
      unfolding dist_real_def
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   518
      using dist_triangle2 [of "f x" "g x" "l"]
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   519
      using dist_triangle2 [of "g x" "l" "m"]
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   520
      using dist_triangle3 [of "l" "m" "f x"]
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   521
      using dist_triangle [of "f x" "m" "g x"]
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   522
      by arith
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   523
  qed
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   524
qed
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   525
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   526
lemma continuous_dist[continuous_intros]:
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   527
  fixes f g :: "_ \<Rightarrow> 'a :: metric_space"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   528
  shows "continuous F f \<Longrightarrow> continuous F g \<Longrightarrow> continuous F (\<lambda>x. dist (f x) (g x))"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   529
  unfolding continuous_def by (rule tendsto_dist)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   530
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
   531
lemma continuous_on_dist[continuous_intros]:
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   532
  fixes f g :: "_ \<Rightarrow> 'a :: metric_space"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   533
  shows "continuous_on s f \<Longrightarrow> continuous_on s g \<Longrightarrow> continuous_on s (\<lambda>x. dist (f x) (g x))"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   534
  unfolding continuous_on_def by (auto intro: tendsto_dist)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   535
31565
da5a5589418e theorem attribute [tendsto_intros]
huffman
parents: 31492
diff changeset
   536
lemma tendsto_norm [tendsto_intros]:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   537
  "(f \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. norm (f x)) \<longlongrightarrow> norm a) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   538
  unfolding norm_conv_dist by (intro tendsto_intros)
36662
621122eeb138 generalize types of LIMSEQ and LIM; generalize many lemmas
huffman
parents: 36656
diff changeset
   539
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   540
lemma continuous_norm [continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   541
  "continuous F f \<Longrightarrow> continuous F (\<lambda>x. norm (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   542
  unfolding continuous_def by (rule tendsto_norm)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   543
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
   544
lemma continuous_on_norm [continuous_intros]:
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   545
  "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. norm (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   546
  unfolding continuous_on_def by (auto intro: tendsto_norm)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   547
36662
621122eeb138 generalize types of LIMSEQ and LIM; generalize many lemmas
huffman
parents: 36656
diff changeset
   548
lemma tendsto_norm_zero:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   549
  "(f \<longlongrightarrow> 0) F \<Longrightarrow> ((\<lambda>x. norm (f x)) \<longlongrightarrow> 0) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   550
  by (drule tendsto_norm, simp)
36662
621122eeb138 generalize types of LIMSEQ and LIM; generalize many lemmas
huffman
parents: 36656
diff changeset
   551
621122eeb138 generalize types of LIMSEQ and LIM; generalize many lemmas
huffman
parents: 36656
diff changeset
   552
lemma tendsto_norm_zero_cancel:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   553
  "((\<lambda>x. norm (f x)) \<longlongrightarrow> 0) F \<Longrightarrow> (f \<longlongrightarrow> 0) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   554
  unfolding tendsto_iff dist_norm by simp
36662
621122eeb138 generalize types of LIMSEQ and LIM; generalize many lemmas
huffman
parents: 36656
diff changeset
   555
621122eeb138 generalize types of LIMSEQ and LIM; generalize many lemmas
huffman
parents: 36656
diff changeset
   556
lemma tendsto_norm_zero_iff:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   557
  "((\<lambda>x. norm (f x)) \<longlongrightarrow> 0) F \<longleftrightarrow> (f \<longlongrightarrow> 0) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   558
  unfolding tendsto_iff dist_norm by simp
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   559
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   560
lemma tendsto_rabs [tendsto_intros]:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   561
  "(f \<longlongrightarrow> (l::real)) F \<Longrightarrow> ((\<lambda>x. \<bar>f x\<bar>) \<longlongrightarrow> \<bar>l\<bar>) F"
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   562
  by (fold real_norm_def, rule tendsto_norm)
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   563
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   564
lemma continuous_rabs [continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   565
  "continuous F f \<Longrightarrow> continuous F (\<lambda>x. \<bar>f x :: real\<bar>)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   566
  unfolding real_norm_def[symmetric] by (rule continuous_norm)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   567
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
   568
lemma continuous_on_rabs [continuous_intros]:
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   569
  "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. \<bar>f x :: real\<bar>)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   570
  unfolding real_norm_def[symmetric] by (rule continuous_on_norm)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   571
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   572
lemma tendsto_rabs_zero:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   573
  "(f \<longlongrightarrow> (0::real)) F \<Longrightarrow> ((\<lambda>x. \<bar>f x\<bar>) \<longlongrightarrow> 0) F"
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   574
  by (fold real_norm_def, rule tendsto_norm_zero)
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   575
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   576
lemma tendsto_rabs_zero_cancel:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   577
  "((\<lambda>x. \<bar>f x\<bar>) \<longlongrightarrow> (0::real)) F \<Longrightarrow> (f \<longlongrightarrow> 0) F"
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   578
  by (fold real_norm_def, rule tendsto_norm_zero_cancel)
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   579
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   580
lemma tendsto_rabs_zero_iff:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   581
  "((\<lambda>x. \<bar>f x\<bar>) \<longlongrightarrow> (0::real)) F \<longleftrightarrow> (f \<longlongrightarrow> 0) F"
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   582
  by (fold real_norm_def, rule tendsto_norm_zero_iff)
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   583
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   584
subsection \<open>Topological Monoid\<close>
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   585
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   586
class topological_monoid_add = topological_space + monoid_add +
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   587
  assumes tendsto_add_Pair: "LIM x (nhds a \<times>\<^sub>F nhds b). fst x + snd x :> nhds (a + b)"
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   588
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   589
class topological_comm_monoid_add = topological_monoid_add + comm_monoid_add
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   590
31565
da5a5589418e theorem attribute [tendsto_intros]
huffman
parents: 31492
diff changeset
   591
lemma tendsto_add [tendsto_intros]:
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   592
  fixes a b :: "'a::topological_monoid_add"
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   593
  shows "(f \<longlongrightarrow> a) F \<Longrightarrow> (g \<longlongrightarrow> b) F \<Longrightarrow> ((\<lambda>x. f x + g x) \<longlongrightarrow> a + b) F"
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   594
  using filterlim_compose[OF tendsto_add_Pair, of "\<lambda>x. (f x, g x)" a b F]
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   595
  by (simp add: nhds_prod[symmetric] tendsto_Pair)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   596
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   597
lemma continuous_add [continuous_intros]:
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   598
  fixes f g :: "_ \<Rightarrow> 'b::topological_monoid_add"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   599
  shows "continuous F f \<Longrightarrow> continuous F g \<Longrightarrow> continuous F (\<lambda>x. f x + g x)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   600
  unfolding continuous_def by (rule tendsto_add)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   601
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
   602
lemma continuous_on_add [continuous_intros]:
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   603
  fixes f g :: "_ \<Rightarrow> 'b::topological_monoid_add"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   604
  shows "continuous_on s f \<Longrightarrow> continuous_on s g \<Longrightarrow> continuous_on s (\<lambda>x. f x + g x)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   605
  unfolding continuous_on_def by (auto intro: tendsto_add)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   606
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   607
lemma tendsto_add_zero:
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   608
  fixes f g :: "_ \<Rightarrow> 'b::topological_monoid_add"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   609
  shows "\<lbrakk>(f \<longlongrightarrow> 0) F; (g \<longlongrightarrow> 0) F\<rbrakk> \<Longrightarrow> ((\<lambda>x. f x + g x) \<longlongrightarrow> 0) F"
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   610
  by (drule (1) tendsto_add, simp)
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   611
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   612
lemma tendsto_setsum [tendsto_intros]:
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   613
  fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'c::topological_comm_monoid_add"
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   614
  assumes "\<And>i. i \<in> S \<Longrightarrow> (f i \<longlongrightarrow> a i) F"
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   615
  shows "((\<lambda>x. \<Sum>i\<in>S. f i x) \<longlongrightarrow> (\<Sum>i\<in>S. a i)) F"
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   616
proof (cases "finite S")
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   617
  assume "finite S" thus ?thesis using assms
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   618
    by (induct, simp, simp add: tendsto_add)
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   619
qed simp
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   620
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   621
lemma continuous_setsum [continuous_intros]:
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   622
  fixes f :: "'a \<Rightarrow> 'b::t2_space \<Rightarrow> 'c::topological_comm_monoid_add"
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   623
  shows "(\<And>i. i \<in> S \<Longrightarrow> continuous F (f i)) \<Longrightarrow> continuous F (\<lambda>x. \<Sum>i\<in>S. f i x)"
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   624
  unfolding continuous_def by (rule tendsto_setsum)
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   625
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   626
lemma continuous_on_setsum [continuous_intros]:
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   627
  fixes f :: "'a \<Rightarrow> 'b::topological_space \<Rightarrow> 'c::topological_comm_monoid_add"
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   628
  shows "(\<And>i. i \<in> S \<Longrightarrow> continuous_on s (f i)) \<Longrightarrow> continuous_on s (\<lambda>x. \<Sum>i\<in>S. f i x)"
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   629
  unfolding continuous_on_def by (auto intro: tendsto_setsum)
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   630
62369
acfc4ad7b76a instantiate topologies for nat, int and enat
hoelzl
parents: 62368
diff changeset
   631
instance nat :: topological_comm_monoid_add
acfc4ad7b76a instantiate topologies for nat, int and enat
hoelzl
parents: 62368
diff changeset
   632
  proof qed (simp add: nhds_discrete principal_prod_principal filterlim_principal eventually_principal)
acfc4ad7b76a instantiate topologies for nat, int and enat
hoelzl
parents: 62368
diff changeset
   633
acfc4ad7b76a instantiate topologies for nat, int and enat
hoelzl
parents: 62368
diff changeset
   634
instance int :: topological_comm_monoid_add
acfc4ad7b76a instantiate topologies for nat, int and enat
hoelzl
parents: 62368
diff changeset
   635
  proof qed (simp add: nhds_discrete principal_prod_principal filterlim_principal eventually_principal)
acfc4ad7b76a instantiate topologies for nat, int and enat
hoelzl
parents: 62368
diff changeset
   636
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   637
subsubsection \<open>Addition and subtraction\<close>
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   638
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   639
instance real_normed_vector < topological_comm_monoid_add
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   640
proof
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   641
  fix a b :: 'a show "((\<lambda>x. fst x + snd x) \<longlongrightarrow> a + b) (nhds a \<times>\<^sub>F nhds b)"
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   642
    unfolding tendsto_Zfun_iff add_diff_add
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   643
    using tendsto_fst[OF filterlim_ident, of "(a,b)"] tendsto_snd[OF filterlim_ident, of "(a,b)"]
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   644
    by (intro Zfun_add)
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   645
       (auto simp add: tendsto_Zfun_iff[symmetric] nhds_prod[symmetric] intro!: tendsto_fst)
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   646
qed
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   647
31565
da5a5589418e theorem attribute [tendsto_intros]
huffman
parents: 31492
diff changeset
   648
lemma tendsto_minus [tendsto_intros]:
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   649
  fixes a :: "'a::real_normed_vector"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   650
  shows "(f \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. - f x) \<longlongrightarrow> - a) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   651
  by (simp only: tendsto_Zfun_iff minus_diff_minus Zfun_minus)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   652
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   653
lemma continuous_minus [continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   654
  fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   655
  shows "continuous F f \<Longrightarrow> continuous F (\<lambda>x. - f x)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   656
  unfolding continuous_def by (rule tendsto_minus)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   657
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
   658
lemma continuous_on_minus [continuous_intros]:
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   659
  fixes f :: "_ \<Rightarrow> 'b::real_normed_vector"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   660
  shows "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. - f x)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   661
  unfolding continuous_on_def by (auto intro: tendsto_minus)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   662
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   663
lemma tendsto_minus_cancel:
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   664
  fixes a :: "'a::real_normed_vector"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   665
  shows "((\<lambda>x. - f x) \<longlongrightarrow> - a) F \<Longrightarrow> (f \<longlongrightarrow> a) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   666
  by (drule tendsto_minus, simp)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   667
50330
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50327
diff changeset
   668
lemma tendsto_minus_cancel_left:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   669
    "(f \<longlongrightarrow> - (y::_::real_normed_vector)) F \<longleftrightarrow> ((\<lambda>x. - f x) \<longlongrightarrow> y) F"
50330
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50327
diff changeset
   670
  using tendsto_minus_cancel[of f "- y" F]  tendsto_minus[of f "- y" F]
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50327
diff changeset
   671
  by auto
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50327
diff changeset
   672
31565
da5a5589418e theorem attribute [tendsto_intros]
huffman
parents: 31492
diff changeset
   673
lemma tendsto_diff [tendsto_intros]:
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   674
  fixes a b :: "'a::real_normed_vector"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   675
  shows "\<lbrakk>(f \<longlongrightarrow> a) F; (g \<longlongrightarrow> b) F\<rbrakk> \<Longrightarrow> ((\<lambda>x. f x - g x) \<longlongrightarrow> a - b) F"
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
   676
  using tendsto_add [of f a F "\<lambda>x. - g x" "- b"] by (simp add: tendsto_minus)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   677
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   678
lemma continuous_diff [continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   679
  fixes f g :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   680
  shows "continuous F f \<Longrightarrow> continuous F g \<Longrightarrow> continuous F (\<lambda>x. f x - g x)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   681
  unfolding continuous_def by (rule tendsto_diff)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   682
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
   683
lemma continuous_on_diff [continuous_intros]:
61738
c4f6031f1310 New material about paths, winding numbers, etc. Added lemmas to divide_const_simps. Misc tuning.
paulson <lp15@cam.ac.uk>
parents: 61694
diff changeset
   684
  fixes f g :: "_ \<Rightarrow> 'b::real_normed_vector"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   685
  shows "continuous_on s f \<Longrightarrow> continuous_on s g \<Longrightarrow> continuous_on s (\<lambda>x. f x - g x)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   686
  unfolding continuous_on_def by (auto intro: tendsto_diff)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   687
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
   688
lemma continuous_on_op_minus: "continuous_on (s::'a::real_normed_vector set) (op - x)"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
   689
  by (rule continuous_intros | simp)+
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
   690
50999
3de230ed0547 introduce order topology
hoelzl
parents: 50880
diff changeset
   691
lemmas real_tendsto_sandwich = tendsto_sandwich[where 'b=real]
3de230ed0547 introduce order topology
hoelzl
parents: 50880
diff changeset
   692
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   693
subsubsection \<open>Linear operators and multiplication\<close>
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   694
61806
d2e62ae01cd8 Cauchy's integral formula for circles. Starting to fix eventually_mono.
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
   695
lemma linear_times:
d2e62ae01cd8 Cauchy's integral formula for circles. Starting to fix eventually_mono.
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
   696
  fixes c::"'a::real_algebra" shows "linear (\<lambda>x. c * x)"
d2e62ae01cd8 Cauchy's integral formula for circles. Starting to fix eventually_mono.
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
   697
  by (auto simp: linearI distrib_left)
d2e62ae01cd8 Cauchy's integral formula for circles. Starting to fix eventually_mono.
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
   698
44282
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   699
lemma (in bounded_linear) tendsto:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   700
  "(g \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. f (g x)) \<longlongrightarrow> f a) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   701
  by (simp only: tendsto_Zfun_iff diff [symmetric] Zfun)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   702
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   703
lemma (in bounded_linear) continuous:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   704
  "continuous F g \<Longrightarrow> continuous F (\<lambda>x. f (g x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   705
  using tendsto[of g _ F] by (auto simp: continuous_def)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   706
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   707
lemma (in bounded_linear) continuous_on:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   708
  "continuous_on s g \<Longrightarrow> continuous_on s (\<lambda>x. f (g x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   709
  using tendsto[of g] by (auto simp: continuous_on_def)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   710
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   711
lemma (in bounded_linear) tendsto_zero:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   712
  "(g \<longlongrightarrow> 0) F \<Longrightarrow> ((\<lambda>x. f (g x)) \<longlongrightarrow> 0) F"
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   713
  by (drule tendsto, simp only: zero)
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   714
44282
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   715
lemma (in bounded_bilinear) tendsto:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   716
  "\<lbrakk>(f \<longlongrightarrow> a) F; (g \<longlongrightarrow> b) F\<rbrakk> \<Longrightarrow> ((\<lambda>x. f x ** g x) \<longlongrightarrow> a ** b) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   717
  by (simp only: tendsto_Zfun_iff prod_diff_prod
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   718
                 Zfun_add Zfun Zfun_left Zfun_right)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   719
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   720
lemma (in bounded_bilinear) continuous:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   721
  "continuous F f \<Longrightarrow> continuous F g \<Longrightarrow> continuous F (\<lambda>x. f x ** g x)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   722
  using tendsto[of f _ F g] by (auto simp: continuous_def)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   723
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   724
lemma (in bounded_bilinear) continuous_on:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   725
  "continuous_on s f \<Longrightarrow> continuous_on s g \<Longrightarrow> continuous_on s (\<lambda>x. f x ** g x)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   726
  using tendsto[of f _ _ g] by (auto simp: continuous_on_def)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   727
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   728
lemma (in bounded_bilinear) tendsto_zero:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   729
  assumes f: "(f \<longlongrightarrow> 0) F"
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   730
  assumes g: "(g \<longlongrightarrow> 0) F"
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   731
  shows "((\<lambda>x. f x ** g x) \<longlongrightarrow> 0) F"
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   732
  using tendsto [OF f g] by (simp add: zero_left)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   733
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   734
lemma (in bounded_bilinear) tendsto_left_zero:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   735
  "(f \<longlongrightarrow> 0) F \<Longrightarrow> ((\<lambda>x. f x ** c) \<longlongrightarrow> 0) F"
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   736
  by (rule bounded_linear.tendsto_zero [OF bounded_linear_left])
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   737
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   738
lemma (in bounded_bilinear) tendsto_right_zero:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   739
  "(f \<longlongrightarrow> 0) F \<Longrightarrow> ((\<lambda>x. c ** f x) \<longlongrightarrow> 0) F"
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   740
  by (rule bounded_linear.tendsto_zero [OF bounded_linear_right])
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   741
44282
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   742
lemmas tendsto_of_real [tendsto_intros] =
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   743
  bounded_linear.tendsto [OF bounded_linear_of_real]
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   744
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   745
lemmas tendsto_scaleR [tendsto_intros] =
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   746
  bounded_bilinear.tendsto [OF bounded_bilinear_scaleR]
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   747
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   748
lemmas tendsto_mult [tendsto_intros] =
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   749
  bounded_bilinear.tendsto [OF bounded_bilinear_mult]
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   750
61806
d2e62ae01cd8 Cauchy's integral formula for circles. Starting to fix eventually_mono.
