| author | nipkow | 
| Wed, 01 Jun 2011 21:35:34 +0200 | |
| changeset 43141 | 11fce8564415 | 
| parent 42950 | 6e5c2a3c69da | 
| child 43138 | 818521a90356 | 
| permissions | -rw-r--r-- | 
| 41983 | 1 | (* Title: HOL/Library/Extended_Reals.thy | 
| 2 | Author: Johannes Hölzl, TU München | |
| 3 | Author: Robert Himmelmann, TU München | |
| 4 | Author: Armin Heller, TU München | |
| 5 | Author: Bogdan Grechuk, University of Edinburgh | |
| 6 | *) | |
| 41973 | 7 | |
| 8 | header {* Extended real number line *}
 | |
| 9 | ||
| 10 | theory Extended_Reals | |
| 41980 
28b51effc5ed
split Extended_Reals into parts for Library and Multivariate_Analysis
 hoelzl parents: 
41979diff
changeset | 11 | imports Complex_Main | 
| 41973 | 12 | begin | 
| 13 | ||
| 41980 
28b51effc5ed
split Extended_Reals into parts for Library and Multivariate_Analysis
 hoelzl parents: 
41979diff
changeset | 14 | text {*
 | 
| 
28b51effc5ed
split Extended_Reals into parts for Library and Multivariate_Analysis
 hoelzl parents: 
41979diff
changeset | 15 | |
| 
28b51effc5ed
split Extended_Reals into parts for Library and Multivariate_Analysis
 hoelzl parents: 
41979diff
changeset | 16 | For more lemmas about the extended real numbers go to | 
| 42600 | 17 |   @{text "src/HOL/Multivariate_Analysis/Extended_Real_Limits.thy"}
 | 
| 41980 
28b51effc5ed
split Extended_Reals into parts for Library and Multivariate_Analysis
 hoelzl parents: 
41979diff
changeset | 18 | |
| 
28b51effc5ed
split Extended_Reals into parts for Library and Multivariate_Analysis
 hoelzl parents: 
41979diff
changeset | 19 | *} | 
| 
28b51effc5ed
split Extended_Reals into parts for Library and Multivariate_Analysis
 hoelzl parents: 
41979diff
changeset | 20 | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 21 | lemma (in complete_lattice) atLeast_eq_UNIV_iff: "{x..} = UNIV \<longleftrightarrow> x = bot"
 | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 22 | proof | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 23 |   assume "{x..} = UNIV"
 | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 24 | show "x = bot" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 25 | proof (rule ccontr) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 26 |     assume "x \<noteq> bot" then have "bot \<notin> {x..}" by (simp add: le_less)
 | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 27 |     then show False using `{x..} = UNIV` by simp
 | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 28 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 29 | qed auto | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 30 | |
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 31 | lemma SUPR_pair: | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 32 | "(SUP i : A. SUP j : B. f i j) = (SUP p : A \<times> B. f (fst p) (snd p))" | 
| 41980 
28b51effc5ed
split Extended_Reals into parts for Library and Multivariate_Analysis
 hoelzl parents: 
41979diff
changeset | 33 | by (rule antisym) (auto intro!: SUP_leI le_SUPI2) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 34 | |
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 35 | lemma INFI_pair: | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 36 | "(INF i : A. INF j : B. f i j) = (INF p : A \<times> B. f (fst p) (snd p))" | 
