author | wenzelm |
Tue, 28 Jun 2022 15:17:47 +0200 | |
changeset 75629 | 11e233ba53c8 |
parent 69593 | 3dda49e08b9d |
child 76213 | e44d86131648 |
permissions | -rw-r--r-- |
23146 | 1 |
(* Title: ZF/EquivClass.thy |
2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
3 |
Copyright 1994 University of Cambridge |
|
4 |
*) |
|
5 |
||
60770 | 6 |
section\<open>Equivalence Relations\<close> |
23146 | 7 |
|
8 |
theory EquivClass imports Trancl Perm begin |
|
9 |
||
24893 | 10 |
definition |
69587 | 11 |
quotient :: "[i,i]=>i" (infixl \<open>'/'/\<close> 90) (*set of equiv classes*) where |
46953 | 12 |
"A//r == {r``{x} . x \<in> A}" |
23146 | 13 |
|
24893 | 14 |
definition |
15 |
congruent :: "[i,i=>i]=>o" where |
|
46820 | 16 |
"congruent(r,b) == \<forall>y z. <y,z>:r \<longrightarrow> b(y)=b(z)" |
23146 | 17 |
|
24893 | 18 |
definition |
19 |
congruent2 :: "[i,i,[i,i]=>i]=>o" where |
|
46820 | 20 |
"congruent2(r1,r2,b) == \<forall>y1 z1 y2 z2. |
21 |
<y1,z1>:r1 \<longrightarrow> <y2,z2>:r2 \<longrightarrow> b(y1,y2) = b(z1,z2)" |
|
23146 | 22 |
|
24892 | 23 |
abbreviation |
69587 | 24 |
RESPECTS ::"[i=>i, i] => o" (infixr \<open>respects\<close> 80) where |
24892 | 25 |
"f respects r == congruent(r,f)" |
26 |
||
27 |
abbreviation |
|
69587 | 28 |
RESPECTS2 ::"[i=>i=>i, i] => o" (infixr \<open>respects2 \<close> 80) where |
24892 | 29 |
"f respects2 r == congruent2(r,r,f)" |
67443
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
wenzelm
parents:
61798
diff
changeset
|
30 |
\<comment> \<open>Abbreviation for the common case where the relations are identical\<close> |
23146 | 31 |
|
32 |
||
60770 | 33 |
subsection\<open>Suppes, Theorem 70: |
69593 | 34 |
\<^term>\<open>r\<close> is an equiv relation iff \<^term>\<open>converse(r) O r = r\<close>\<close> |
23146 | 35 |
|
36 |
(** first half: equiv(A,r) ==> converse(r) O r = r **) |
|
37 |
||
38 |
lemma sym_trans_comp_subset: |
|
46820 | 39 |
"[| sym(r); trans(r) |] ==> converse(r) O r \<subseteq> r" |
23146 | 40 |
by (unfold trans_def sym_def, blast) |
41 |
||
42 |
lemma refl_comp_subset: |
|
46820 | 43 |
"[| refl(A,r); r \<subseteq> A*A |] ==> r \<subseteq> converse(r) O r" |
23146 | 44 |
by (unfold refl_def, blast) |
45 |
||
46 |
lemma equiv_comp_eq: |
|
47 |
"equiv(A,r) ==> converse(r) O r = r" |
|
48 |
apply (unfold equiv_def) |
|
49 |
apply (blast del: subsetI intro!: sym_trans_comp_subset refl_comp_subset) |
|
50 |
done |
|
51 |
||
52 |
(*second half*) |
|
53 |
lemma comp_equivI: |
|
54 |
"[| converse(r) O r = r; domain(r) = A |] ==> equiv(A,r)" |
|
55 |
apply (unfold equiv_def refl_def sym_def trans_def) |
|
56 |
apply (erule equalityE) |
|
46820 | 57 |