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
   751
lemma tendsto_mult_left:
d2e62ae01cd8 Cauchy's integral formula for circles. Starting to fix eventually_mono.
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
   752
  fixes c::"'a::real_normed_algebra"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   753
  shows "(f \<longlongrightarrow> l) F \<Longrightarrow> ((\<lambda>x. c * (f x)) \<longlongrightarrow> c * l) F"
61806
d2e62ae01cd8 Cauchy's integral formula for circles. Starting to fix eventually_mono.
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
   754
by (rule tendsto_mult [OF tendsto_const])
d2e62ae01cd8 Cauchy's integral formula for circles. Starting to fix eventually_mono.
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
   755
d2e62ae01cd8 Cauchy's integral formula for circles. Starting to fix eventually_mono.
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
   756
lemma tendsto_mult_right:
d2e62ae01cd8 Cauchy's integral formula for circles. Starting to fix eventually_mono.
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
   757
  fixes c::"'a::real_normed_algebra"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   758
  shows "(f \<longlongrightarrow> l) F \<Longrightarrow> ((\<lambda>x. (f x) * c) \<longlongrightarrow> l * c) F"
61806
d2e62ae01cd8 Cauchy's integral formula for circles. Starting to fix eventually_mono.
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
   759
by (rule tendsto_mult [OF _ tendsto_const])
d2e62ae01cd8 Cauchy's integral formula for circles. Starting to fix eventually_mono.
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
   760
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   761
lemmas continuous_of_real [continuous_intros] =
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   762
  bounded_linear.continuous [OF bounded_linear_of_real]
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   763
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   764
lemmas continuous_scaleR [continuous_intros] =
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   765
  bounded_bilinear.continuous [OF bounded_bilinear_scaleR]
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   766
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   767
lemmas continuous_mult [continuous_intros] =
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   768
  bounded_bilinear.continuous [OF bounded_bilinear_mult]
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   769
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
   770
lemmas continuous_on_of_real [continuous_intros] =
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   771
  bounded_linear.continuous_on [OF bounded_linear_of_real]
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   772
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
   773
lemmas continuous_on_scaleR [continuous_intros] =
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   774
  bounded_bilinear.continuous_on [OF bounded_bilinear_scaleR]
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   775
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
   776
lemmas continuous_on_mult [continuous_intros] =
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   777
  bounded_bilinear.continuous_on [OF bounded_bilinear_mult]
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   778
44568
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   779
lemmas tendsto_mult_zero =
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   780
  bounded_bilinear.tendsto_zero [OF bounded_bilinear_mult]
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   781
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   782
lemmas tendsto_mult_left_zero =
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   783
  bounded_bilinear.tendsto_left_zero [OF bounded_bilinear_mult]
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   784
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   785
lemmas tendsto_mult_right_zero =
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   786
  bounded_bilinear.tendsto_right_zero [OF bounded_bilinear_mult]
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   787
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   788
lemma tendsto_power [tendsto_intros]:
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   789
  fixes f :: "'a \<Rightarrow> 'b::{power,real_normed_algebra}"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   790
  shows "(f \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. f x ^ n) \<longlongrightarrow> a ^ n) F"
58729
e8ecc79aee43 add tendsto_const and tendsto_ident_at as simp and intro rules
hoelzl
parents: 57512
diff changeset
   791
  by (induct n) (simp_all add: tendsto_mult)
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   792
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   793
lemma continuous_power [continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   794
  fixes f :: "'a::t2_space \<Rightarrow> 'b::{power,real_normed_algebra}"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   795
  shows "continuous F f \<Longrightarrow> continuous F (\<lambda>x. (f x)^n)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   796
  unfolding continuous_def by (rule tendsto_power)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   797
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
   798
lemma continuous_on_power [continuous_intros]:
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   799
  fixes f :: "_ \<Rightarrow> 'b::{power,real_normed_algebra}"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   800
  shows "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. (f x)^n)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   801
  unfolding continuous_on_def by (auto intro: tendsto_power)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   802
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   803
lemma tendsto_setprod [tendsto_intros]:
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   804
  fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'c::{real_normed_algebra,comm_ring_1}"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   805
  assumes "\<And>i. i \<in> S \<Longrightarrow> (f i \<longlongrightarrow> L i) F"
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   806
  shows "((\<lambda>x. \<Prod>i\<in>S. f i x) \<longlongrightarrow> (\<Prod>i\<in>S. L i)) F"
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   807
proof (cases "finite S")
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   808
  assume "finite S" thus ?thesis using assms
58729
e8ecc79aee43 add tendsto_const and tendsto_ident_at as simp and intro rules
hoelzl
parents: 57512
diff changeset
   809
    by (induct, simp, simp add: tendsto_mult)
e8ecc79aee43 add tendsto_const and tendsto_ident_at as simp and intro rules
hoelzl
parents: 57512
diff changeset
   810
qed simp
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   811
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   812
lemma continuous_setprod [continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   813
  fixes f :: "'a \<Rightarrow> 'b::t2_space \<Rightarrow> 'c::{real_normed_algebra,comm_ring_1}"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   814
  shows "(\<And>i. i \<in> S \<Longrightarrow> continuous F (f i)) \<Longrightarrow> continuous F (\<lambda>x. \<Prod>i\<in>S. f i x)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   815
  unfolding continuous_def by (rule tendsto_setprod)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   816
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   817
lemma continuous_on_setprod [continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   818
  fixes f :: "'a \<Rightarrow> _ \<Rightarrow> 'c::{real_normed_algebra,comm_ring_1}"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   819
  shows "(\<And>i. i \<in> S \<Longrightarrow> continuous_on s (f i)) \<Longrightarrow> continuous_on s (\<lambda>x. \<Prod>i\<in>S. f i x)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   820
  unfolding continuous_on_def by (auto intro: tendsto_setprod)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   821
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   822
lemma tendsto_of_real_iff:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   823
  "((\<lambda>x. of_real (f x) :: 'a :: real_normed_div_algebra) \<longlongrightarrow> of_real c) F \<longleftrightarrow> (f \<longlongrightarrow> c) F"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   824
  unfolding tendsto_iff by simp
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   825
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   826
lemma tendsto_add_const_iff:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   827
  "((\<lambda>x. c + f x :: 'a :: real_normed_vector) \<longlongrightarrow> c + d) F \<longleftrightarrow> (f \<longlongrightarrow> d) F"
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
   828
  using tendsto_add[OF tendsto_const[of c], of f d]
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   829
        tendsto_add[OF tendsto_const[of "-c"], of "\<lambda>x. c + f x" "c + d"] by auto
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   830
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   831
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   832
subsubsection \<open>Inverse and division\<close>
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   833
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   834
lemma (in bounded_bilinear) Zfun_prod_Bfun:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   835
  assumes f: "Zfun f F"
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   836
  assumes g: "Bfun g F"
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   837
  shows "Zfun (\<lambda>x. f x ** g x) F"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   838
proof -
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   839
  obtain K where K: "0 \<le> K"
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   840
    and norm_le: "\<And>x y. norm (x ** y) \<le> norm x * norm y * K"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
   841
    using nonneg_bounded by blast
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   842
  obtain B where B: "0 < B"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   843
    and norm_g: "eventually (\<lambda>x. norm (g x) \<le> B) F"
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   844
    using g by (rule BfunE)
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   845
  have "eventually (\<lambda>x. norm (f x ** g x) \<le> norm (f x) * (B * K)) F"
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   846
  using norm_g proof eventually_elim
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   847
    case (elim x)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   848
    have "norm (f x ** g x) \<le> norm (f x) * norm (g x) * K"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   849
      by (rule norm_le)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   850
    also have "\<dots> \<le> norm (f x) * B * K"
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   851
      by (intro mult_mono' order_refl norm_g norm_ge_zero
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   852
                mult_nonneg_nonneg K elim)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   853
    also have "\<dots> = norm (f x) * (B * K)"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57447
diff changeset
   854
      by (rule mult.assoc)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   855
    finally show "norm (f x ** g x) \<le> norm (f x) * (B * K)" .
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   856
  qed
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   857
  with f show ?thesis
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   858
    by (rule Zfun_imp_Zfun)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   859
qed
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   860
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   861
lemma (in bounded_bilinear) Bfun_prod_Zfun:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   862
  assumes f: "Bfun f F"
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   863
  assumes g: "Zfun g F"
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   864
  shows "Zfun (\<lambda>x. f x ** g x) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   865
  using flip g f by (rule bounded_bilinear.Zfun_prod_Bfun)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   866
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   867
lemma Bfun_inverse_lemma:
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   868
  fixes x :: "'a::real_normed_div_algebra"
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   869
  shows "\<lbrakk>r \<le> norm x; 0 < r\<rbrakk> \<Longrightarrow> norm (inverse x) \<le> inverse r"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   870
  apply (subst nonzero_norm_inverse, clarsimp)
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   871
  apply (erule (1) le_imp_inverse_le)
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   872
  done
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   873
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   874
lemma Bfun_inverse:
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   875
  fixes a :: "'a::real_normed_div_algebra"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   876
  assumes f: "(f \<longlongrightarrow> a) F"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   877
  assumes a: "a \<noteq> 0"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   878
  shows "Bfun (\<lambda>x. inverse (f x)) F"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   879
proof -
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   880
  from a have "0 < norm a" by simp
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   881
  hence "\<exists>r>0. r < norm a" by (rule dense)
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
   882
  then obtain r where r1: "0 < r" and r2: "r < norm a" by blast
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   883
  have "eventually (\<lambda>x. dist (f x) a < r) F"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
   884
    using tendstoD [OF f r1] by blast
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   885
  hence "eventually (\<lambda>x. norm (inverse (f x)) \<le> inverse (norm a - r)) F"
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   886
  proof eventually_elim
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   887
    case (elim x)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   888
    hence 1: "norm (f x - a) < r"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   889
      by (simp add: dist_norm)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   890
    hence 2: "f x \<noteq> 0" using r2 by auto
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   891
    hence "norm (inverse (f x)) = inverse (norm (f x))"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   892
      by (rule nonzero_norm_inverse)
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   893
    also have "\<dots> \<le> inverse (norm a - r)"
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   894
    proof (rule le_imp_inverse_le)
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   895
      show "0 < norm a - r" using r2 by simp
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   896
    next
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   897
      have "norm a - norm (f x) \<le> norm (a - f x)"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   898
        by (rule norm_triangle_ineq2)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   899
      also have "\<dots> = norm (f x - a)"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   900
        by (rule norm_minus_commute)
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   901
      also have "\<dots> < r" using 1 .
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   902
      finally show "norm a - r \<le> norm (f x)" by simp
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   903
    qed
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   904
    finally show "norm (inverse (f x)) \<le> inverse (norm a - r)" .
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   905
  qed
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   906
  thus ?thesis by (rule BfunI)
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   907
qed
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   908
31565
da5a5589418e theorem attribute [tendsto_intros]
huffman
parents: 31492
diff changeset
   909
lemma tendsto_inverse [tendsto_intros]:
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   910
  fixes a :: "'a::real_normed_div_algebra"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   911
  assumes f: "(f \<longlongrightarrow> a) F"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   912
  assumes a: "a \<noteq> 0"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   913
  shows "((\<lambda>x. inverse (f x)) \<longlongrightarrow> inverse a) F"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   914
proof -
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   915
  from a have "0 < norm a" by simp
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   916
  with f have "eventually (\<lambda>x. dist (f x) a < norm a) F"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   917
    by (rule tendstoD)
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   918
  then have "eventually (\<lambda>x. f x \<noteq> 0) F"
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61806
diff changeset
   919
    unfolding dist_norm by (auto elim!: eventually_mono)
44627
134c06282ae6 convert to Isar-style proof
huffman
parents: 44571
diff changeset
   920
  with a have "eventually (\<lambda>x. inverse (f x) - inverse a =
134c06282ae6 convert to Isar-style proof
huffman
parents: 44571
diff changeset
   921
    - (inverse (f x) * (f x - a) * inverse a)) F"
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61806
diff changeset
   922
    by (auto elim!: eventually_mono simp: inverse_diff_inverse)
44627
134c06282ae6 convert to Isar-style proof
huffman
parents: 44571
diff changeset
   923
  moreover have "Zfun (\<lambda>x. - (inverse (f x) * (f x - a) * inverse a)) F"
134c06282ae6 convert to Isar-style proof
huffman
parents: 44571
diff changeset
   924
    by (intro Zfun_minus Zfun_mult_left
134c06282ae6 convert to Isar-style proof
huffman
parents: 44571
diff changeset
   925
      bounded_bilinear.Bfun_prod_Zfun [OF bounded_bilinear_mult]
134c06282ae6 convert to Isar-style proof
huffman
parents: 44571
diff changeset
   926
      Bfun_inverse [OF f a] f [unfolded tendsto_Zfun_iff])
134c06282ae6 convert to Isar-style proof
huffman
parents: 44571
diff changeset
   927
  ultimately show ?thesis
134c06282ae6 convert to Isar-style proof
huffman
parents: 44571
diff changeset
   928
    unfolding tendsto_Zfun_iff by (rule Zfun_ssubst)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   929
qed
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   930
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   931
lemma continuous_inverse:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   932
  fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_div_algebra"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   933
  assumes "continuous F f" and "f (Lim F (\<lambda>x. x)) \<noteq> 0"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   934
  shows "continuous F (\<lambda>x. inverse (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   935
  using assms unfolding continuous_def by (rule tendsto_inverse)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   936
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   937
lemma continuous_at_within_inverse[continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   938
  fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_div_algebra"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   939
  assumes "continuous (at a within s) f" and "f a \<noteq> 0"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   940
  shows "continuous (at a within s) (\<lambda>x. inverse (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   941
  using assms unfolding continuous_within by (rule tendsto_inverse)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   942
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   943
lemma isCont_inverse[continuous_intros, simp]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   944
  fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_div_algebra"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   945
  assumes "isCont f a" and "f a \<noteq> 0"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   946
  shows "isCont (\<lambda>x. inverse (f x)) a"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   947
  using assms unfolding continuous_at by (rule tendsto_inverse)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   948
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
   949
lemma continuous_on_inverse[continuous_intros]:
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   950
  fixes f :: "'a::topological_space \<Rightarrow> 'b::real_normed_div_algebra"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   951
  assumes "continuous_on s f" and "\<forall>x\<in>s. f x \<noteq> 0"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   952
  shows "continuous_on s (\<lambda>x. inverse (f x))"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
   953
  using assms unfolding continuous_on_def by (blast intro: tendsto_inverse)
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   954
31565
da5a5589418e theorem attribute [tendsto_intros]
huffman
parents: 31492
diff changeset
   955
lemma tendsto_divide [tendsto_intros]:
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   956
  fixes a b :: "'a::real_normed_field"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   957
  shows "\<lbrakk>(f \<longlongrightarrow> a) F; (g \<longlongrightarrow> b) F; b \<noteq> 0\<rbrakk>
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   958
    \<Longrightarrow> ((\<lambda>x. f x / g x) \<longlongrightarrow> a / b) F"
44282
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   959
  by (simp add: tendsto_mult tendsto_inverse divide_inverse)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   960
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   961
lemma continuous_divide:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   962
  fixes f g :: "'a::t2_space \<Rightarrow> 'b::real_normed_field"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   963
  assumes "continuous F f" and "continuous F g" and "g (Lim F (\<lambda>x. x)) \<noteq> 0"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   964
  shows "continuous F (\<lambda>x. (f x) / (g x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   965
  using assms unfolding continuous_def by (rule tendsto_divide)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   966
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   967
lemma continuous_at_within_divide[continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   968
  fixes f g :: "'a::t2_space \<Rightarrow> 'b::real_normed_field"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   969
  assumes "continuous (at a within s) f" "continuous (at a within s) g" and "g a \<noteq> 0"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   970
  shows "continuous (at a within s) (\<lambda>x. (f x) / (g x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   971
  using assms unfolding continuous_within by (rule tendsto_divide)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   972
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   973
lemma isCont_divide[continuous_intros, simp]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   974
  fixes f g :: "'a::t2_space \<Rightarrow> 'b::real_normed_field"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   975
  assumes "isCont f a" "isCont g a" "g a \<noteq> 0"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   976
  shows "isCont (\<lambda>x. (f x) / g x) a"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   977
  using assms unfolding continuous_at by (rule tendsto_divide)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   978
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
   979
lemma continuous_on_divide[continuous_intros]:
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   980
  fixes f :: "'a::topological_space \<Rightarrow> 'b::real_normed_field"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   981
  assumes "continuous_on s f" "continuous_on s g" and "\<forall>x\<in>s. g x \<noteq> 0"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   982
  shows "continuous_on s (\<lambda>x. (f x) / (g x))"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
   983
  using assms unfolding continuous_on_def by (blast intro: tendsto_divide)
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   984
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   985
lemma tendsto_sgn [tendsto_intros]:
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   986
  fixes l :: "'a::real_normed_vector"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   987
  shows "\<lbrakk>(f \<longlongrightarrow> l) F; l \<noteq> 0\<rbrakk> \<Longrightarrow> ((\<lambda>x. sgn (f x)) \<longlongrightarrow> sgn l) F"
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   988
  unfolding sgn_div_norm by (simp add: tendsto_intros)
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   989
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   990
lemma continuous_sgn:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   991
  fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   992
  assumes "continuous F f" and "f (Lim F (\<lambda>x. x)) \<noteq> 0"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   993
  shows "continuous F (\<lambda>x. sgn (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   994
  using assms unfolding continuous_def by (rule tendsto_sgn)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   995
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   996