| 41980 
28b51effc5ed
split Extended_Reals into parts for Library and Multivariate_Analysis
 hoelzl parents: 
41979diff
changeset | 37 | by (rule antisym) (auto intro!: le_INFI INF_leI2) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 38 | |
| 41973 | 39 | subsection {* Definition and basic properties *}
 | 
| 40 | ||
| 41 | datatype extreal = extreal real | PInfty | MInfty | |
| 42 | ||
| 43 | notation (xsymbols) | |
| 44 |   PInfty  ("\<infinity>")
 | |
| 45 | ||
| 46 | notation (HTML output) | |
| 47 |   PInfty  ("\<infinity>")
 | |
| 48 | ||
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 49 | declare [[coercion "extreal :: real \<Rightarrow> extreal"]] | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 50 | |
| 41973 | 51 | instantiation extreal :: uminus | 
| 52 | begin | |
| 53 | fun uminus_extreal where | |
| 54 | "- (extreal r) = extreal (- r)" | |
| 55 | | "- \<infinity> = MInfty" | |
| 56 | | "- MInfty = \<infinity>" | |
| 57 | instance .. | |
| 58 | end | |
| 59 | ||
| 41976 | 60 | lemma inj_extreal[simp]: "inj_on extreal A" | 
| 61 | unfolding inj_on_def by auto | |
| 62 | ||
| 41973 | 63 | lemma MInfty_neq_PInfty[simp]: | 
| 64 | "\<infinity> \<noteq> - \<infinity>" "- \<infinity> \<noteq> \<infinity>" by simp_all | |
| 65 | ||
| 66 | lemma MInfty_neq_extreal[simp]: | |
| 67 | "extreal r \<noteq> - \<infinity>" "- \<infinity> \<noteq> extreal r" by simp_all | |
| 68 | ||
| 69 | lemma MInfinity_cases[simp]: | |
| 70 | "(case - \<infinity> of extreal r \<Rightarrow> f r | \<infinity> \<Rightarrow> y | MInfinity \<Rightarrow> z) = z" | |
| 71 | by simp | |
| 72 | ||
| 73 | lemma extreal_uminus_uminus[simp]: | |
| 74 | fixes a :: extreal shows "- (- a) = a" | |
| 75 | by (cases a) simp_all | |
| 76 | ||
| 77 | lemma MInfty_eq[simp]: | |
| 78 | "MInfty = - \<infinity>" by simp | |
| 79 | ||
| 80 | declare uminus_extreal.simps(2)[simp del] | |
| 81 | ||
| 82 | lemma extreal_cases[case_names real PInf MInf, cases type: extreal]: | |
| 83 | assumes "\<And>r. x = extreal r \<Longrightarrow> P" | |
| 84 | assumes "x = \<infinity> \<Longrightarrow> P" | |
| 85 | assumes "x = -\<infinity> \<Longrightarrow> P" | |
| 86 | shows P | |
| 87 | using assms by (cases x) auto | |
| 88 | ||
| 41974 | 89 | lemmas extreal2_cases = extreal_cases[case_product extreal_cases] | 
| 90 | lemmas extreal3_cases = extreal2_cases[case_product extreal_cases] | |
| 41973 | 91 | |
| 92 | lemma extreal_uminus_eq_iff[simp]: | |
| 93 | fixes a b :: extreal shows "-a = -b \<longleftrightarrow> a = b" | |
| 94 | by (cases rule: extreal2_cases[of a b]) simp_all | |
| 95 | ||
| 96 | function of_extreal :: "extreal \<Rightarrow> real" where | |
| 97 | "of_extreal (extreal r) = r" | | |
| 98 | "of_extreal \<infinity> = 0" | | |
| 99 | "of_extreal (-\<infinity>) = 0" | |
| 100 | by (auto intro: extreal_cases) | |
| 101 | termination proof qed (rule wf_empty) | |
| 102 | ||
| 103 | defs (overloaded) | |
| 104 | real_of_extreal_def [code_unfold]: "real \<equiv> of_extreal" | |
| 105 | ||
| 106 | lemma real_of_extreal[simp]: | |
| 107 | "real (- x :: extreal) = - (real x)" | |