apply (subgoal_tac "\<forall>x y. <x,y> \<in> r \<longrightarrow> <y,x> \<in> r", blast+) |
23146 | 58 |
done |
59 |
||
60 |
(** Equivalence classes **) |
|
61 |
||
62 |
(*Lemma for the next result*) |
|
63 |
lemma equiv_class_subset: |
|
46820 | 64 |
"[| sym(r); trans(r); <a,b>: r |] ==> r``{a} \<subseteq> r``{b}" |
23146 | 65 |
by (unfold trans_def sym_def, blast) |
66 |
||
67 |
lemma equiv_class_eq: |
|
68 |
"[| equiv(A,r); <a,b>: r |] ==> r``{a} = r``{b}" |
|
69 |
apply (unfold equiv_def) |
|
70 |
apply (safe del: subsetI intro!: equalityI equiv_class_subset) |
|
71 |
apply (unfold sym_def, blast) |
|
72 |
done |
|
73 |
||
74 |
lemma equiv_class_self: |
|
46953 | 75 |
"[| equiv(A,r); a \<in> A |] ==> a \<in> r``{a}" |
23146 | 76 |
by (unfold equiv_def refl_def, blast) |
77 |
||
78 |
(*Lemma for the next result*) |
|
79 |
lemma subset_equiv_class: |
|
46953 | 80 |
"[| equiv(A,r); r``{b} \<subseteq> r``{a}; b \<in> A |] ==> <a,b>: r" |
23146 | 81 |
by (unfold equiv_def refl_def, blast) |
82 |
||
46953 | 83 |
lemma eq_equiv_class: "[| r``{a} = r``{b}; equiv(A,r); b \<in> A |] ==> <a,b>: r" |
23146 | 84 |
by (assumption | rule equalityD2 subset_equiv_class)+ |
85 |
||
86 |
(*thus r``{a} = r``{b} as well*) |
|
87 |
lemma equiv_class_nondisjoint: |
|
46820 | 88 |
"[| equiv(A,r); x: (r``{a} \<inter> r``{b}) |] ==> <a,b>: r" |
23146 | 89 |
by (unfold equiv_def trans_def sym_def, blast) |
90 |
||
46820 | 91 |
lemma equiv_type: "equiv(A,r) ==> r \<subseteq> A*A" |
23146 | 92 |
by (unfold equiv_def, blast) |
93 |
||
94 |
lemma equiv_class_eq_iff: |
|
46953 | 95 |
"equiv(A,r) ==> <x,y>: r \<longleftrightarrow> r``{x} = r``{y} & x \<in> A & y \<in> A" |
23146 | 96 |
by (blast intro: eq_equiv_class equiv_class_eq dest: equiv_type) |
97 |
||
98 |
lemma eq_equiv_class_iff: |
|
46953 | 99 |
"[| equiv(A,r); x \<in> A; y \<in> A |] ==> r``{x} = r``{y} \<longleftrightarrow> <x,y>: r" |
23146 | 100 |
by (blast intro: eq_equiv_class equiv_class_eq dest: equiv_type) |
101 |
||
102 |
(*** Quotients ***) |
|
103 |
||
104 |
(** Introduction/elimination rules -- needed? **) |
|
105 |
||
46953 | 106 |
lemma quotientI [TC]: "x \<in> A ==> r``{x}: A//r" |
23146 | 107 |
apply (unfold quotient_def) |
108 |
apply (erule RepFunI) |
|
109 |
done |
|
110 |
||
111 |
lemma quotientE: |
|
46953 | 112 |
"[| X \<in> A//r; !!x. [| X = r``{x}; x \<in> A |] ==> P |] ==> P" |
23146 | 113 |
by (unfold quotient_def, blast) |
114 |
||
115 |
lemma Union_quotient: |
|
46820 | 116 |
"equiv(A,r) ==> \<Union>(A//r) = A" |
23146 | 117 |
by (unfold equiv_def refl_def quotient_def, blast) |
118 |
||
119 |
lemma quotient_disj: |
|
46953 | 120 |