lemma continuous_at_within_sgn[continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   997
  fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   998
  assumes "continuous (at a within s) f" and "f a \<noteq> 0"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   999
  shows "continuous (at a within s) (\<lambda>x. sgn (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1000
  using assms unfolding continuous_within by (rule tendsto_sgn)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1001
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1002
lemma isCont_sgn[continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1003
  fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1004
  assumes "isCont f a" and "f a \<noteq> 0"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1005
  shows "isCont (\<lambda>x. sgn (f x)) a"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1006
  using assms unfolding continuous_at by (rule tendsto_sgn)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1007
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
  1008
lemma continuous_on_sgn[continuous_intros]:
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1009
  fixes f :: "'a::topological_space \<Rightarrow> 'b::real_normed_vector"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1010
  assumes "continuous_on s f" and "\<forall>x\<in>s. f x \<noteq> 0"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1011
  shows "continuous_on s (\<lambda>x. sgn (f x))"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
  1012
  using assms unfolding continuous_on_def by (blast intro: tendsto_sgn)
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1013
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1014
lemma filterlim_at_infinity:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60974
diff changeset
  1015
  fixes f :: "_ \<Rightarrow> 'a::real_normed_vector"
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1016
  assumes "0 \<le> c"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1017
  shows "(LIM x F. f x :> at_infinity) \<longleftrightarrow> (\<forall>r>c. eventually (\<lambda>x. r \<le> norm (f x)) F)"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1018
  unfolding filterlim_iff eventually_at_infinity
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1019
proof safe
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1020
  fix P :: "'a \<Rightarrow> bool" and b
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1021
  assume *: "\<forall>r>c. eventually (\<lambda>x. r \<le> norm (f x)) F"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1022
    and P: "\<forall>x. b \<le> norm x \<longrightarrow> P x"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1023
  have "max b (c + 1) > c" by auto
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1024
  with * have "eventually (\<lambda>x. max b (c + 1) \<le> norm (f x)) F"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1025
    by auto
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1026
  then show "eventually (\<lambda>x. P (f x)) F"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1027
  proof eventually_elim
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1028
    fix x assume "max b (c + 1) \<le> norm (f x)"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1029
    with P show "P (f x)" by auto
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1030
  qed
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1031
qed force
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1032
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1033
lemma not_tendsto_and_filterlim_at_infinity:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1034
  assumes "F \<noteq> bot"
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1035
  assumes "(f \<longlongrightarrow> (c :: 'a :: real_normed_vector)) F"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1036
  assumes "filterlim f at_infinity F"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1037
  shows   False
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1038
proof -
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1039
  from tendstoD[OF assms(2), of "1/2"]
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1040
    have "eventually (\<lambda>x. dist (f x) c < 1/2) F" by simp
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1041
  moreover from filterlim_at_infinity[of "norm c" f F] assms(3)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1042
    have "eventually (\<lambda>x. norm (f x) \<ge> norm c + 1) F" by simp
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1043
  ultimately have "eventually (\<lambda>x. False) F"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1044
  proof eventually_elim
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1045
    fix x assume A: "dist (f x) c < 1/2" and B: "norm (f x) \<ge> norm c + 1"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1046
    note B
62379
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62369
diff changeset
  1047
    also have "norm (f x) = dist (f x) 0" by simp
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1048
    also have "... \<le> dist (f x) c + dist c 0" by (rule dist_triangle)
62379
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62369
diff changeset
  1049
    finally show False using A by simp
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1050
  qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1051
  with assms show False by simp
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1052
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1053
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1054
lemma filterlim_at_infinity_imp_not_convergent:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1055
  assumes "filterlim f at_infinity sequentially"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1056
  shows   "\<not>convergent f"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1057
  by (rule notI, rule not_tendsto_and_filterlim_at_infinity[OF _ _ assms])
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1058
     (simp_all add: convergent_LIMSEQ_iff)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1059
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1060
lemma filterlim_at_infinity_imp_eventually_ne:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1061
  assumes "filterlim f at_infinity F"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1062
  shows   "eventually (\<lambda>z. f z \<noteq> c) F"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1063
proof -
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1064
  have "norm c + 1 > 0" by (intro add_nonneg_pos) simp_all
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1065
  with filterlim_at_infinity[OF order.refl, of f F] assms
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1066
    have "eventually (\<lambda>z. norm (f z) \<ge> norm c + 1) F" by blast
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1067
  thus ?thesis by eventually_elim auto
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1068
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1069
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1070
lemma tendsto_of_nat [tendsto_intros]:
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1071
  "filterlim (of_nat :: nat \<Rightarrow> 'a :: real_normed_algebra_1) at_infinity sequentially"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1072
proof (subst filterlim_at_infinity[OF order.refl], intro allI impI)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1073
  fix r :: real assume r: "r > 0"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1074
  def n \<equiv> "nat \<lceil>r\<rceil>"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1075
  from r have n: "\<forall>m\<ge>n. of_nat m \<ge> r" unfolding n_def by linarith
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1076
  from eventually_ge_at_top[of n] show "eventually (\<lambda>m. norm (of_nat m :: 'a) \<ge> r) sequentially"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1077
    by eventually_elim (insert n, simp_all)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1078
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1079
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1080
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1081
subsection \<open>Relate @{const at}, @{const at_left} and @{const at_right}\<close>
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1082
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1083
text \<open>
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1084
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1085
This lemmas are useful for conversion between @{term "at x"} to @{term "at_left x"} and
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1086
@{term "at_right x"} and also @{term "at_right 0"}.
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1087
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1088
\<close>
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1089
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents: 51360
diff changeset
  1090
lemmas filterlim_split_at_real = filterlim_split_at[where 'a=real]
50323
3764d4620fb3 add filterlim rules for unary minus and inverse
hoelzl
parents: 50322
diff changeset
  1091
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1092
lemma filtermap_nhds_shift: "filtermap (\<lambda>x. x - d) (nhds a) = nhds (a - d::'a::real_normed_vector)"
60721
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1093
  by (rule filtermap_fun_inverse[where g="\<lambda>x. x + d"])
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1094
     (auto intro!: tendsto_eq_intros filterlim_ident)
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1095
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1096
lemma filtermap_nhds_minus: "filtermap (\<lambda>x. - x) (nhds a) = nhds (- a::'a::real_normed_vector)"
60721
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1097
  by (rule filtermap_fun_inverse[where g=uminus])
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1098
     (auto intro!: tendsto_eq_intros filterlim_ident)
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1099
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1100
lemma filtermap_at_shift: "filtermap (\<lambda>x. x - d) (at a) = at (a - d::'a::real_normed_vector)"
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1101
  by (simp add: filter_eq_iff eventually_filtermap eventually_at_filter filtermap_nhds_shift[symmetric])
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1102
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1103
lemma filtermap_at_right_shift: "filtermap (\<lambda>x. x - d) (at_right a) = at_right (a - d::real)"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1104
  by (simp add: filter_eq_iff eventually_filtermap eventually_at_filter filtermap_nhds_shift[symmetric])
50323
3764d4620fb3 add filterlim rules for unary minus and inverse
hoelzl
parents: 50322
diff changeset
  1105
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1106
lemma at_right_to_0: "at_right (a::real) = filtermap (\<lambda>x. x + a) (at_right 0)"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1107
  using filtermap_at_right_shift[of "-a" 0] by simp
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1108
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1109
lemma filterlim_at_right_to_0:
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1110
  "filterlim f F (at_right (a::real)) \<longleftrightarrow> filterlim (\<lambda>x. f (x + a)) F (at_right 0)"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1111
  unfolding filterlim_def filtermap_filtermap at_right_to_0[of a] ..
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1112
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1113
lemma eventually_at_right_to_0:
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1114
  "eventually P (at_right (a::real)) \<longleftrightarrow> eventually (\<lambda>x. P (x + a)) (at_right 0)"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1115
  unfolding at_right_to_0[of a] by (simp add: eventually_filtermap)
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1116
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1117
lemma filtermap_at_minus: "filtermap (\<lambda>x. - x) (at a) = at (- a::'a::real_normed_vector)"
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1118
  by (simp add: filter_eq_iff eventually_filtermap eventually_at_filter filtermap_nhds_minus[symmetric])
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1119
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1120
lemma at_left_minus: "at_left (a::real) = filtermap (\<lambda>x. - x) (at_right (- a))"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1121
  by (simp add: filter_eq_iff eventually_filtermap eventually_at_filter filtermap_nhds_minus[symmetric])
50323
3764d4620fb3 add filterlim rules for unary minus and inverse
hoelzl
parents: 50322
diff changeset
  1122
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1123
lemma at_right_minus: "at_right (a::real) = filtermap (\<lambda>x. - x) (at_left (- a))"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1124
  by (simp add: filter_eq_iff eventually_filtermap eventually_at_filter filtermap_nhds_minus[symmetric])
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1125
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1126
lemma filterlim_at_left_to_right:
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1127
  "filterlim f F (at_left (a::real)) \<longleftrightarrow> filterlim (\<lambda>x. f (- x)) F (at_right (-a))"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1128
  unfolding filterlim_def filtermap_filtermap at_left_minus[of a] ..
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1129
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1130
lemma eventually_at_left_to_right:
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1131
  "eventually P (at_left (a::real)) \<longleftrightarrow> eventually (\<lambda>x. P (- x)) (at_right (-a))"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1132
  unfolding at_left_minus[of a] by (simp add: eventually_filtermap)
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1133
60721
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1134
lemma filterlim_uminus_at_top_at_bot: "LIM x at_bot. - x :: real :> at_top"
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1135
  unfolding filterlim_at_top eventually_at_bot_dense
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1136
  by (metis leI minus_less_iff order_less_asym)
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1137
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1138
lemma filterlim_uminus_at_bot_at_top: "LIM x at_top. - x :: real :> at_bot"
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1139
  unfolding filterlim_at_bot eventually_at_top_dense
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1140
  by (metis leI less_minus_iff order_less_asym)
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1141
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1142
lemma at_top_mirror: "at_top = filtermap uminus (at_bot :: real filter)"
60721
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1143
  by (rule filtermap_fun_inverse[symmetric, of uminus])
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1144
     (auto intro: filterlim_uminus_at_bot_at_top filterlim_uminus_at_top_at_bot)
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1145
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1146
lemma at_bot_mirror: "at_bot = filtermap uminus (at_top :: real filter)"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1147
  unfolding at_top_mirror filtermap_filtermap by (simp add: filtermap_ident)
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1148
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1149
lemma filterlim_at_top_mirror: "(LIM x at_top. f x :> F) \<longleftrightarrow> (LIM x at_bot. f (-x::real) :> F)"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1150
  unfolding filterlim_def at_top_mirror filtermap_filtermap ..
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1151
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1152
lemma filterlim_at_bot_mirror: "(LIM x at_bot. f x :> F) \<longleftrightarrow> (LIM x at_top. f (-x::real) :> F)"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1153
  unfolding filterlim_def at_bot_mirror filtermap_filtermap ..
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1154
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1155
lemma filterlim_uminus_at_top: "(LIM x F. f x :> at_top) \<longleftrightarrow> (LIM x F. - (f x) :: real :> at_bot)"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1156
  using filterlim_compose[OF filterlim_uminus_at_bot_at_top, of f F]
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1157
  using filterlim_compose[OF filterlim_uminus_at_top_at_bot, of "\<lambda>x. - f x" F]
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1158
  by auto
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1159
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1160
lemma filterlim_uminus_at_bot: "(LIM x F. f x :> at_bot) \<longleftrightarrow> (LIM x F. - (f x) :: real :> at_top)"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1161
  unfolding filterlim_uminus_at_top by simp
50323
3764d4620fb3 add filterlim rules for unary minus and inverse
hoelzl
parents: 50322
diff changeset
  1162
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1163
lemma filterlim_inverse_at_top_right: "LIM x at_right (0::real). inverse x :> at_top"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1164
  unfolding filterlim_at_top_gt[where c=0] eventually_at_filter
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1165
proof safe
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1166
  fix Z :: real assume [arith]: "0 < Z"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1167
  then have "eventually (\<lambda>x. x < inverse Z) (nhds 0)"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1168
    by (auto simp add: eventually_nhds_metric dist_real_def intro!: exI[of _ "\<bar>inverse Z\<bar>"])
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1169
  then show "eventually (\<lambda>x. x \<noteq> 0 \<longrightarrow> x \<in> {0<..} \<longrightarrow> Z \<le> inverse x) (nhds 0)"
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61806
diff changeset
  1170
    by (auto elim!: eventually_mono simp: inverse_eq_divide field_simps)
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1171
qed
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1172
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1173
lemma tendsto_inverse_0:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60974
diff changeset
  1174
  fixes x :: "_ \<Rightarrow> 'a::real_normed_div_algebra"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1175
  shows "(inverse \<longlongrightarrow> (0::'a)) at_infinity"
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1176
  unfolding tendsto_Zfun_iff diff_0_right Zfun_def eventually_at_infinity
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1177
proof safe
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1178
  fix r :: real assume "0 < r"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1179
  show "\<exists>b. \<forall>x. b \<le> norm x \<longrightarrow> norm (inverse x :: 'a) < r"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1180
  proof (intro exI[of _ "inverse (r / 2)"] allI impI)
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1181
    fix x :: 'a
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1182
    from \<open>0 < r\<close> have "0 < inverse (r / 2)" by simp
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1183
    also assume *: "inverse (r / 2) \<le> norm x"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1184
    finally show "norm (inverse x) < r"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1185
      using * \<open>0 < r\<close> by (subst nonzero_norm_inverse) (simp_all add: inverse_eq_divide field_simps)
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1186
  qed
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1187
qed
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1188
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1189
lemma tendsto_add_filterlim_at_infinity:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1190
  assumes "(f \<longlongrightarrow> (c :: 'b :: real_normed_vector)) (F :: 'a filter)"
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1191
  assumes "filterlim g at_infinity F"
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1192
  shows   "filterlim (\<lambda>x. f x + g x) at_infinity F"
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1193
proof (subst filterlim_at_infinity[OF order_refl], safe)
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1194
  fix r :: real assume r: "r > 0"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1195
  from assms(1) have "((\<lambda>x. norm (f x)) \<longlongrightarrow> norm c) F" by (rule tendsto_norm)
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1196
  hence "eventually (\<lambda>x. norm (f x) < norm c + 1) F" by (rule order_tendstoD) simp_all
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1197
  moreover from r have "r + norm c + 1 > 0" by (intro add_pos_nonneg) simp_all
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1198
  with assms(2) have "eventually (\<lambda>x. norm (g x) \<ge> r + norm c + 1) F"
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1199
    unfolding filterlim_at_infinity[OF order_refl] by (elim allE[of _ "r + norm c + 1"]) simp_all
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1200
  ultimately show "eventually (\<lambda>x. norm (f x + g x) \<ge> r) F"
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1201
  proof eventually_elim
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1202
    fix x :: 'a assume A: "norm (f x) < norm c + 1" and B: "r + norm c + 1 \<le> norm (g x)"
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1203
    from A B have "r \<le> norm (g x) - norm (f x)" by simp
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1204
    also have "norm (g x) - norm (f x) \<le> norm (g x + f x)" by (rule norm_diff_ineq)
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1205
    finally show "r \<le> norm (f x + g x)" by (simp add: add_ac)
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1206
  qed
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1207
qed
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1208
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1209
lemma tendsto_add_filterlim_at_infinity':
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1210
  assumes "filterlim f at_infinity F"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1211
  assumes "(g \<longlongrightarrow> (c :: 'b :: real_normed_vector)) (F :: 'a filter)"
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1212
  shows   "filterlim (\<lambda>x. f x + g x) at_infinity F"
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1213
  by (subst add.commute) (rule tendsto_add_filterlim_at_infinity assms)+
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1214
60721
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1215
lemma filterlim_inverse_at_right_top: "LIM x at_top. inverse x :> at_right (0::real)"
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1216
  unfolding filterlim_at
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1217
  by (auto simp: eventually_at_top_dense)
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1218
     (metis tendsto_inverse_0 filterlim_mono at_top_le_at_infinity order_refl)
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1219
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1220
lemma filterlim_inverse_at_top:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1221
  "(f \<longlongrightarrow> (0 :: real)) F \<Longrightarrow> eventually (\<lambda>x. 0 < f x) F \<Longrightarrow> LIM x F. inverse (f x) :> at_top"
60721
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1222
  by (intro filterlim_compose[OF filterlim_inverse_at_top_right])
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61806
diff changeset
  1223
     (simp add: filterlim_def eventually_filtermap eventually_mono at_within_def le_principal)
60721
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1224
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1225
lemma filterlim_inverse_at_bot_neg:
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1226
  "LIM x (at_left (0::real)). inverse x :> at_bot"
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1227
  by (simp add: filterlim_inverse_at_top_right filterlim_uminus_at_bot filterlim_at_left_to_right)
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1228
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1229
lemma filterlim_inverse_at_bot:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1230
  "(f \<longlongrightarrow> (0 :: real)) F \<Longrightarrow> eventually (\<lambda>x. f x < 0) F \<Longrightarrow> LIM x F. inverse (f x) :> at_bot"
60721
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1231
  unfolding filterlim_uminus_at_bot inverse_minus_eq[symmetric]
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1232
  by (rule filterlim_inverse_at_top) (simp_all add: tendsto_minus_cancel_left[symmetric])
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1233
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1234
lemma at_right_to_top: "(at_right (0::real)) = filtermap inverse at_top"
60721
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1235
  by (intro filtermap_fun_inverse[symmetric, where g=inverse])
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1236
     (auto intro: filterlim_inverse_at_top_right filterlim_inverse_at_right_top)
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1237
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1238
lemma eventually_at_right_to_top:
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1239
  "eventually P (at_right (0::real)) \<longleftrightarrow> eventually (\<lambda>x. P (inverse x)) at_top"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1240
  unfolding at_right_to_top eventually_filtermap ..