| 108 | "real (extreal r) = r" | |
| 109 | "real \<infinity> = 0" | |
| 110 | by (cases x) (simp_all add: real_of_extreal_def) | |
| 111 | ||
| 112 | lemma range_extreal[simp]: "range extreal = UNIV - {\<infinity>, -\<infinity>}"
 | |
| 113 | proof safe | |
| 114 | fix x assume "x \<notin> range extreal" "x \<noteq> \<infinity>" | |
| 115 | then show "x = -\<infinity>" by (cases x) auto | |
| 116 | qed auto | |
| 117 | ||
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 118 | lemma extreal_range_uminus[simp]: "range uminus = (UNIV::extreal set)" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 119 | proof safe | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 120 | fix x :: extreal show "x \<in> range uminus" by (intro image_eqI[of _ _ "-x"]) auto | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 121 | qed auto | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 122 | |
| 41973 | 123 | instantiation extreal :: number | 
| 124 | begin | |
| 125 | definition [simp]: "number_of x = extreal (number_of x)" | |
| 126 | instance proof qed | |
| 127 | end | |
| 128 | ||
| 41976 | 129 | instantiation extreal :: abs | 
| 130 | begin | |
| 131 | function abs_extreal where | |
| 132 | "\<bar>extreal r\<bar> = extreal \<bar>r\<bar>" | |
| 133 | | "\<bar>-\<infinity>\<bar> = \<infinity>" | |
| 134 | | "\<bar>\<infinity>\<bar> = \<infinity>" | |
| 135 | by (auto intro: extreal_cases) | |
| 136 | termination proof qed (rule wf_empty) | |
| 137 | instance .. | |
| 138 | end | |
| 139 | ||
| 140 | lemma abs_eq_infinity_cases[elim!]: "\<lbrakk> \<bar>x\<bar> = \<infinity> ; x = \<infinity> \<Longrightarrow> P ; x = -\<infinity> \<Longrightarrow> P \<rbrakk> \<Longrightarrow> P" | |
| 141 | by (cases x) auto | |
| 142 | ||
| 143 | lemma abs_neq_infinity_cases[elim!]: "\<lbrakk> \<bar>x\<bar> \<noteq> \<infinity> ; \<And>r. x = extreal r \<Longrightarrow> P \<rbrakk> \<Longrightarrow> P" | |
| 144 | by (cases x) auto | |
| 145 | ||
| 146 | lemma abs_extreal_uminus[simp]: "\<bar>- x\<bar> = \<bar>x::extreal\<bar>" | |
| 147 | by (cases x) auto | |
| 148 | ||
| 41973 | 149 | subsubsection "Addition" | 
| 150 | ||
| 151 | instantiation extreal :: comm_monoid_add | |
| 152 | begin | |
| 153 | ||
| 154 | definition "0 = extreal 0" | |
| 155 | ||
| 156 | function plus_extreal where | |
| 157 | "extreal r + extreal p = extreal (r + p)" | | |
| 158 | "\<infinity> + a = \<infinity>" | | |
| 159 | "a + \<infinity> = \<infinity>" | | |
| 160 | "extreal r + -\<infinity> = - \<infinity>" | | |
| 161 | "-\<infinity> + extreal p = -\<infinity>" | | |
| 162 | "-\<infinity> + -\<infinity> = -\<infinity>" | |
| 163 | proof - | |
| 164 | case (goal1 P x) | |
| 165 | moreover then obtain a b where "x = (a, b)" by (cases x) auto | |
| 166 | ultimately show P | |
| 167 | by (cases rule: extreal2_cases[of a b]) auto | |
| 168 | qed auto | |
| 169 | termination proof qed (rule wf_empty) | |
| 170 | ||
| 171 | lemma Infty_neq_0[simp]: | |
| 172 | "\<infinity> \<noteq> 0" "0 \<noteq> \<infinity>" | |
| 173 | "-\<infinity> \<noteq> 0" "0 \<noteq> -\<infinity>" | |
| 174 | by (simp_all add: zero_extreal_def) | |
| 175 | ||