"[| equiv(A,r); X \<in> A//r; Y \<in> A//r |] ==> X=Y | (X \<inter> Y \<subseteq> 0)" |
23146 | 121 |
apply (unfold quotient_def) |
122 |
apply (safe intro!: equiv_class_eq, assumption) |
|
123 |
apply (unfold equiv_def trans_def sym_def, blast) |
|
124 |
done |
|
125 |
||
60770 | 126 |
subsection\<open>Defining Unary Operations upon Equivalence Classes\<close> |
23146 | 127 |
|
128 |
(** Could have a locale with the premises equiv(A,r) and congruent(r,b) |
|
129 |
**) |
|
130 |
||
131 |
(*Conversion rule*) |
|
132 |
lemma UN_equiv_class: |
|
46953 | 133 |
"[| equiv(A,r); b respects r; a \<in> A |] ==> (\<Union>x\<in>r``{a}. b(x)) = b(a)" |
46820 | 134 |
apply (subgoal_tac "\<forall>x \<in> r``{a}. b(x) = b(a)") |
23146 | 135 |
apply simp |
46820 | 136 |
apply (blast intro: equiv_class_self) |
23146 | 137 |
apply (unfold equiv_def sym_def congruent_def, blast) |
138 |
done |
|
139 |
||
46820 | 140 |
(*type checking of @{term"\<Union>x\<in>r``{a}. b(x)"} *) |
23146 | 141 |
lemma UN_equiv_class_type: |
46953 | 142 |
"[| equiv(A,r); b respects r; X \<in> A//r; !!x. x \<in> A ==> b(x) \<in> B |] |
46820 | 143 |
==> (\<Union>x\<in>X. b(x)) \<in> B" |
23146 | 144 |
apply (unfold quotient_def, safe) |
145 |
apply (simp (no_asm_simp) add: UN_equiv_class) |
|
146 |
done |
|
147 |
||
148 |
(*Sufficient conditions for injectiveness. Could weaken premises! |
|
46953 | 149 |
major premise could be an inclusion; bcong could be !!y. y \<in> A ==> b(y):B |
23146 | 150 |
*) |
151 |
lemma UN_equiv_class_inject: |
|
152 |
"[| equiv(A,r); b respects r; |
|
46953 | 153 |
(\<Union>x\<in>X. b(x))=(\<Union>y\<in>Y. b(y)); X \<in> A//r; Y \<in> A//r; |
154 |
!!x y. [| x \<in> A; y \<in> A; b(x)=b(y) |] ==> <x,y>:r |] |
|
23146 | 155 |
==> X=Y" |
156 |
apply (unfold quotient_def, safe) |
|
157 |
apply (rule equiv_class_eq, assumption) |
|
46820 | 158 |
apply (simp add: UN_equiv_class [of A r b]) |
23146 | 159 |
done |
160 |
||
161 |
||
60770 | 162 |
subsection\<open>Defining Binary Operations upon Equivalence Classes\<close> |
23146 | 163 |
|
164 |
lemma congruent2_implies_congruent: |
|
46953 | 165 |
"[| equiv(A,r1); congruent2(r1,r2,b); a \<in> A |] ==> congruent(r2,b(a))" |
23146 | 166 |
by (unfold congruent_def congruent2_def equiv_def refl_def, blast) |
167 |
||
168 |
lemma congruent2_implies_congruent_UN: |
|
46953 | 169 |
"[| equiv(A1,r1); equiv(A2,r2); congruent2(r1,r2,b); a \<in> A2 |] ==> |
23146 | 170 |
congruent(r1, %x1. \<Union>x2 \<in> r2``{a}. b(x1,x2))" |
171 |
apply (unfold congruent_def, safe) |
|
172 |
apply (frule equiv_type [THEN subsetD], assumption) |
|
46820 | 173 |
apply clarify |
23146 | 174 |
apply (simp add: UN_equiv_class congruent2_implies_congruent) |