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1241
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1242
lemma filterlim_at_right_to_top:
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1243
  "filterlim f F (at_right (0::real)) \<longleftrightarrow> (LIM x at_top. f (inverse x) :> F)"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1244
  unfolding filterlim_def at_right_to_top filtermap_filtermap ..
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1245
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1246
lemma at_top_to_right: "at_top = filtermap inverse (at_right (0::real))"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1247
  unfolding at_right_to_top filtermap_filtermap inverse_inverse_eq filtermap_ident ..
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1248
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1249
lemma eventually_at_top_to_right:
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1250
  "eventually P at_top \<longleftrightarrow> eventually (\<lambda>x. P (inverse x)) (at_right (0::real))"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1251
  unfolding at_top_to_right eventually_filtermap ..
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1252
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1253
lemma filterlim_at_top_to_right:
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1254
  "filterlim f F at_top \<longleftrightarrow> (LIM x (at_right (0::real)). f (inverse x) :> F)"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1255
  unfolding filterlim_def at_top_to_right filtermap_filtermap ..
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1256
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1257
lemma filterlim_inverse_at_infinity:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60974
diff changeset
  1258
  fixes x :: "_ \<Rightarrow> 'a::{real_normed_div_algebra, division_ring}"
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1259
  shows "filterlim inverse at_infinity (at (0::'a))"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1260
  unfolding filterlim_at_infinity[OF order_refl]
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1261
proof safe
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1262
  fix r :: real assume "0 < r"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1263
  then show "eventually (\<lambda>x::'a. r \<le> norm (inverse x)) (at 0)"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1264
    unfolding eventually_at norm_inverse
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1265
    by (intro exI[of _ "inverse r"])
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1266
       (auto simp: norm_conv_dist[symmetric] field_simps inverse_eq_divide)
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1267
qed
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1268
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1269
lemma filterlim_inverse_at_iff:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60974
diff changeset
  1270
  fixes g :: "'a \<Rightarrow> 'b::{real_normed_div_algebra, division_ring}"
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1271
  shows "(LIM x F. inverse (g x) :> at 0) \<longleftrightarrow> (LIM x F. g x :> at_infinity)"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1272
  unfolding filterlim_def filtermap_filtermap[symmetric]
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1273
proof
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1274
  assume "filtermap g F \<le> at_infinity"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1275
  then have "filtermap inverse (filtermap g F) \<le> filtermap inverse at_infinity"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1276
    by (rule filtermap_mono)
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1277
  also have "\<dots> \<le> at 0"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1278
    using tendsto_inverse_0[where 'a='b]
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1279
    by (auto intro!: exI[of _ 1]
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1280
             simp: le_principal eventually_filtermap filterlim_def at_within_def eventually_at_infinity)
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1281
  finally show "filtermap inverse (filtermap g F) \<le> at 0" .
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1282
next
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1283
  assume "filtermap inverse (filtermap g F) \<le> at 0"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1284
  then have "filtermap inverse (filtermap inverse (filtermap g F)) \<le> filtermap inverse (at 0)"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1285
    by (rule filtermap_mono)
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1286
  with filterlim_inverse_at_infinity show "filtermap g F \<le> at_infinity"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1287
    by (auto intro: order_trans simp: filterlim_def filtermap_filtermap)
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1288
qed
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1289
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1290
lemma tendsto_mult_filterlim_at_infinity:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1291
  assumes "F \<noteq> bot" "(f \<longlongrightarrow> (c :: 'a :: real_normed_field)) F" "c \<noteq> 0"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1292
  assumes "filterlim g at_infinity F"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1293
  shows   "filterlim (\<lambda>x. f x * g x) at_infinity F"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1294
proof -
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1295
  have "((\<lambda>x. inverse (f x) * inverse (g x)) \<longlongrightarrow> inverse c * 0) F"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1296
    by (intro tendsto_mult tendsto_inverse assms filterlim_compose[OF tendsto_inverse_0])
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1297
  hence "filterlim (\<lambda>x. inverse (f x) * inverse (g x)) (at (inverse c * 0)) F"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1298
    unfolding filterlim_at using assms
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1299
    by (auto intro: filterlim_at_infinity_imp_eventually_ne tendsto_imp_eventually_ne eventually_conj)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1300
  thus ?thesis by (subst filterlim_inverse_at_iff[symmetric]) simp_all
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1301
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1302
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1303
lemma tendsto_inverse_0_at_top: "LIM x F. f x :> at_top \<Longrightarrow> ((\<lambda>x. inverse (f x) :: real) \<longlongrightarrow> 0) F"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1304
 by (metis filterlim_at filterlim_mono[OF _ at_top_le_at_infinity order_refl] filterlim_inverse_at_iff)
50419
3177d0374701 add exponential and uniform distributions
hoelzl
parents: 50347
diff changeset
  1305
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1306
lemma mult_nat_left_at_top: "c > 0 \<Longrightarrow> filterlim (\<lambda>x. c * x :: nat) at_top sequentially"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1307
  by (rule filterlim_subseq) (auto simp: subseq_def)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1308
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1309
lemma mult_nat_right_at_top: "c > 0 \<Longrightarrow> filterlim (\<lambda>x. x * c :: nat) at_top sequentially"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1310
  by (rule filterlim_subseq) (auto simp: subseq_def)
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1311
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1312
lemma at_to_infinity:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60974
diff changeset
  1313
  fixes x :: "'a :: {real_normed_field,field}"
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1314
  shows "(at (0::'a)) = filtermap inverse at_infinity"
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1315
proof (rule antisym)
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1316
  have "(inverse \<longlongrightarrow> (0::'a)) at_infinity"
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1317
    by (fact tendsto_inverse_0)
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1318
  then show "filtermap inverse at_infinity \<le> at (0::'a)"
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1319
    apply (simp add: le_principal eventually_filtermap eventually_at_infinity filterlim_def at_within_def)
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1320
    apply (rule_tac x="1" in exI, auto)
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1321
    done
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1322
next
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1323
  have "filtermap inverse (filtermap inverse (at (0::'a))) \<le> filtermap inverse at_infinity"
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1324
    using filterlim_inverse_at_infinity unfolding filterlim_def
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1325
    by (rule filtermap_mono)
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1326
  then show "at (0::'a) \<le> filtermap inverse at_infinity"
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1327
    by (simp add: filtermap_ident filtermap_filtermap)
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1328
qed
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1329
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1330
lemma lim_at_infinity_0:
59867
58043346ca64 given up separate type classes demanding `inverse 0 = 0`
haftmann
parents: 59613
diff changeset
  1331
  fixes l :: "'a :: {real_normed_field,field}"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1332
  shows "(f \<longlongrightarrow> l) at_infinity \<longleftrightarrow> ((f o inverse) \<longlongrightarrow> l) (at (0::'a))"
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1333
by (simp add: tendsto_compose_filtermap at_to_infinity filtermap_filtermap)
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1334
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1335
lemma lim_zero_infinity:
59867
58043346ca64 given up separate type classes demanding `inverse 0 = 0`
haftmann
parents: 59613
diff changeset
  1336
  fixes l :: "'a :: {real_normed_field,field}"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1337
  shows "((\<lambda>x. f(1 / x)) \<longlongrightarrow> l) (at (0::'a)) \<Longrightarrow> (f \<longlongrightarrow> l) at_infinity"
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1338
by (simp add: inverse_eq_divide lim_at_infinity_0 comp_def)
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1339
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1340
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1341
text \<open>
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1342
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1343
We only show rules for multiplication and addition when the functions are either against a real
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1344
value or against infinity. Further rules are easy to derive by using @{thm filterlim_uminus_at_top}.
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1345
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1346
\<close>
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1347
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1348
lemma filterlim_tendsto_pos_mult_at_top:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1349
  assumes f: "(f \<longlongrightarrow> c) F" and c: "0 < c"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1350
  assumes g: "LIM x F. g x :> at_top"
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1351
  shows "LIM x F. (f x * g x :: real) :> at_top"
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1352
  unfolding filterlim_at_top_gt[where c=0]
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1353
proof safe
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1354
  fix Z :: real assume "0 < Z"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1355
  from f \<open>0 < c\<close> have "eventually (\<lambda>x. c / 2 < f x) F"
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61806
diff changeset
  1356
    by (auto dest!: tendstoD[where e="c / 2"] elim!: eventually_mono
62390
842917225d56 more canonical names
nipkow
parents: 62379
diff changeset
  1357
             simp: dist_real_def abs_real_def split: if_split_asm)
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1358
  moreover from g have "eventually (\<lambda>x. (Z / c * 2) \<le> g x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1359
    unfolding filterlim_at_top by auto
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1360
  ultimately show "eventually (\<lambda>x. Z \<le> f x * g x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1361
  proof eventually_elim
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1362
    fix x assume "c / 2 < f x" "Z / c * 2 \<le> g x"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1363
    with \<open>0 < Z\<close> \<open>0 < c\<close> have "c / 2 * (Z / c * 2) \<le> f x * g x"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1364
      by (intro mult_mono) (auto simp: zero_le_divide_iff)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1365
    with \<open>0 < c\<close> show "Z \<le> f x * g x"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1366
       by simp
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1367
  qed
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1368
qed
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1369
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1370
lemma filterlim_at_top_mult_at_top:
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1371
  assumes f: "LIM x F. f x :> at_top"
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1372
  assumes g: "LIM x F. g x :> at_top"
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1373
  shows "LIM x F. (f x * g x :: real) :> at_top"
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1374
  unfolding filterlim_at_top_gt[where c=0]
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1375
proof safe
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1376
  fix Z :: real assume "0 < Z"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1377
  from f have "eventually (\<lambda>x. 1 \<le> f x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1378
    unfolding filterlim_at_top by auto
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1379
  moreover from g have "eventually (\<lambda>x. Z \<le> g x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1380
    unfolding filterlim_at_top by auto
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1381
  ultimately show "eventually (\<lambda>x. Z \<le> f x * g x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1382
  proof eventually_elim
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1383
    fix x assume "1 \<le> f x" "Z \<le> g x"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1384
    with \<open>0 < Z\<close> have "1 * Z \<le> f x * g x"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1385
      by (intro mult_mono) (auto simp: zero_le_divide_iff)
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1386
    then show "Z \<le> f x * g x"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1387
       by simp
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1388
  qed
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1389
qed
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1390
50419
3177d0374701 add exponential and uniform distributions
hoelzl
parents: 50347
diff changeset
  1391
lemma filterlim_tendsto_pos_mult_at_bot:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1392
  assumes "(f \<longlongrightarrow> c) F" "0 < (c::real)" "filterlim g at_bot F"
50419
3177d0374701 add exponential and uniform distributions
hoelzl
parents: 50347
diff changeset
  1393
  shows "LIM x F. f x * g x :> at_bot"
3177d0374701 add exponential and uniform distributions
hoelzl
parents: 50347
diff changeset
  1394
  using filterlim_tendsto_pos_mult_at_top[OF assms(1,2), of "\<lambda>x. - g x"] assms(3)
3177d0374701 add exponential and uniform distributions
hoelzl
parents: 50347
diff changeset
  1395
  unfolding filterlim_uminus_at_bot by simp
3177d0374701 add exponential and uniform distributions
hoelzl
parents: 50347
diff changeset
  1396
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60141
diff changeset
  1397
lemma filterlim_tendsto_neg_mult_at_bot:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1398
  assumes c: "(f \<longlongrightarrow> c) F" "(c::real) < 0" and g: "filterlim g at_top F"
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60141
diff changeset
  1399
  shows "LIM x F. f x * g x :> at_bot"
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60141
diff changeset
  1400
  using c filterlim_tendsto_pos_mult_at_top[of "\<lambda>x. - f x" "- c" F, OF _ _ g]
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60141
diff changeset
  1401
  unfolding filterlim_uminus_at_bot tendsto_minus_cancel_left by simp
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60141
diff changeset
  1402
56330
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1403
lemma filterlim_pow_at_top:
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1404
  fixes f :: "real \<Rightarrow> real"
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1405
  assumes "0 < n" and f: "LIM x F. f x :> at_top"
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1406
  shows "LIM x F. (f x)^n :: real :> at_top"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1407
using \<open>0 < n\<close> proof (induct n)
56330
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1408
  case (Suc n) with f show ?case
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1409
    by (cases "n = 0") (auto intro!: filterlim_at_top_mult_at_top)
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1410
qed simp
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1411
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1412
lemma filterlim_pow_at_bot_even:
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1413
  fixes f :: "real \<Rightarrow> real"
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1414
  shows "0 < n \<Longrightarrow> LIM x F. f x :> at_bot \<Longrightarrow> even n \<Longrightarrow> LIM x F. (f x)^n :> at_top"
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1415
  using filterlim_pow_at_top[of n "\<lambda>x. - f x" F] by (simp add: filterlim_uminus_at_top)
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1416
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1417
lemma filterlim_pow_at_bot_odd:
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1418
  fixes f :: "real \<Rightarrow> real"
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1419
  shows "0 < n \<Longrightarrow> LIM x F. f x :> at_bot \<Longrightarrow> odd n \<Longrightarrow> LIM x F. (f x)^n :> at_bot"
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1420
  using filterlim_pow_at_top[of n "\<lambda>x. - f x" F] by (simp add: filterlim_uminus_at_bot)
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1421
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1422
lemma filterlim_tendsto_add_at_top:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1423
  assumes f: "(f \<longlongrightarrow> c) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1424
  assumes g: "LIM x F. g x :> at_top"
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1425
  shows "LIM x F. (f x + g x :: real) :> at_top"
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1426
  unfolding filterlim_at_top_gt[where c=0]
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1427
proof safe
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1428
  fix Z :: real assume "0 < Z"
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1429
  from f have "eventually (\<lambda>x. c - 1 < f x) F"
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61806
diff changeset
  1430
    by (auto dest!: tendstoD[where e=1] elim!: eventually_mono simp: dist_real_def)
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1431
  moreover from g have "eventually (\<lambda>x. Z - (c - 1) \<le> g x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1432
    unfolding filterlim_at_top by auto
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1433
  ultimately show "eventually (\<lambda>x. Z \<le> f x + g x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1434
    by eventually_elim simp
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1435
qed
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1436
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1437
lemma LIM_at_top_divide:
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1438
  fixes f g :: "'a \<Rightarrow> real"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1439
  assumes f: "(f \<longlongrightarrow> a) F" "0 < a"
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1440
  assumes g: "(g \<longlongrightarrow> 0) F" "eventually (\<lambda>x. 0 < g x) F"
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1441
  shows "LIM x F. f x / g x :> at_top"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1442
  unfolding divide_inverse
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1443
  by (rule filterlim_tendsto_pos_mult_at_top[OF f]) (rule filterlim_inverse_at_top[OF g])
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1444
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1445
lemma filterlim_at_top_add_at_top:
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1446
  assumes f: "LIM x F. f x :> at_top"
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1447
  assumes g: "LIM x F. g x :> at_top"
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1448
  shows "LIM x F. (f x + g x :: real) :> at_top"
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1449
  unfolding filterlim_at_top_gt[where c=0]
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1450
proof safe
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1451
  fix Z :: real assume "0 < Z"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1452
  from f have "eventually (\<lambda>x. 0 \<le> f x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1453
    unfolding filterlim_at_top by auto
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1454
  moreover from g have "eventually (\<lambda>x. Z \<le> g x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1455
    unfolding filterlim_at_top by auto
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1456
  ultimately show "eventually (\<lambda>x. Z \<le> f x + g x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1457
    by eventually_elim simp
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1458
qed
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1459
50331
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1460
lemma tendsto_divide_0:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60974
diff changeset
  1461
  fixes f :: "_ \<Rightarrow> 'a::{real_normed_div_algebra, division_ring}"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1462
  assumes f: "(f \<longlongrightarrow> c) F"
50331
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1463
  assumes g: "LIM x F. g x :> at_infinity"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1464
  shows "((\<lambda>x. f x / g x) \<longlongrightarrow> 0) F"
50331
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1465
  using tendsto_mult[OF f filterlim_compose[OF tendsto_inverse_0 g]] by (simp add: divide_inverse)
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1466
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1467
lemma linear_plus_1_le_power:
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1468
  fixes x :: real
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1469
  assumes x: "0 \<le> x"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1470
  shows "real n * x + 1 \<le> (x + 1) ^ n"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1471
proof (induct n)
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1472
  case (Suc n)
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1473
  have "real (Suc n) * x + 1 \<le> (x + 1) * (real n * x + 1)"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  1474
    by (simp add: field_simps of_nat_Suc x)
50331
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1475
  also have "\<dots> \<le> (x + 1)^Suc n"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1476
    using Suc x by (simp add: mult_left_mono)
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1477
  finally show ?case .