| 176 | lemma extreal_eq_0[simp]: | |
| 177 | "extreal r = 0 \<longleftrightarrow> r = 0" | |
| 178 | "0 = extreal r \<longleftrightarrow> r = 0" | |
| 179 | unfolding zero_extreal_def by simp_all | |
| 180 | ||
| 181 | instance | |
| 182 | proof | |
| 183 | fix a :: extreal show "0 + a = a" | |
| 184 | by (cases a) (simp_all add: zero_extreal_def) | |
| 185 | fix b :: extreal show "a + b = b + a" | |
| 186 | by (cases rule: extreal2_cases[of a b]) simp_all | |
| 187 | fix c :: extreal show "a + b + c = a + (b + c)" | |
| 188 | by (cases rule: extreal3_cases[of a b c]) simp_all | |
| 189 | qed | |
| 190 | end | |
| 191 | ||
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 192 | lemma real_of_extreal_0[simp]: "real (0::extreal) = 0" | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 193 | unfolding real_of_extreal_def zero_extreal_def by simp | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 194 | |
| 41976 | 195 | lemma abs_extreal_zero[simp]: "\<bar>0\<bar> = (0::extreal)" | 
| 196 | unfolding zero_extreal_def abs_extreal.simps by simp | |
| 197 | ||
| 41973 | 198 | lemma extreal_uminus_zero[simp]: | 
| 199 | "- 0 = (0::extreal)" | |
| 200 | by (simp add: zero_extreal_def) | |
| 201 | ||
| 202 | lemma extreal_uminus_zero_iff[simp]: | |
| 203 | fixes a :: extreal shows "-a = 0 \<longleftrightarrow> a = 0" | |
| 204 | by (cases a) simp_all | |
| 205 | ||
| 206 | lemma extreal_plus_eq_PInfty[simp]: | |
| 207 | shows "a + b = \<infinity> \<longleftrightarrow> a = \<infinity> \<or> b = \<infinity>" | |
| 208 | by (cases rule: extreal2_cases[of a b]) auto | |
| 209 | ||
| 210 | lemma extreal_plus_eq_MInfty[simp]: | |
| 211 | shows "a + b = -\<infinity> \<longleftrightarrow> | |
| 212 | (a = -\<infinity> \<or> b = -\<infinity>) \<and> a \<noteq> \<infinity> \<and> b \<noteq> \<infinity>" | |
| 213 | by (cases rule: extreal2_cases[of a b]) auto | |
| 214 | ||
| 215 | lemma extreal_add_cancel_left: | |
| 216 | assumes "a \<noteq> -\<infinity>" | |
| 217 | shows "a + b = a + c \<longleftrightarrow> (a = \<infinity> \<or> b = c)" | |
| 218 | using assms by (cases rule: extreal3_cases[of a b c]) auto | |
| 219 | ||
| 220 | lemma extreal_add_cancel_right: | |
| 221 | assumes "a \<noteq> -\<infinity>" | |
| 222 | shows "b + a = c + a \<longleftrightarrow> (a = \<infinity> \<or> b = c)" | |
| 223 | using assms by (cases rule: extreal3_cases[of a b c]) auto | |
| 224 | ||
| 225 | lemma extreal_real: | |
| 41976 | 226 | "extreal (real x) = (if \<bar>x\<bar> = \<infinity> then 0 else x)" | 
| 41973 | 227 | by (cases x) simp_all | 
| 228 | ||
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 229 | lemma real_of_extreal_add: | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 230 | fixes a b :: extreal | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 231 | shows "real (a + b) = (if (\<bar>a\<bar> = \<infinity>) \<and> (\<bar>b\<bar> = \<infinity>) \<or> (\<bar>a\<bar> \<noteq> \<infinity>) \<and> (\<bar>b\<bar> \<noteq> \<infinity>) then real a + real b else 0)" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 232 | by (cases rule: extreal2_cases[of a b]) auto | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 233 | |