175 |
apply (unfold congruent2_def equiv_def refl_def, blast) |
|
176 |
done |
|
177 |
||
178 |
lemma UN_equiv_class2: |
|
179 |
"[| equiv(A1,r1); equiv(A2,r2); congruent2(r1,r2,b); a1: A1; a2: A2 |] |
|
180 |
==> (\<Union>x1 \<in> r1``{a1}. \<Union>x2 \<in> r2``{a2}. b(x1,x2)) = b(a1,a2)" |
|
181 |
by (simp add: UN_equiv_class congruent2_implies_congruent |
|
182 |
congruent2_implies_congruent_UN) |
|
183 |
||
184 |
(*type checking*) |
|
185 |
lemma UN_equiv_class_type2: |
|
186 |
"[| equiv(A,r); b respects2 r; |
|
187 |
X1: A//r; X2: A//r; |
|
46820 | 188 |
!!x1 x2. [| x1: A; x2: A |] ==> b(x1,x2) \<in> B |
189 |
|] ==> (\<Union>x1\<in>X1. \<Union>x2\<in>X2. b(x1,x2)) \<in> B" |
|
23146 | 190 |
apply (unfold quotient_def, safe) |
46820 | 191 |
apply (blast intro: UN_equiv_class_type congruent2_implies_congruent_UN |
23146 | 192 |
congruent2_implies_congruent quotientI) |
193 |
done |
|
194 |
||
195 |
||
196 |
(*Suggested by John Harrison -- the two subproofs may be MUCH simpler |
|
197 |
than the direct proof*) |
|
198 |
lemma congruent2I: |
|
46820 | 199 |
"[| equiv(A1,r1); equiv(A2,r2); |
23146 | 200 |
!! y z w. [| w \<in> A2; <y,z> \<in> r1 |] ==> b(y,w) = b(z,w); |
201 |
!! y z w. [| w \<in> A1; <y,z> \<in> r2 |] ==> b(w,y) = b(w,z) |
|
202 |
|] ==> congruent2(r1,r2,b)" |
|
203 |
apply (unfold congruent2_def equiv_def refl_def, safe) |
|
46820 | 204 |
apply (blast intro: trans) |
23146 | 205 |
done |
206 |
||
207 |
lemma congruent2_commuteI: |
|
208 |
assumes equivA: "equiv(A,r)" |
|
46953 | 209 |
and commute: "!! y z. [| y \<in> A; z \<in> A |] ==> b(y,z) = b(z,y)" |
210 |
and congt: "!! y z w. [| w \<in> A; <y,z>: r |] ==> b(w,y) = b(w,z)" |
|
23146 | 211 |
shows "b respects2 r" |
46820 | 212 |
apply (insert equivA [THEN equiv_type, THEN subsetD]) |
23146 | 213 |
apply (rule congruent2I [OF equivA equivA]) |
214 |
apply (rule commute [THEN trans]) |
|
215 |
apply (rule_tac [3] commute [THEN trans, symmetric]) |
|
46820 | 216 |
apply (rule_tac [5] sym) |
23146 | 217 |
apply (blast intro: congt)+ |
218 |
done |
|
219 |
||
220 |
(*Obsolete?*) |
|
221 |
lemma congruent_commuteI: |
|
46953 | 222 |
"[| equiv(A,r); Z \<in> A//r; |
223 |
!!w. [| w \<in> A |] ==> congruent(r, %z. b(w,z)); |
|
224 |
!!x y. [| x \<in> A; y \<in> A |] ==> b(y,x) = b(x,y) |
|
46820 | 225 |
|] ==> congruent(r, %w. \<Union>z\<in>Z. b(w,z))" |
23146 | 226 |
apply (simp (no_asm) add: congruent_def) |
227 |
apply (safe elim!: quotientE) |
|
228 |
apply (frule equiv_type [THEN subsetD], assumption) |
|
46820 | 229 |
apply (simp add: UN_equiv_class [of A r]) |
230 |
apply (simp add: congruent_def) |
|
23146 | 231 |
done |
232 |
||
233 |
end |