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1478
qed simp
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1479
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1480
lemma filterlim_realpow_sequentially_gt1:
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1481
  fixes x :: "'a :: real_normed_div_algebra"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1482
  assumes x[arith]: "1 < norm x"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1483
  shows "LIM n sequentially. x ^ n :> at_infinity"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1484
proof (intro filterlim_at_infinity[THEN iffD2] allI impI)
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1485
  fix y :: real assume "0 < y"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1486
  have "0 < norm x - 1" by simp
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1487
  then obtain N::nat where "y < real N * (norm x - 1)" by (blast dest: reals_Archimedean3)
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1488
  also have "\<dots> \<le> real N * (norm x - 1) + 1" by simp
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1489
  also have "\<dots> \<le> (norm x - 1 + 1) ^ N" by (rule linear_plus_1_le_power) simp
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1490
  also have "\<dots> = norm x ^ N" by simp
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1491
  finally have "\<forall>n\<ge>N. y \<le> norm x ^ n"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1492
    by (metis order_less_le_trans power_increasing order_less_imp_le x)
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1493
  then show "eventually (\<lambda>n. y \<le> norm (x ^ n)) sequentially"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1494
    unfolding eventually_sequentially
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1495
    by (auto simp: norm_power)
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1496
qed simp
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1497
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents: 51360
diff changeset
  1498
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1499
subsection \<open>Limits of Sequences\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1500
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
  1501
lemma [trans]: "X = Y \<Longrightarrow> Y \<longlonglongrightarrow> z \<Longrightarrow> X \<longlonglongrightarrow> z"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1502
  by simp
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1503
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1504
lemma LIMSEQ_iff:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1505
  fixes L :: "'a::real_normed_vector"
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1506
  shows "(X \<longlonglongrightarrow> L) = (\<forall>r>0. \<exists>no. \<forall>n \<ge> no. norm (X n - L) < r)"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  1507
unfolding lim_sequentially dist_norm ..
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1508
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1509
lemma LIMSEQ_I:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1510
  fixes L :: "'a::real_normed_vector"
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1511
  shows "(\<And>r. 0 < r \<Longrightarrow> \<exists>no. \<forall>n\<ge>no. norm (X n - L) < r) \<Longrightarrow> X \<longlonglongrightarrow> L"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1512
by (simp add: LIMSEQ_iff)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1513
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1514
lemma LIMSEQ_D:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1515
  fixes L :: "'a::real_normed_vector"
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1516
  shows "\<lbrakk>X \<longlonglongrightarrow> L; 0 < r\<rbrakk> \<Longrightarrow> \<exists>no. \<forall>n\<ge>no. norm (X n - L) < r"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1517
by (simp add: LIMSEQ_iff)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1518
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1519
lemma LIMSEQ_linear: "\<lbrakk> X \<longlonglongrightarrow> x ; l > 0 \<rbrakk> \<Longrightarrow> (\<lambda> n. X (n * l)) \<longlonglongrightarrow> x"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1520
  unfolding tendsto_def eventually_sequentially
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57447
diff changeset
  1521
  by (metis div_le_dividend div_mult_self1_is_m le_trans mult.commute)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1522
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1523
lemma Bseq_inverse_lemma:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1524
  fixes x :: "'a::real_normed_div_algebra"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1525
  shows "\<lbrakk>r \<le> norm x; 0 < r\<rbrakk> \<Longrightarrow> norm (inverse x) \<le> inverse r"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1526
apply (subst nonzero_norm_inverse, clarsimp)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1527
apply (erule (1) le_imp_inverse_le)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1528
done
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1529
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1530
lemma Bseq_inverse:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1531
  fixes a :: "'a::real_normed_div_algebra"
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1532
  shows "\<lbrakk>X \<longlonglongrightarrow> a; a \<noteq> 0\<rbrakk> \<Longrightarrow> Bseq (\<lambda>n. inverse (X n))"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1533
  by (rule Bfun_inverse)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1534
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1535
text\<open>Transformation of limit.\<close>
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1536
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1537
lemma Lim_transform:
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1538
  fixes a b :: "'a::real_normed_vector"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1539
  shows "\<lbrakk>(g \<longlongrightarrow> a) F; ((\<lambda>x. f x - g x) \<longlongrightarrow> 0) F\<rbrakk> \<Longrightarrow> (f \<longlongrightarrow> a) F"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1540
  using tendsto_add [of g a F "\<lambda>x. f x - g x" 0] by simp
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1541
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1542
lemma Lim_transform2:
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1543
  fixes a b :: "'a::real_normed_vector"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1544
  shows "\<lbrakk>(f \<longlongrightarrow> a) F; ((\<lambda>x. f x - g x) \<longlongrightarrow> 0) F\<rbrakk> \<Longrightarrow> (g \<longlongrightarrow> a) F"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1545
  by (erule Lim_transform) (simp add: tendsto_minus_cancel)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1546
62379
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62369
diff changeset
  1547
proposition Lim_transform_eq:
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62369
diff changeset
  1548
  fixes a :: "'a::real_normed_vector"
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62369
diff changeset
  1549
  shows "((\<lambda>x. f x - g x) \<longlongrightarrow> 0) F \<Longrightarrow> (f \<longlongrightarrow> a) F \<longleftrightarrow> (g \<longlongrightarrow> a) F"
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62369
diff changeset
  1550
using Lim_transform Lim_transform2 by blast
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62369
diff changeset
  1551
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1552
lemma Lim_transform_eventually:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1553
  "eventually (\<lambda>x. f x = g x) net \<Longrightarrow> (f \<longlongrightarrow> l) net \<Longrightarrow> (g \<longlongrightarrow> l) net"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1554
  apply (rule topological_tendstoI)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1555
  apply (drule (2) topological_tendstoD)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1556
  apply (erule (1) eventually_elim2, simp)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1557
  done
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1558
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1559
lemma Lim_transform_within:
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1560
  assumes "(f \<longlongrightarrow> l) (at x within S)"
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1561
    and "0 < d"
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1562
    and "\<And>x'. \<lbrakk>x'\<in>S; 0 < dist x' x; dist x' x < d\<rbrakk> \<Longrightarrow> f x' = g x'"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1563
  shows "(g \<longlongrightarrow> l) (at x within S)"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1564
proof (rule Lim_transform_eventually)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1565
  show "eventually (\<lambda>x. f x = g x) (at x within S)"
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1566
    using assms by (auto simp: eventually_at)
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1567
  show "(f \<longlongrightarrow> l) (at x within S)" by fact
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1568
qed
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1569
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1570
text\<open>Common case assuming being away from some crucial point like 0.\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1571
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1572
lemma Lim_transform_away_within:
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1573
  fixes a b :: "'a::t1_space"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1574
  assumes "a \<noteq> b"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1575
    and "\<forall>x\<in>S. x \<noteq> a \<and> x \<noteq> b \<longrightarrow> f x = g x"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1576
    and "(f \<longlongrightarrow> l) (at a within S)"
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1577
  shows "(g \<longlongrightarrow> l) (at a within S)"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1578
proof (rule Lim_transform_eventually)
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1579
  show "(f \<longlongrightarrow> l) (at a within S)" by fact
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1580
  show "eventually (\<lambda>x. f x = g x) (at a within S)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1581
    unfolding eventually_at_topological
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1582
    by (rule exI [where x="- {b}"], simp add: open_Compl assms)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1583
qed
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1584
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1585
lemma Lim_transform_away_at:
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1586
  fixes a b :: "'a::t1_space"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1587
  assumes ab: "a\<noteq>b"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1588
    and fg: "\<forall>x. x \<noteq> a \<and> x \<noteq> b \<longrightarrow> f x = g x"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1589
    and fl: "(f \<longlongrightarrow> l) (at a)"
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1590
  shows "(g \<longlongrightarrow> l) (at a)"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1591
  using Lim_transform_away_within[OF ab, of UNIV f g l] fg fl by simp
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1592
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1593
text\<open>Alternatively, within an open set.\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1594
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1595
lemma Lim_transform_within_open:
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1596
  assumes "(f \<longlongrightarrow> l) (at a within T)"
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1597
    and "open s" and "a \<in> s"
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1598
    and "\<And>x. \<lbrakk>x\<in>s; x \<noteq> a\<rbrakk> \<Longrightarrow> f x = g x"
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1599
  shows "(g \<longlongrightarrow> l) (at a within T)"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1600
proof (rule Lim_transform_eventually)
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1601
  show "eventually (\<lambda>x. f x = g x) (at a within T)"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1602
    unfolding eventually_at_topological
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1603
    using assms by auto
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1604
  show "(f \<longlongrightarrow> l) (at a within T)" by fact
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1605
qed
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1606
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1607
text\<open>A congruence rule allowing us to transform limits assuming not at point.\<close>
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1608
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1609
(* FIXME: Only one congruence rule for tendsto can be used at a time! *)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1610
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1611
lemma Lim_cong_within(*[cong add]*):
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1612
  assumes "a = b"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1613
    and "x = y"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1614
    and "S = T"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1615
    and "\<And>x. x \<noteq> b \<Longrightarrow> x \<in> T \<Longrightarrow> f x = g x"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1616
  shows "(f \<longlongrightarrow> x) (at a within S) \<longleftrightarrow> (g \<longlongrightarrow> y) (at b within T)"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1617
  unfolding tendsto_def eventually_at_topological
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1618
  using assms by simp
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1619
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1620
lemma Lim_cong_at(*[cong add]*):
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1621
  assumes "a = b" "x = y"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1622
    and "\<And>x. x \<noteq> a \<Longrightarrow> f x = g x"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1623
  shows "((\<lambda>x. f x) \<longlongrightarrow> x) (at a) \<longleftrightarrow> ((g \<longlongrightarrow> y) (at a))"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1624
  unfolding tendsto_def eventually_at_topological
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1625
  using assms by simp
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1626
text\<open>An unbounded sequence's inverse tends to 0\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1627
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1628
lemma LIMSEQ_inverse_zero:
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1629
  "\<forall>r::real. \<exists>N. \<forall>n\<ge>N. r < X n \<Longrightarrow> (\<lambda>n. inverse (X n)) \<longlonglongrightarrow> 0"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1630
  apply (rule filterlim_compose[OF tendsto_inverse_0])
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1631
  apply (simp add: filterlim_at_infinity[OF order_refl] eventually_sequentially)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1632
  apply (metis abs_le_D1 linorder_le_cases linorder_not_le)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1633
  done
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1634
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1635
text\<open>The sequence @{term "1/n"} tends to 0 as @{term n} tends to infinity\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1636
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1637
lemma LIMSEQ_inverse_real_of_nat: "(%n. inverse(real(Suc n))) \<longlonglongrightarrow> 0"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1638
  by (metis filterlim_compose tendsto_inverse_0 filterlim_mono order_refl filterlim_Suc
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1639
            filterlim_compose[OF filterlim_real_sequentially] at_top_le_at_infinity)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1640
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1641
text\<open>The sequence @{term "r + 1/n"} tends to @{term r} as @{term n} tends to
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1642
infinity is now easily proved\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1643
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1644
lemma LIMSEQ_inverse_real_of_nat_add:
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1645
     "(%n. r + inverse(real(Suc n))) \<longlonglongrightarrow> r"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1646
  using tendsto_add [OF tendsto_const LIMSEQ_inverse_real_of_nat] by auto
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1647
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1648
lemma LIMSEQ_inverse_real_of_nat_add_minus:
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1649
     "(%n. r + -inverse(real(Suc n))) \<longlonglongrightarrow> r"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1650
  using tendsto_add [OF tendsto_const tendsto_minus [OF LIMSEQ_inverse_real_of_nat]]
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1651
  by auto
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1652
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1653
lemma LIMSEQ_inverse_real_of_nat_add_minus_mult:
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1654
     "(%n. r*( 1 + -inverse(real(Suc n)))) \<longlonglongrightarrow> r"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1655
  using tendsto_mult [OF tendsto_const LIMSEQ_inverse_real_of_nat_add_minus [of 1]]
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1656
  by auto
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1657
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1658
lemma lim_inverse_n: "((\<lambda>n. inverse(of_nat n)) \<longlongrightarrow> (0::'a::real_normed_field)) sequentially"
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  1659
  using lim_1_over_n by (simp add: inverse_eq_divide)
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  1660
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1661
lemma LIMSEQ_Suc_n_over_n: "(\<lambda>n. of_nat (Suc n) / of_nat n :: 'a :: real_normed_field) \<longlonglongrightarrow> 1"
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  1662
proof (rule Lim_transform_eventually)
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  1663
  show "eventually (\<lambda>n. 1 + inverse (of_nat n :: 'a) = of_nat (Suc n) / of_nat n) sequentially"
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  1664
    using eventually_gt_at_top[of "0::nat"] by eventually_elim (simp add: field_simps)
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1665
  have "(\<lambda>n. 1 + inverse (of_nat n) :: 'a) \<longlonglongrightarrow> 1 + 0"
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  1666
    by (intro tendsto_add tendsto_const lim_inverse_n)
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1667
  thus "(\<lambda>n. 1 + inverse (of_nat n) :: 'a) \<longlonglongrightarrow> 1" by simp
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  1668
qed
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  1669
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1670
lemma LIMSEQ_n_over_Suc_n: "(\<lambda>n. of_nat n / of_nat (Suc n) :: 'a :: real_normed_field) \<longlonglongrightarrow> 1"
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  1671
proof (rule Lim_transform_eventually)
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1672
  show "eventually (\<lambda>n. inverse (of_nat (Suc n) / of_nat n :: 'a) =
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  1673
                        of_nat n / of_nat (Suc n)) sequentially"
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1674
    using eventually_gt_at_top[of "0::nat"]
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  1675
    by eventually_elim (simp add: field_simps del: of_nat_Suc)
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1676
  have "(\<lambda>n. inverse (of_nat (Suc n) / of_nat n :: 'a)) \<longlonglongrightarrow> inverse 1"
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  1677
    by (intro tendsto_inverse LIMSEQ_Suc_n_over_n) simp_all
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1678
  thus "(\<lambda>n. inverse (of_nat (Suc n) / of_nat n :: 'a)) \<longlonglongrightarrow> 1" by simp
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  1679
qed
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  1680
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1681
subsection \<open>Convergence on sequences\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1682
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1683
lemma convergent_cong:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1684
  assumes "eventually (\<lambda>x. f x = g x) sequentially"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1685
  shows   "convergent f \<longleftrightarrow> convergent g"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1686
  unfolding convergent_def by (subst filterlim_cong[OF refl refl assms]) (rule refl)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1687
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1688
lemma convergent_Suc_iff: "convergent (\<lambda>n. f (Suc n)) \<longleftrightarrow> convergent f"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1689
  by (auto simp: convergent_def LIMSEQ_Suc_iff)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1690
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1691
lemma convergent_ignore_initial_segment: "convergent (\<lambda>n. f (n + m)) = convergent f"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1692
proof (induction m arbitrary: f)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1693
  case (Suc m)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1694
  have "convergent (\<lambda>n. f (n + Suc m)) \<longleftrightarrow> convergent (\<lambda>n. f (Suc n + m))" by simp
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1695
  also have "\<dots> \<longleftrightarrow> convergent (\<lambda>n. f (n + m))" by (rule convergent_Suc_iff)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1696
  also have "\<dots> \<longleftrightarrow> convergent f" by (rule Suc)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1697
  finally show ?case .