| 41973 | 234 | subsubsection "Linear order on @{typ extreal}"
 | 
| 235 | ||
| 236 | instantiation extreal :: linorder | |
| 237 | begin | |
| 238 | ||
| 239 | function less_extreal where | |
| 240 | "extreal x < extreal y \<longleftrightarrow> x < y" | | |
| 241 | " \<infinity> < a \<longleftrightarrow> False" | | |
| 242 | " a < -\<infinity> \<longleftrightarrow> False" | | |
| 243 | "extreal x < \<infinity> \<longleftrightarrow> True" | | |
| 244 | " -\<infinity> < extreal r \<longleftrightarrow> True" | | |
| 245 | " -\<infinity> < \<infinity> \<longleftrightarrow> True" | |
| 246 | proof - | |
| 247 | case (goal1 P x) | |
| 248 | moreover then obtain a b where "x = (a,b)" by (cases x) auto | |
| 249 | ultimately show P by (cases rule: extreal2_cases[of a b]) auto | |
| 250 | qed simp_all | |
| 251 | termination by (relation "{}") simp
 | |
| 252 | ||
| 253 | definition "x \<le> (y::extreal) \<longleftrightarrow> x < y \<or> x = y" | |
| 254 | ||
| 255 | lemma extreal_infty_less[simp]: | |
| 256 | "x < \<infinity> \<longleftrightarrow> (x \<noteq> \<infinity>)" | |
| 257 | "-\<infinity> < x \<longleftrightarrow> (x \<noteq> -\<infinity>)" | |
| 258 | by (cases x, simp_all) (cases x, simp_all) | |
| 259 | ||
| 260 | lemma extreal_infty_less_eq[simp]: | |
| 261 | "\<infinity> \<le> x \<longleftrightarrow> x = \<infinity>" | |
| 262 | "x \<le> -\<infinity> \<longleftrightarrow> x = -\<infinity>" | |
| 263 | by (auto simp add: less_eq_extreal_def) | |
| 264 | ||
| 265 | lemma extreal_less[simp]: | |
| 266 | "extreal r < 0 \<longleftrightarrow> (r < 0)" | |
| 267 | "0 < extreal r \<longleftrightarrow> (0 < r)" | |
| 268 | "0 < \<infinity>" | |
| 269 | "-\<infinity> < 0" | |
| 270 | by (simp_all add: zero_extreal_def) | |
| 271 | ||
| 272 | lemma extreal_less_eq[simp]: | |
| 273 | "x \<le> \<infinity>" | |
| 274 | "-\<infinity> \<le> x" | |
| 275 | "extreal r \<le> extreal p \<longleftrightarrow> r \<le> p" | |
| 276 | "extreal r \<le> 0 \<longleftrightarrow> r \<le> 0" | |
| 277 | "0 \<le> extreal r \<longleftrightarrow> 0 \<le> r" | |
| 278 | by (auto simp add: less_eq_extreal_def zero_extreal_def) | |
| 279 | ||
| 280 | lemma extreal_infty_less_eq2: | |
| 281 | "a \<le> b \<Longrightarrow> a = \<infinity> \<Longrightarrow> b = \<infinity>" | |
| 282 | "a \<le> b \<Longrightarrow> b = -\<infinity> \<Longrightarrow> a = -\<infinity>" | |
| 283 | by simp_all | |
| 284 | ||
| 285 | instance | |
| 286 | proof | |
| 287 | fix x :: extreal show "x \<le> x" | |
| 288 | by (cases x) simp_all | |
| 289 | fix y :: extreal show "x < y \<longleftrightarrow> x \<le> y \<and> \<not> y \<le> x" | |
| 290 | by (cases rule: extreal2_cases[of x y]) auto | |
| 291 | show "x \<le> y \<or> y \<le> x " | |
| 292 | by (cases rule: extreal2_cases[of x y]) auto | |
| 293 |   { assume "x \<le> y" "y \<le> x" then show "x = y"
 | |
| 294 | by (cases rule: extreal2_cases[of x y]) auto } | |
| 295 |   { fix z assume "x \<le> y" "y \<le> z" then show "x \<le> z"
 | |
| 296 | by (cases rule: extreal3_cases[of x y z]) auto } | |
| 297 | qed | |
| 298 | end | |
| 299 | ||
| 41978 | 300 | instance extreal :: ordered_ab_semigroup_add | 
| 301 | proof | |