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1698
qed simp_all
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1699
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1700
lemma convergent_add:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1701
  fixes X Y :: "nat \<Rightarrow> 'a::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1702
  assumes "convergent (\<lambda>n. X n)"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1703
  assumes "convergent (\<lambda>n. Y n)"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1704
  shows "convergent (\<lambda>n. X n + Y n)"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
  1705
  using assms unfolding convergent_def by (blast intro: tendsto_add)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1706
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1707
lemma convergent_setsum:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1708
  fixes X :: "'a \<Rightarrow> nat \<Rightarrow> 'b::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1709
  assumes "\<And>i. i \<in> A \<Longrightarrow> convergent (\<lambda>n. X i n)"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1710
  shows "convergent (\<lambda>n. \<Sum>i\<in>A. X i n)"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1711
proof (cases "finite A")
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1712
  case True from this and assms show ?thesis
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1713
    by (induct A set: finite) (simp_all add: convergent_const convergent_add)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1714
qed (simp add: convergent_const)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1715
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1716
lemma (in bounded_linear) convergent:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1717
  assumes "convergent (\<lambda>n. X n)"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1718
  shows "convergent (\<lambda>n. f (X n))"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
  1719
  using assms unfolding convergent_def by (blast intro: tendsto)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1720
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1721
lemma (in bounded_bilinear) convergent:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1722
  assumes "convergent (\<lambda>n. X n)" and "convergent (\<lambda>n. Y n)"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1723
  shows "convergent (\<lambda>n. X n ** Y n)"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
  1724
  using assms unfolding convergent_def by (blast intro: tendsto)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1725
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1726
lemma convergent_minus_iff:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1727
  fixes X :: "nat \<Rightarrow> 'a::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1728
  shows "convergent X \<longleftrightarrow> convergent (\<lambda>n. - X n)"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1729
apply (simp add: convergent_def)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1730
apply (auto dest: tendsto_minus)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1731
apply (drule tendsto_minus, auto)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1732
done
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1733
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1734
lemma convergent_diff:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1735
  fixes X Y :: "nat \<Rightarrow> 'a::real_normed_vector"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1736
  assumes "convergent (\<lambda>n. X n)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1737
  assumes "convergent (\<lambda>n. Y n)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1738
  shows "convergent (\<lambda>n. X n - Y n)"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
  1739
  using assms unfolding convergent_def by (blast intro: tendsto_diff)
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1740
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1741
lemma convergent_norm:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1742
  assumes "convergent f"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1743
  shows   "convergent (\<lambda>n. norm (f n))"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1744
proof -
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1745
  from assms have "f \<longlonglongrightarrow> lim f" by (simp add: convergent_LIMSEQ_iff)
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1746
  hence "(\<lambda>n. norm (f n)) \<longlonglongrightarrow> norm (lim f)" by (rule tendsto_norm)
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1747
  thus ?thesis by (auto simp: convergent_def)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1748
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1749
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1750
lemma convergent_of_real:
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1751
  "convergent f \<Longrightarrow> convergent (\<lambda>n. of_real (f n) :: 'a :: real_normed_algebra_1)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1752
  unfolding convergent_def by (blast intro!: tendsto_of_real)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1753
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1754
lemma convergent_add_const_iff:
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1755
  "convergent (\<lambda>n. c + f n :: 'a :: real_normed_vector) \<longleftrightarrow> convergent f"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1756
proof
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1757
  assume "convergent (\<lambda>n. c + f n)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1758
  from convergent_diff[OF this convergent_const[of c]] show "convergent f" by simp
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1759
next
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1760
  assume "convergent f"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1761
  from convergent_add[OF convergent_const[of c] this] show "convergent (\<lambda>n. c + f n)" by simp
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1762
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1763
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1764
lemma convergent_add_const_right_iff:
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1765
  "convergent (\<lambda>n. f n + c :: 'a :: real_normed_vector) \<longleftrightarrow> convergent f"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1766
  using convergent_add_const_iff[of c f] by (simp add: add_ac)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1767
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1768
lemma convergent_diff_const_right_iff:
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1769
  "convergent (\<lambda>n. f n - c :: 'a :: real_normed_vector) \<longleftrightarrow> convergent f"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1770
  using convergent_add_const_right_iff[of f "-c"] by (simp add: add_ac)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1771
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1772
lemma convergent_mult:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1773
  fixes X Y :: "nat \<Rightarrow> 'a::real_normed_field"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1774
  assumes "convergent (\<lambda>n. X n)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1775
  assumes "convergent (\<lambda>n. Y n)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1776
  shows "convergent (\<lambda>n. X n * Y n)"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
  1777
  using assms unfolding convergent_def by (blast intro: tendsto_mult)
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1778
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1779
lemma convergent_mult_const_iff:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1780
  assumes "c \<noteq> 0"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1781
  shows   "convergent (\<lambda>n. c * f n :: 'a :: real_normed_field) \<longleftrightarrow> convergent f"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1782
proof
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1783
  assume "convergent (\<lambda>n. c * f n)"
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1784
  from assms convergent_mult[OF this convergent_const[of "inverse c"]]
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1785
    show "convergent f" by (simp add: field_simps)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1786
next
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1787
  assume "convergent f"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1788
  from convergent_mult[OF convergent_const[of c] this] show "convergent (\<lambda>n. c * f n)" by simp
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1789
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1790
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1791
lemma convergent_mult_const_right_iff:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1792
  assumes "c \<noteq> 0"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1793
  shows   "convergent (\<lambda>n. (f n :: 'a :: real_normed_field) * c) \<longleftrightarrow> convergent f"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1794
  using convergent_mult_const_iff[OF assms, of f] by (simp add: mult_ac)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1795
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1796
lemma convergent_imp_Bseq: "convergent f \<Longrightarrow> Bseq f"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1797
  by (simp add: Cauchy_Bseq convergent_Cauchy)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1798
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1799
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1800
text \<open>A monotone sequence converges to its least upper bound.\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1801
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  1802
lemma LIMSEQ_incseq_SUP:
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  1803
  fixes X :: "nat \<Rightarrow> 'a::{conditionally_complete_linorder, linorder_topology}"
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  1804
  assumes u: "bdd_above (range X)"
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  1805
  assumes X: "incseq X"
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1806
  shows "X \<longlonglongrightarrow> (SUP i. X i)"
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  1807
  by (rule order_tendstoI)
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  1808
     (auto simp: eventually_sequentially u less_cSUP_iff intro: X[THEN incseqD] less_le_trans cSUP_lessD[OF u])
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1809
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  1810
lemma LIMSEQ_decseq_INF:
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  1811
  fixes X :: "nat \<Rightarrow> 'a::{conditionally_complete_linorder, linorder_topology}"
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  1812
  assumes u: "bdd_below (range X)"
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  1813
  assumes X: "decseq X"
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1814
  shows "X \<longlonglongrightarrow> (INF i. X i)"
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  1815
  by (rule order_tendstoI)
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  1816
     (auto simp: eventually_sequentially u cINF_less_iff intro: X[THEN decseqD] le_less_trans less_cINF_D[OF u])
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1817
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1818
text\<open>Main monotonicity theorem\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1819
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1820
lemma Bseq_monoseq_convergent: "Bseq X \<Longrightarrow> monoseq X \<Longrightarrow> convergent (X::nat\<Rightarrow>real)"
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  1821
  by (auto simp: monoseq_iff convergent_def intro: LIMSEQ_decseq_INF LIMSEQ_incseq_SUP dest: Bseq_bdd_above Bseq_bdd_below)
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  1822
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  1823
lemma Bseq_mono_convergent: "Bseq X \<Longrightarrow> (\<forall>m n. m \<le> n \<longrightarrow> X m \<le> X n) \<Longrightarrow> convergent (X::nat\<Rightarrow>real)"
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  1824
  by (auto intro!: Bseq_monoseq_convergent incseq_imp_monoseq simp: incseq_def)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1825
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1826
lemma monoseq_imp_convergent_iff_Bseq: "monoseq (f :: nat \<Rightarrow> real) \<Longrightarrow> convergent f \<longleftrightarrow> Bseq f"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1827
  using Bseq_monoseq_convergent[of f] convergent_imp_Bseq[of f] by blast
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1828
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1829
lemma Bseq_monoseq_convergent'_inc:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1830
  "Bseq (\<lambda>n. f (n + M) :: real) \<Longrightarrow> (\<And>m n. M \<le> m \<Longrightarrow> m \<le> n \<Longrightarrow> f m \<le> f n) \<Longrightarrow> convergent f"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1831
  by (subst convergent_ignore_initial_segment [symmetric, of _ M])
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1832
     (auto intro!: Bseq_monoseq_convergent simp: monoseq_def)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1833
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1834
lemma Bseq_monoseq_convergent'_dec:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1835
  "Bseq (\<lambda>n. f (n + M) :: real) \<Longrightarrow> (\<And>m n. M \<le> m \<Longrightarrow> m \<le> n \<Longrightarrow> f m \<ge> f n) \<Longrightarrow> convergent f"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1836
  by (subst convergent_ignore_initial_segment [symmetric, of _ M])
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1837
     (auto intro!: Bseq_monoseq_convergent simp: monoseq_def)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1838
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1839
lemma Cauchy_iff:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1840
  fixes X :: "nat \<Rightarrow> 'a::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1841
  shows "Cauchy X \<longleftrightarrow> (\<forall>e>0. \<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. norm (X m - X n) < e)"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1842
  unfolding Cauchy_def dist_norm ..
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1843
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1844
lemma CauchyI:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1845
  fixes X :: "nat \<Rightarrow> 'a::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1846
  shows "(\<And>e. 0 < e \<Longrightarrow> \<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. norm (X m - X n) < e) \<Longrightarrow> Cauchy X"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1847
by (simp add: Cauchy_iff)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1848
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1849
lemma CauchyD:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1850
  fixes X :: "nat \<Rightarrow> 'a::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1851
  shows "\<lbrakk>Cauchy X; 0 < e\<rbrakk> \<Longrightarrow> \<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. norm (X m - X n) < e"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1852
by (simp add: Cauchy_iff)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1853
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1854
lemma incseq_convergent:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1855
  fixes X :: "nat \<Rightarrow> real"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1856
  assumes "incseq X" and "\<forall>i. X i \<le> B"
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1857
  obtains L where "X \<longlonglongrightarrow> L" "\<forall>i. X i \<le> L"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1858
proof atomize_elim
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1859
  from incseq_bounded[OF assms] \<open>incseq X\<close> Bseq_monoseq_convergent[of X]
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1860
  obtain L where "X \<longlonglongrightarrow> L"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1861
    by (auto simp: convergent_def monoseq_def incseq_def)
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1862
  with \<open>incseq X\<close> show "\<exists>L. X \<longlonglongrightarrow> L \<and> (\<forall>i. X i \<le> L)"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1863
    by (auto intro!: exI[of _ L] incseq_le)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1864
qed
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1865
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1866
lemma decseq_convergent:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1867
  fixes X :: "nat \<Rightarrow> real"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1868
  assumes "decseq X" and "\<forall>i. B \<le> X i"
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1869
  obtains L where "X \<longlonglongrightarrow> L" "\<forall>i. L \<le> X i"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1870
proof atomize_elim
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1871
  from decseq_bounded[OF assms] \<open>decseq X\<close> Bseq_monoseq_convergent[of X]
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1872
  obtain L where "X \<longlonglongrightarrow> L"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1873
    by (auto simp: convergent_def monoseq_def decseq_def)
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1874
  with \<open>decseq X\<close> show "\<exists>L. X \<longlonglongrightarrow> L \<and> (\<forall>i. L \<le> X i)"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1875
    by (auto intro!: exI[of _ L] decseq_le)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1876
qed
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1877
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1878
subsubsection \<open>Cauchy Sequences are Bounded\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1879
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1880
text\<open>A Cauchy sequence is bounded -- this is the standard
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1881
  proof mechanization rather than the nonstandard proof\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1882
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1883
lemma lemmaCauchy: "\<forall>n \<ge> M. norm (X M - X n) < (1::real)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1884
          ==>  \<forall>n \<ge> M. norm (X n :: 'a::real_normed_vector) < 1 + norm (X M)"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1885
apply (clarify, drule spec, drule (1) mp)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1886
apply (simp only: norm_minus_commute)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1887
apply (drule order_le_less_trans [OF norm_triangle_ineq2])
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1888
apply simp
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1889
done
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1890
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1891
subsection \<open>Power Sequences\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1892
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1893
text\<open>The sequence @{term "x^n"} tends to 0 if @{term "0\<le>x"} and @{term
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1894
"x<1"}.  Proof will use (NS) Cauchy equivalence for convergence and
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1895
  also fact that bounded and monotonic sequence converges.\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1896
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1897
lemma Bseq_realpow: "[| 0 \<le> (x::real); x \<le> 1 |] ==> Bseq (%n. x ^ n)"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1898
apply (simp add: Bseq_def)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1899
apply (rule_tac x = 1 in exI)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1900
apply (simp add: power_abs)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1901
apply (auto dest: power_mono)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1902
done
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1903
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1904
lemma monoseq_realpow: fixes x :: real shows "[| 0 \<le> x; x \<le> 1 |] ==> monoseq (%n. x ^ n)"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1905
apply (clarify intro!: mono_SucI2)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1906
apply (cut_tac n = n and N = "Suc n" and a = x in power_decreasing, auto)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1907
done
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1908
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1909
lemma convergent_realpow:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1910
  "[| 0 \<le> (x::real); x \<le> 1 |] ==> convergent (%n. x ^ n)"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1911
by (blast intro!: Bseq_monoseq_convergent Bseq_realpow monoseq_realpow)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1912
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1913
lemma LIMSEQ_inverse_realpow_zero: "1 < (x::real) \<Longrightarrow> (\<lambda>n. inverse (x ^ n)) \<longlonglongrightarrow> 0"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1914
  by (rule filterlim_compose[OF tendsto_inverse_0 filterlim_realpow_sequentially_gt1]) simp
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1915
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1916
lemma LIMSEQ_realpow_zero:
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1917
  "\<lbrakk>0 \<le> (x::real); x < 1\<rbrakk> \<Longrightarrow> (\<lambda>n. x ^ n) \<longlonglongrightarrow> 0"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1918
proof cases
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1919
  assume "0 \<le> x" and "x \<noteq> 0"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1920
  hence x0: "0 < x" by simp
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1921
  assume x1: "x < 1"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1922
  from x0 x1 have "1 < inverse x"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1923
    by (rule one_less_inverse)
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1924
  hence "(\<lambda>n. inverse (inverse x ^ n)) \<longlonglongrightarrow> 0"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1925
    by (rule LIMSEQ_inverse_realpow_zero)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1926
  thus ?thesis by (simp add: power_inverse)
58729
e8ecc79aee43 add tendsto_const and tendsto_ident_at as simp and intro rules
hoelzl
parents: 57512
diff changeset
  1927
qed (rule LIMSEQ_imp_Suc, simp)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1928
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1929
lemma LIMSEQ_power_zero:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1930
  fixes x :: "'a::{real_normed_algebra_1}"
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1931
  shows "norm x < 1 \<Longrightarrow> (\<lambda>n. x ^ n) \<longlonglongrightarrow> 0"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1932
apply (drule LIMSEQ_realpow_zero [OF norm_ge_zero])
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1933
apply (simp only: tendsto_Zfun_iff, erule Zfun_le)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1934
apply (simp add: power_abs norm_power_ineq)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1935
done
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1936
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1937
lemma LIMSEQ_divide_realpow_zero: "1 < x \<Longrightarrow> (\<lambda>n. a / (x ^ n) :: real) \<longlonglongrightarrow> 0"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1938
  by (rule tendsto_divide_0 [OF tendsto_const filterlim_realpow_sequentially_gt1]) simp
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1939
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1940
text\<open>Limit of @{term "c^n"} for @{term"\<bar>c\<bar> < 1"}\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1941
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1942
lemma LIMSEQ_rabs_realpow_zero: "\<bar>c\<bar> < 1 \<Longrightarrow> (\<lambda>n. \<bar>c\<bar> ^ n :: real) \<longlonglongrightarrow> 0"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1943
  by (rule LIMSEQ_realpow_zero [OF abs_ge_zero])
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1944
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1945
lemma LIMSEQ_rabs_realpow_zero2: "\<bar>c\<bar> < 1 \<Longrightarrow> (\<lambda>n. c ^ n :: real) \<longlonglongrightarrow> 0"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1946
  by (rule LIMSEQ_power_zero) simp
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1947
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1948
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1949
subsection \<open>Limits of Functions\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1950
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1951
lemma LIM_eq:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1952
  fixes a :: "'a::real_normed_vector" and L :: "'b::real_normed_vector"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  1953
  shows "f \<midarrow>a\<rightarrow> L =
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1954
     (\<forall>r>0.\<exists>s>0.\<forall>x. x \<noteq> a & norm (x-a) < s --> norm (f x - L) < r)"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1955
by (simp add: LIM_def dist_norm)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1956
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1957
lemma LIM_I:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1958
  fixes a :: "'a::real_normed_vector" and L :: "'b::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1959
  shows "(!!r. 0<r ==> \<exists>s>0.\<forall>x. x \<noteq> a & norm (x-a) < s --> norm (f x - L) < r)
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  1960
      ==> f \<midarrow>a\<rightarrow> L"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1961
by (simp add: LIM_eq)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1962
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1963
lemma LIM_D:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1964
  fixes a :: "'a::real_normed_vector" and L :: "'b::real_normed_vector"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  1965
  shows "[| f \<midarrow>a\<rightarrow> L; 0<r |]
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1966
      ==> \<exists>s>0.\<forall>x. x \<noteq> a & norm (x-a) < s --> norm (f x - L) < r"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1967
by (simp add: LIM_eq)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1968
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1969
lemma LIM_offset:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1970
  fixes a :: "'a::real_normed_vector"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  1971
  shows "f \<midarrow>a\<rightarrow> L \<Longrightarrow> (\<lambda>x. f (x + k)) \<midarrow>(a - k)\<rightarrow> L"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1972
  unfolding filtermap_at_shift[symmetric, of a k] filterlim_def filtermap_filtermap by simp
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1973
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1974
lemma LIM_offset_zero:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1975
  fixes a :: "'a::real_normed_vector"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  1976
  shows "f \<midarrow>a\<rightarrow> L \<Longrightarrow> (\<lambda>h. f (a + h)) \<midarrow>0\<rightarrow> L"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57447
diff changeset
  1977
by (drule_tac k="a" in LIM_offset, simp add: add.commute)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1978
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1979
lemma LIM_offset_zero_cancel:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1980
  fixes a :: "'a::real_normed_vector"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  1981
  shows "(\<lambda>h. f (a + h)) \<midarrow>0\<rightarrow> L \<Longrightarrow> f \<midarrow>a\<rightarrow> L"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1982
by (drule_tac k="- a" in LIM_offset, simp)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1983
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  1984
lemma LIM_offset_zero_iff:
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  1985
  fixes f :: "'a :: real_normed_vector \<Rightarrow> _"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  1986
  shows  "f \<midarrow>a\<rightarrow> L \<longleftrightarrow> (\<lambda>h. f (a + h)) \<midarrow>0\<rightarrow> L"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  1987
  using LIM_offset_zero_cancel[of f a L] LIM_offset_zero[of f L a] by auto
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  1988
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1989
lemma LIM_zero:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1990
  fixes f :: "'a::topological_space \<Rightarrow> 'b::real_normed_vector"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1991
  shows "(f \<longlongrightarrow> l) F \<Longrightarrow> ((\<lambda>x. f x - l) \<longlongrightarrow> 0) F"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1992
unfolding tendsto_iff dist_norm by simp
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1993
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1994
lemma LIM_zero_cancel:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1995
  fixes f :: "'a::topological_space \<Rightarrow> 'b::real_normed_vector"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1996
  shows "((\<lambda>x. f x - l) \<longlongrightarrow> 0) F \<Longrightarrow> (f \<longlongrightarrow> l) F"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1997
unfolding tendsto_iff dist_norm by simp
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1998
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1999
lemma LIM_zero_iff:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2000
  fixes f :: "'a::metric_space \<Rightarrow> 'b::real_normed_vector"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2001
  shows "((\<lambda>x. f x - l) \<longlongrightarrow> 0) F = (f \<longlongrightarrow> l) F"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2002
unfolding tendsto_iff dist_norm by simp
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2003
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2004
lemma LIM_imp_LIM:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2005
  fixes f :: "'a::topological_space \<Rightarrow> 'b::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2006
  fixes g :: "'a::topological_space \<Rightarrow> 'c::real_normed_vector"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2007
  assumes f: "f \<midarrow>a\<rightarrow> l"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2008
  assumes le: "\<And>x. x \<noteq> a \<Longrightarrow> norm (g x - m) \<le> norm (f x - l)"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2009
  shows "g \<midarrow>a\<rightarrow> m"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2010
  by (rule metric_LIM_imp_LIM [OF f],
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2011
    simp add: dist_norm le)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2012
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2013
lemma LIM_equal2:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2014
  fixes f g :: "'a::real_normed_vector \<Rightarrow> 'b::topological_space"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2015
  assumes 1: "0 < R"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2016
  assumes 2: "\<And>x. \<lbrakk>x \<noteq> a; norm (x - a) < R\<rbrakk> \<Longrightarrow> f x = g x"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2017
  shows "g \<midarrow>a\<rightarrow> l \<Longrightarrow> f \<midarrow>a\<rightarrow> l"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2018
by (rule metric_LIM_equal2 [OF 1 2], simp_all add: dist_norm)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2019
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2020
lemma LIM_compose2:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2021
  fixes a :: "'a::real_normed_vector"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2022
  assumes f: "f \<midarrow>a\<rightarrow> b"
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2023
  assumes g: "g \<midarrow>b\<rightarrow> c"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2024
  assumes inj: "\<exists>d>0. \<forall>x. x \<noteq> a \<and> norm (x - a) < d \<longrightarrow> f x \<noteq> b"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2025
  shows "(\<lambda>x. g (f x)) \<midarrow>a\<rightarrow> c"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2026
by (rule metric_LIM_compose2 [OF f g inj [folded dist_norm]])
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2027
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2028
lemma real_LIM_sandwich_zero:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2029
  fixes f g :: "'a::topological_space \<Rightarrow> real"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2030
  assumes f: "f \<midarrow>a\<rightarrow> 0"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2031
  assumes 1: "\<And>x. x \<noteq> a \<Longrightarrow> 0 \<le> g x"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2032
  assumes 2: "\<And>x. x \<noteq> a \<Longrightarrow> g x \<le> f x"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2033
  shows "g \<midarrow>a\<rightarrow> 0"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2034
proof (rule LIM_imp_LIM [OF f]) (* FIXME: use tendsto_sandwich *)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2035
  fix x assume x: "x \<noteq> a"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2036
  have "norm (g x - 0) = g x" by (simp add: 1 x)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2037
  also have "g x \<le> f x" by (rule 2 [OF x])
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2038
  also have "f x \<le> \<bar>f x\<bar>" by (rule abs_ge_self)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2039
  also have "\<bar>f x\<bar> = norm (f x - 0)" by simp
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2040
  finally show "norm (g x - 0) \<le> norm (f x - 0)" .
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2041
qed
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2042
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2043
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2044
subsection \<open>Continuity\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2045
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2046
lemma LIM_isCont_iff:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2047
  fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::topological_space"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2048
  shows "(f \<midarrow>a\<rightarrow> f a) = ((\<lambda>h. f (a + h)) \<midarrow>0\<rightarrow> f a)"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2049
by (rule iffI [OF LIM_offset_zero LIM_offset_zero_cancel])
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2050
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2051
lemma isCont_iff:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2052
  fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::topological_space"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2053
  shows "isCont f x = (\<lambda>h. f (x + h)) \<midarrow>0\<rightarrow> f x"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2054
by (simp add: isCont_def LIM_isCont_iff)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2055
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2056
lemma isCont_LIM_compose2:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2057
  fixes a :: "'a::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2058
  assumes f [unfolded isCont_def]: "isCont f a"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2059
  assumes g: "g \<midarrow>f a\<rightarrow> l"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2060
  assumes inj: "\<exists>d>0. \<forall>x. x \<noteq> a \<and> norm (x - a) < d \<longrightarrow> f x \<noteq> f a"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2061
  shows "(\<lambda>x. g (f x)) \<midarrow>a\<rightarrow> l"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2062
by (rule LIM_compose2 [OF f g inj])
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2063
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2064
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2065
lemma isCont_norm [simp]:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2066
  fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2067
  shows "isCont f a \<Longrightarrow> isCont (\<lambda>x. norm (f x)) a"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2068
  by (fact continuous_norm)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2069
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2070
lemma isCont_rabs [simp]:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2071
  fixes f :: "'a::t2_space \<Rightarrow> real"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2072
  shows "isCont f a \<Longrightarrow> isCont (\<lambda>x. \<bar>f x\<bar>) a"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2073
  by (fact continuous_rabs)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2074
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2075
lemma isCont_add [simp]:
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
  2076
  fixes f :: "'a::t2_space \<Rightarrow> 'b::topological_monoid_add"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2077
  shows "\<lbrakk>isCont f a; isCont g a\<rbrakk> \<Longrightarrow> isCont (\<lambda>x. f x + g x) a"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2078
  by (fact continuous_add)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2079
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2080
lemma isCont_minus [simp]:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2081
  fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2082
  shows "isCont f a \<Longrightarrow> isCont (\<lambda>x. - f x) a"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2083
  by (fact continuous_minus)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2084
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2085
lemma isCont_diff [simp]:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2086
  fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2087
  shows "\<lbrakk>isCont f a; isCont g a\<rbrakk> \<Longrightarrow> isCont (\<lambda>x. f x - g x) a"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2088
  by (fact continuous_diff)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2089
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2090
lemma isCont_mult [simp]:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2091
  fixes f g :: "'a::t2_space \<Rightarrow> 'b::real_normed_algebra"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2092
  shows "\<lbrakk>isCont f a; isCont g a\<rbrakk> \<Longrightarrow> isCont (\<lambda>x. f x * g x) a"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2093
  by (fact continuous_mult)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2094
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2095
lemma (in bounded_linear) isCont:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2096
  "isCont g a \<Longrightarrow> isCont (\<lambda>x. f (g x)) a"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2097
  by (fact continuous)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2098
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2099
lemma (in bounded_bilinear) isCont:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2100
  "\<lbrakk>isCont f a; isCont g a\<rbrakk> \<Longrightarrow> isCont (\<lambda>x. f x ** g x) a"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2101
  by (fact continuous)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2102
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2103
lemmas isCont_scaleR [simp] =
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2104
  bounded_bilinear.isCont [OF bounded_bilinear_scaleR]
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2105
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2106
lemmas isCont_of_real [simp] =
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2107
  bounded_linear.isCont [OF bounded_linear_of_real]
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2108
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2109
lemma isCont_power [simp]:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2110
  fixes f :: "'a::t2_space \<Rightarrow> 'b::{power,real_normed_algebra}"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2111
  shows "isCont f a \<Longrightarrow> isCont (\<lambda>x. f x ^ n) a"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2112
  by (fact continuous_power)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2113
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2114
lemma isCont_setsum [simp]:
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
  2115
  fixes f :: "'a \<Rightarrow> 'b::t2_space \<Rightarrow> 'c::topological_comm_monoid_add"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2116
  shows "\<forall>i\<in>A. isCont (f i) a \<Longrightarrow> isCont (\<lambda>x. \<Sum>i\<in>A. f i x) a"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2117
  by (auto intro: continuous_setsum)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2118
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2119
subsection \<open>Uniform Continuity\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2120
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
  2121
definition
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
  2122
  isUCont :: "['a::metric_space \<Rightarrow> 'b::metric_space] \<Rightarrow> bool" where
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
  2123
  "isUCont f = (\<forall>r>0. \<exists>s>0. \<forall>x y. dist x y < s \<longrightarrow> dist (f x) (f y) < r)"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
  2124
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
  2125
lemma isUCont_isCont: "isUCont f ==> isCont f x"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
  2126
by (simp add: isUCont_def isCont_def LIM_def, force)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
  2127
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
  2128
lemma isUCont_Cauchy:
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
  2129
  "\<lbrakk>isUCont f; Cauchy X\<rbrakk> \<Longrightarrow> Cauchy (\<lambda>n. f (X n))"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
  2130
unfolding isUCont_def
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
  2131
apply (rule metric_CauchyI)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
  2132
apply (drule_tac x=e in spec, safe)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
  2133
apply (drule_tac e=s in metric_CauchyD, safe)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
  2134
apply (rule_tac x=M in exI, simp)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
  2135
done
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
  2136
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2137
lemma (in bounded_linear) isUCont: "isUCont f"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2138
unfolding isUCont_def dist_norm
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2139
proof (intro allI impI)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2140
  fix r::real assume r: "0 < r"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2141
  obtain K where K: "0 < K" and norm_le: "\<And>x. norm (f x) \<le> norm x * K"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
  2142
    using pos_bounded by blast
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2143
  show "\<exists>s>0. \<forall>x y. norm (x - y) < s \<longrightarrow> norm (f x - f y) < r"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2144
  proof (rule exI, safe)
56541
0e3abadbef39 made divide_pos_pos a simp rule
nipkow
parents: 56536
diff changeset
  2145
    from r K show "0 < r / K" by simp
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2146
  next
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2147
    fix x y :: 'a
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2148
    assume xy: "norm (x - y) < r / K"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2149
    have "norm (f x - f y) = norm (f (x - y))" by (simp only: diff)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2150
    also have "\<dots> \<le> norm (x - y) * K" by (rule norm_le)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2151
    also from K xy have "\<dots> < r" by (simp only: pos_less_divide_eq)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2152
    finally show "norm (f x - f y) < r" .
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2153
  qed
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2154
qed
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2155
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2156
lemma (in bounded_linear) Cauchy: "Cauchy X \<Longrightarrow> Cauchy (\<lambda>n. f (X n))"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2157
by (rule isUCont [THEN isUCont_Cauchy])
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2158
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2159
lemma LIM_less_bound:
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2160
  fixes f :: "real \<Rightarrow> real"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2161
  assumes ev: "b < x" "\<forall> x' \<in> { b <..< x}. 0 \<le> f x'" and "isCont f x"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2162
  shows "0 \<le> f x"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2163
proof (rule tendsto_le_const)
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2164
  show "(f \<longlongrightarrow> f x) (at_left x)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2165
    using \<open>isCont f x\<close> by (simp add: filterlim_at_split isCont_def)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2166
  show "eventually (\<lambda>x. 0 \<le> f x) (at_left x)"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  2167
    using ev by (auto simp: eventually_at dist_real_def intro!: exI[of _ "x - b"])
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2168
qed simp
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents: 51360
diff changeset
  2169
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2170
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2171
subsection \<open>Nested Intervals and Bisection -- Needed for Compactness\<close>
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2172
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2173
lemma nested_sequence_unique:
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2174
  assumes "\<forall>n. f n \<le> f (Suc n)" "\<forall>n. g (Suc n) \<le> g n" "\<forall>n. f n \<le> g n" "(\<lambda>n. f n - g n) \<longlonglongrightarrow> 0"
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2175
  shows "\<exists>l::real. ((\<forall>n. f n \<le> l) \<and> f \<longlonglongrightarrow> l) \<and> ((\<forall>n. l \<le> g n) \<and> g \<longlonglongrightarrow> l)"
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2176
proof -
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2177
  have "incseq f" unfolding incseq_Suc_iff by fact
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2178
  have "decseq g" unfolding decseq_Suc_iff by fact
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2179
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2180
  { fix n
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2181
    from \<open>decseq g\<close> have "g n \<le> g 0" by (rule decseqD) simp
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2182
    with \<open>\<forall>n. f n \<le> g n\<close>[THEN spec, of n] have "f n \<le> g 0" by auto }
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2183
  then obtain u where "f \<longlonglongrightarrow> u" "\<forall>i. f i \<le> u"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2184
    using incseq_convergent[OF \<open>incseq f\<close>] by auto
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2185
  moreover
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2186
  { fix n
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2187
    from \<open>incseq f\<close> have "f 0 \<le> f n" by (rule incseqD) simp
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2188
    with \<open>\<forall>n. f n \<le> g n\<close>[THEN spec, of n] have "f 0 \<le> g n" by simp }
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2189
  then obtain l where "g \<longlonglongrightarrow> l" "\<forall>i. l \<le> g i"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2190
    using decseq_convergent[OF \<open>decseq g\<close>] by auto
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2191
  moreover note LIMSEQ_unique[OF assms(4) tendsto_diff[OF \<open>f \<longlonglongrightarrow> u\<close> \<open>g \<longlonglongrightarrow> l\<close>]]
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2192
  ultimately show ?thesis by auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2193
qed
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2194
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2195
lemma Bolzano[consumes 1, case_names trans local]:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2196
  fixes P :: "real \<Rightarrow> real \<Rightarrow> bool"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2197
  assumes [arith]: "a \<le> b"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2198
  assumes trans: "\<And>a b c. \<lbrakk>P a b; P b c; a \<le> b; b \<le> c\<rbrakk> \<Longrightarrow> P a c"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2199
  assumes local: "\<And>x. a \<le> x \<Longrightarrow> x \<le> b \<Longrightarrow> \<exists>d>0. \<forall>a b. a \<le> x \<and> x \<le> b \<and> b - a < d \<longrightarrow> P a b"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2200
  shows "P a b"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2201
proof -
55415
05f5fdb8d093 renamed 'nat_{case,rec}' to '{case,rec}_nat'
blanchet
parents: 54863
diff changeset
  2202
  def bisect \<equiv> "rec_nat (a, b) (\<lambda>n (x, y). if P x ((x+y) / 2) then ((x+y)/2, y) else (x, (x+y)/2))"
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2203
  def l \<equiv> "\<lambda>n. fst (bisect n)" and u \<equiv> "\<lambda>n. snd (bisect n)"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2204
  have l[simp]: "l 0 = a" "\<And>n. l (Suc n) = (if P (l n) ((l n + u n) / 2) then (l n + u n) / 2 else l n)"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2205
    and u[simp]: "u 0 = b" "\<And>n. u (Suc n) = (if P (l n) ((l n + u n) / 2) then u n else (l n + u n) / 2)"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2206
    by (simp_all add: l_def u_def bisect_def split: prod.split)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2207
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2208
  { fix n have "l n \<le> u n" by (induct n) auto } note this[simp]
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2209
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2210
  have "\<exists>x. ((\<forall>n. l n \<le> x) \<and> l \<longlonglongrightarrow> x) \<and> ((\<forall>n. x \<le> u n) \<and> u \<longlonglongrightarrow> x)"
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2211
  proof (safe intro!: nested_sequence_unique)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2212
    fix n show "l n \<le> l (Suc n)" "u (Suc n) \<le> u n" by (induct n) auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2213
  next
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2214
    { fix n have "l n - u n = (a - b) / 2^n" by (induct n) (auto simp: field_simps) }
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2215
    then show "(\<lambda>n. l n - u n) \<longlonglongrightarrow> 0" by (simp add: LIMSEQ_divide_realpow_zero)
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2216
  qed fact
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2217
  then obtain x where x: "\<And>n. l n \<le> x" "\<And>n. x \<le> u n" and "l \<longlonglongrightarrow> x" "u \<longlonglongrightarrow> x" by auto
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2218
  obtain d where "0 < d" and d: "\<And>a b. a \<le> x \<Longrightarrow> x \<le> b \<Longrightarrow> b - a < d \<Longrightarrow> P a b"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2219
    using \<open>l 0 \<le> x\<close> \<open>x \<le> u 0\<close> local[of x] by auto
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2220
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2221
  show "P a b"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2222
  proof (rule ccontr)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2223
    assume "\<not> P a b"
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2224
    { fix n have "\<not> P (l n) (u n)"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2225
      proof (induct n)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2226
        case (Suc n) with trans[of "l n" "(l n + u n) / 2" "u n"] show ?case by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2227
      qed (simp add: \<open>\<not> P a b\<close>) }
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2228
    moreover
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2229
    { have "eventually (\<lambda>n. x - d / 2 < l n) sequentially"
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2230
        using \<open>0 < d\<close> \<open>l \<longlonglongrightarrow> x\<close> by (intro order_tendstoD[of _ x]) auto
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2231
      moreover have "eventually (\<lambda>n. u n < x + d / 2) sequentially"
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2232
        using \<open>0 < d\<close> \<open>u \<longlonglongrightarrow> x\<close> by (intro order_tendstoD[of _ x]) auto
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2233
      ultimately have "eventually (\<lambda>n. P (l n) (u n)) sequentially"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2234
      proof eventually_elim
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2235
        fix n assume "x - d / 2 < l n" "u n < x + d / 2"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2236
        from add_strict_mono[OF this] have "u n - l n < d" by simp
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2237
        with x show "P (l n) (u n)" by (rule d)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2238
      qed }
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2239
    ultimately show False by simp
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2240
  qed
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2241
qed
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2242
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2243
lemma compact_Icc[simp, intro]: "compact {a .. b::real}"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2244
proof (cases "a \<le> b", rule compactI)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2245
  fix C assume C: "a \<le> b" "\<forall>t\<in>C. open t" "{a..b} \<subseteq> \<Union>C"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2246
  def T == "{a .. b}"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2247
  from C(1,3) show "\<exists>C'\<subseteq>C. finite C' \<and> {a..b} \<subseteq> \<Union>C'"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2248
  proof (induct rule: Bolzano)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2249
    case (trans a b c)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2250
    then have *: "{a .. c} = {a .. b} \<union> {b .. c}" by auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2251
    from trans obtain C1 C2 where "C1\<subseteq>C \<and> finite C1 \<and> {a..b} \<subseteq> \<Union>C1" "C2\<subseteq>C \<and> finite C2 \<and> {b..c} \<subseteq> \<Union>C2"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2252
      by (auto simp: *)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2253
    with trans show ?case
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2254
      unfolding * by (intro exI[of _ "C1 \<union> C2"]) auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2255
  next
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2256
    case (local x)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2257
    then have "x \<in> \<Union>C" using C by auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2258
    with C(2) obtain c where "x \<in> c" "open c" "c \<in> C" by auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2259
    then obtain e where "0 < e" "{x - e <..< x + e} \<subseteq> c"
62101
26c0a70f78a3 add uniform spaces
hoelzl
parents: 62087
diff changeset
  2260
      by (auto simp: open_dist dist_real_def subset_eq Ball_def abs_less_iff)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2261
    with \<open>c \<in> C\<close> show ?case
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2262
      by (safe intro!: exI[of _ "e/2"] exI[of _ "{c}"]) auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2263
  qed
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2264
qed simp
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2265
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2266
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2267
lemma continuous_image_closed_interval:
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2268
  fixes a b and f :: "real \<Rightarrow> real"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2269
  defines "S \<equiv> {a..b}"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2270
  assumes "a \<le> b" and f: "continuous_on S f"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2271
  shows "\<exists>c d. f`S = {c..d} \<and> c \<le> d"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2272
proof -
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2273
  have S: "compact S" "S \<noteq> {}"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2274
    using \<open>a \<le> b\<close> by (auto simp: S_def)
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2275
  obtain c where "c \<in> S" "\<forall>d\<in>S. f d \<le> f c"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2276
    using continuous_attains_sup[OF S f] by auto
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2277
  moreover obtain d where "d \<in> S" "\<forall>c\<in>S. f d \<le> f c"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2278
    using continuous_attains_inf[OF S f] by auto
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2279
  moreover have "connected (f`S)"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2280
    using connected_continuous_image[OF f] connected_Icc by (auto simp: S_def)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2281
  ultimately have "f ` S = {f d .. f c} \<and> f d \<le> f c"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2282
    by (auto simp: connected_iff_interval)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2283
  then show ?thesis
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2284
    by auto
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2285
qed
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2286
60974
6a6f15d8fbc4 New material and fixes related to the forthcoming Stone-Weierstrass development
paulson <lp15@cam.ac.uk>
parents: 60758
diff changeset
  2287
lemma open_Collect_positive:
6a6f15d8fbc4 New material and fixes related to the forthcoming Stone-Weierstrass development
paulson <lp15@cam.ac.uk>
parents: 60758
diff changeset
  2288
 fixes f :: "'a::t2_space \<Rightarrow> real"
6a6f15d8fbc4 New material and fixes related to the forthcoming Stone-Weierstrass development
paulson <lp15@cam.ac.uk>
parents: 60758
diff changeset
  2289
 assumes f: "continuous_on s f"
6a6f15d8fbc4 New material and fixes related to the forthcoming Stone-Weierstrass development
paulson <lp15@cam.ac.uk>
parents: 60758
diff changeset
  2290
 shows "\<exists>A. open A \<and> A \<inter> s = {x\<in>s. 0 < f x}"
6a6f15d8fbc4 New material and fixes related to the forthcoming Stone-Weierstrass development
paulson <lp15@cam.ac.uk>
parents: 60758
diff changeset
  2291
 using continuous_on_open_invariant[THEN iffD1, OF f, rule_format, of "{0 <..}"]
6a6f15d8fbc4 New material and fixes related to the forthcoming Stone-Weierstrass development
paulson <lp15@cam.ac.uk>
parents: 60758
diff changeset
  2292
 by (auto simp: Int_def field_simps)
6a6f15d8fbc4 New material and fixes related to the forthcoming Stone-Weierstrass development
paulson <lp15@cam.ac.uk>
parents: 60758
diff changeset
  2293
6a6f15d8fbc4 New material and fixes related to the forthcoming Stone-Weierstrass development
paulson <lp15@cam.ac.uk>
parents: 60758
diff changeset
  2294
lemma open_Collect_less_Int:
6a6f15d8fbc4 New material and fixes related to the forthcoming Stone-Weierstrass development
paulson <lp15@cam.ac.uk>
parents: 60758
diff changeset
  2295
 fixes f g :: "'a::t2_space \<Rightarrow> real"
6a6f15d8fbc4 New material and fixes related to the forthcoming Stone-Weierstrass development
paulson <lp15@cam.ac.uk>
parents: 60758
diff changeset
  2296
 assumes f: "continuous_on s f" and g: "continuous_on s g"
6a6f15d8fbc4 New material and fixes related to the forthcoming Stone-Weierstrass development
paulson <lp15@cam.ac.uk>
parents: 60758
diff changeset
  2297
 shows "\<exists>A. open A \<and> A \<inter> s = {x\<in>s. f x < g x}"
6a6f15d8fbc4 New material and fixes related to the forthcoming Stone-Weierstrass development
paulson <lp15@cam.ac.uk>
parents: 60758
diff changeset
  2298
 using open_Collect_positive[OF continuous_on_diff[OF g f]] by (simp add: field_simps)
6a6f15d8fbc4 New material and fixes related to the forthcoming Stone-Weierstrass development
paulson <lp15@cam.ac.uk>
parents: 60758
diff changeset
  2299
6a6f15d8fbc4 New material and fixes related to the forthcoming Stone-Weierstrass development
paulson <lp15@cam.ac.uk>
parents: 60758
diff changeset
  2300
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2301
subsection \<open>Boundedness of continuous functions\<close>
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2302
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2303
text\<open>By bisection, function continuous on closed interval is bounded above\<close>
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2304
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2305
lemma isCont_eq_Ub:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2306
  fixes f :: "real \<Rightarrow> 'a::linorder_topology"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2307
  shows "a \<le> b \<Longrightarrow> \<forall>x::real. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x \<Longrightarrow>
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2308
    \<exists>M. (\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> f x \<le> M) \<and> (\<exists>x. a \<le> x \<and> x \<le> b \<and> f x = M)"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2309
  using continuous_attains_sup[of "{a .. b}" f]
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2310
  by (auto simp add: continuous_at_imp_continuous_on Ball_def Bex_def)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2311
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2312
lemma isCont_eq_Lb:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2313
  fixes f :: "real \<Rightarrow> 'a::linorder_topology"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2314
  shows "a \<le> b \<Longrightarrow> \<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x \<Longrightarrow>
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2315
    \<exists>M. (\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> M \<le> f x) \<and> (\<exists>x. a \<le> x \<and> x \<le> b \<and> f x = M)"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2316
  using continuous_attains_inf[of "{a .. b}" f]
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2317
  by (auto simp add: continuous_at_imp_continuous_on Ball_def Bex_def)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2318
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2319
lemma isCont_bounded:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2320
  fixes f :: "real \<Rightarrow> 'a::linorder_topology"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2321
  shows "a \<le> b \<Longrightarrow> \<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x \<Longrightarrow> \<exists>M. \<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> f x \<le> M"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2322
  using isCont_eq_Ub[of a b f] by auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2323
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2324
lemma isCont_has_Ub:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2325
  fixes f :: "real \<Rightarrow> 'a::linorder_topology"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2326
  shows "a \<le> b \<Longrightarrow> \<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x \<Longrightarrow>
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2327
    \<exists>M. (\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> f x \<le> M) \<and> (\<forall>N. N < M \<longrightarrow> (\<exists>x. a \<le> x \<and> x \<le> b \<and> N < f x))"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2328
  using isCont_eq_Ub[of a b f] by auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2329
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2330
(*HOL style here: object-level formulations*)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2331
lemma IVT_objl: "(f(a::real) \<le> (y::real) & y \<le> f(b) & a \<le> b &
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2332
      (\<forall>x. a \<le> x & x \<le> b --> isCont f x))
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2333
      --> (\<exists>x. a \<le> x & x \<le> b & f(x) = y)"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2334
  by (blast intro: IVT)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2335
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2336
lemma IVT2_objl: "(f(b::real) \<le> (y::real) & y \<le> f(a) & a \<le> b &
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2337
      (\<forall>x. a \<le> x & x \<le> b --> isCont f x))
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2338
      --> (\<exists>x. a \<le> x & x \<le> b & f(x) = y)"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2339
  by (blast intro: IVT2)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2340
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2341
lemma isCont_Lb_Ub:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2342
  fixes f :: "real \<Rightarrow> real"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2343
  assumes "a \<le> b" "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2344
  shows "\<exists>L M. (\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> L \<le> f x \<and> f x \<le> M) \<and>
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2345
               (\<forall>y. L \<le> y \<and> y \<le> M \<longrightarrow> (\<exists>x. a \<le> x \<and> x \<le> b \<and> (f x = y)))"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2346
proof -
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2347
  obtain M where M: "a \<le> M" "M \<le> b" "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> f x \<le> f M"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2348
    using isCont_eq_Ub[OF assms] by auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2349
  obtain L where L: "a \<le> L" "L \<le> b" "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> f L \<le> f x"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2350
    using isCont_eq_Lb[OF assms] by auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2351
  show ?thesis
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2352
    using IVT[of f L _ M] IVT2[of f L _ M] M L assms
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2353
    apply (rule_tac x="f L" in exI)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2354
    apply (rule_tac x="f M" in exI)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2355
    apply (cases "L \<le> M")
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2356
    apply (simp, metis order_trans)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2357
    apply (simp, metis order_trans)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2358
    done
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2359
qed
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2360
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2361
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2362
text\<open>Continuity of inverse function\<close>
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2363
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2364
lemma isCont_inverse_function:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2365
  fixes f g :: "real \<Rightarrow> real"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2366
  assumes d: "0 < d"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2367
      and inj: "\<forall>z. \<bar>z-x\<bar> \<le> d \<longrightarrow> g (f z) = z"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2368
      and cont: "\<forall>z. \<bar>z-x\<bar> \<le> d \<longrightarrow> isCont f z"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2369
  shows "isCont g (f x)"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2370
proof -
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2371
  let ?A = "f (x - d)" and ?B = "f (x + d)" and ?D = "{x - d..x + d}"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2372
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2373
  have f: "continuous_on ?D f"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2374
    using cont by (intro continuous_at_imp_continuous_on ballI) auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2375
  then have g: "continuous_on (f`?D) g"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2376
    using inj by (intro continuous_on_inv) auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2377
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2378
  from d f have "{min ?A ?B <..< max ?A ?B} \<subseteq> f ` ?D"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2379
    by (intro connected_contains_Ioo connected_continuous_image) (auto split: split_min split_max)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2380
  with g have "continuous_on {min ?A ?B <..< max ?A ?B} g"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2381
    by (rule continuous_on_subset)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2382
  moreover
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2383
  have "(?A < f x \<and> f x < ?B) \<or> (?B < f x \<and> f x < ?A)"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2384
    using d inj by (intro continuous_inj_imp_mono[OF _ _ f] inj_on_imageI2[of g, OF inj_onI]) auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2385
  then have "f x \<in> {min ?A ?B <..< max ?A ?B}"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2386
    by auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2387
  ultimately
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2388
  show ?thesis
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2389
    by (simp add: continuous_on_eq_continuous_at)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2390
qed
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2391
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2392
lemma isCont_inverse_function2:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2393
  fixes f g :: "real \<Rightarrow> real" shows
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2394
  "\<lbrakk>a < x; x < b;
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2395
    \<forall>z. a \<le> z \<and> z \<le> b \<longrightarrow> g (f z) = z;
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2396
    \<forall>z. a \<le> z \<and> z \<le> b \<longrightarrow> isCont f z\<rbrakk>
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2397
   \<Longrightarrow> isCont g (f x)"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2398
apply (rule isCont_inverse_function
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2399
       [where f=f and d="min (x - a) (b - x)"])
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2400
apply (simp_all add: abs_le_iff)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2401
done
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2402
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2403
(* need to rename second isCont_inverse *)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2404
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2405
lemma isCont_inv_fun:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2406
  fixes f g :: "real \<Rightarrow> real"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2407
  shows "[| 0 < d; \<forall>z. \<bar>z - x\<bar> \<le> d --> g(f(z)) = z;
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2408
         \<forall>z. \<bar>z - x\<bar> \<le> d --> isCont f z |]
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2409
      ==> isCont g (f x)"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2410
by (rule isCont_inverse_function)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2411
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2412
text\<open>Bartle/Sherbert: Introduction to Real Analysis, Theorem 4.2.9, p. 110\<close>
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2413
lemma LIM_fun_gt_zero:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2414
  fixes f :: "real \<Rightarrow> real"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2415
  shows "f \<midarrow>c\<rightarrow> l \<Longrightarrow> 0 < l \<Longrightarrow> \<exists>r. 0 < r \<and> (\<forall>x. x \<noteq> c \<and> \<bar>c - x\<bar> < r \<longrightarrow> 0 < f x)"
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2416
apply (drule (1) LIM_D, clarify)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2417
apply (rule_tac x = s in exI)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2418
apply (simp add: abs_less_iff)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2419
done
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2420
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2421
lemma LIM_fun_less_zero:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2422
  fixes f :: "real \<Rightarrow> real"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2423
  shows "f \<midarrow>c\<rightarrow> l \<Longrightarrow> l < 0 \<Longrightarrow> \<exists>r. 0 < r \<and> (\<forall>x. x \<noteq> c \<and> \<bar>c - x\<bar> < r \<longrightarrow> f x < 0)"
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2424
apply (drule LIM_D [where r="-l"], simp, clarify)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2425
apply (rule_tac x = s in exI)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2426
apply (simp add: abs_less_iff)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2427
done
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2428
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2429
lemma LIM_fun_not_zero:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2430
  fixes f :: "real \<Rightarrow> real"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2431
  shows "f \<midarrow>c\<rightarrow> l \<Longrightarrow> l \<noteq> 0 \<Longrightarrow> \<exists>r. 0 < r \<and> (\<forall>x. x \<noteq> c \<and> \<bar>c - x\<bar> < r \<longrightarrow> f x \<noteq> 0)"
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2432
  using LIM_fun_gt_zero[of f l c] LIM_fun_less_zero[of f l c] by (auto simp add: neq_iff)
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
  2433
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
  2434
end