| 302 | fix a b c :: extreal assume "a \<le> b" then show "c + a \<le> c + b" | |
| 303 | by (cases rule: extreal3_cases[of a b c]) auto | |
| 304 | qed | |
| 305 | ||
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 306 | lemma real_of_extreal_positive_mono: | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 307 | "\<lbrakk>0 \<le> x; x \<le> y; y \<noteq> \<infinity>\<rbrakk> \<Longrightarrow> real x \<le> real y" | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 308 | by (cases rule: extreal2_cases[of x y]) auto | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 309 | |
| 41973 | 310 | lemma extreal_MInfty_lessI[intro, simp]: | 
| 311 | "a \<noteq> -\<infinity> \<Longrightarrow> -\<infinity> < a" | |
| 312 | by (cases a) auto | |
| 313 | ||
| 314 | lemma extreal_less_PInfty[intro, simp]: | |
| 315 | "a \<noteq> \<infinity> \<Longrightarrow> a < \<infinity>" | |
| 316 | by (cases a) auto | |
| 317 | ||
| 318 | lemma extreal_less_extreal_Ex: | |
| 319 | fixes a b :: extreal | |
| 320 | shows "x < extreal r \<longleftrightarrow> x = -\<infinity> \<or> (\<exists>p. p < r \<and> x = extreal p)" | |
| 321 | by (cases x) auto | |
| 322 | ||
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 323 | lemma less_PInf_Ex_of_nat: "x \<noteq> \<infinity> \<longleftrightarrow> (\<exists>n::nat. x < extreal (real n))" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 324 | proof (cases x) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 325 | case (real r) then show ?thesis | 
| 41980 
28b51effc5ed
split Extended_Reals into parts for Library and Multivariate_Analysis
 hoelzl parents: 
41979diff
changeset | 326 | using reals_Archimedean2[of r] by simp | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 327 | qed simp_all | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 328 | |
| 41973 | 329 | lemma extreal_add_mono: | 
| 330 | fixes a b c d :: extreal assumes "a \<le> b" "c \<le> d" shows "a + c \<le> b + d" | |
| 331 | using assms | |
| 332 | apply (cases a) | |
| 333 | apply (cases rule: extreal3_cases[of b c d], auto) | |
| 334 | apply (cases rule: extreal3_cases[of b c d], auto) | |
| 335 | done | |
| 336 | ||
| 337 | lemma extreal_minus_le_minus[simp]: | |
| 338 | fixes a b :: extreal shows "- a \<le> - b \<longleftrightarrow> b \<le> a" | |
| 339 | by (cases rule: extreal2_cases[of a b]) auto | |
| 340 | ||
| 341 | lemma extreal_minus_less_minus[simp]: | |
| 342 | fixes a b :: extreal shows "- a < - b \<longleftrightarrow> b < a" | |
| 343 | by (cases rule: extreal2_cases[of a b]) auto | |
| 344 | ||
| 345 | lemma extreal_le_real_iff: | |
| 41976 | 346 | "x \<le> real y \<longleftrightarrow> ((\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> extreal x \<le> y) \<and> (\<bar>y\<bar> = \<infinity> \<longrightarrow> x \<le> 0))" | 
| 41973 | 347 | by (cases y) auto | 
| 348 | ||
| 349 | lemma real_le_extreal_iff: | |
| 41976 | 350 | "real y \<le> x \<longleftrightarrow> ((\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> y \<le> extreal x) \<and> (\<bar>y\<bar> = \<infinity> \<longrightarrow> 0 \<le> x))" | 
| 41973 | 351 | by (cases y) auto | 
| 352 | ||
| 353 | lemma extreal_less_real_iff: | |
| 41976 | 354 | "x < real y \<longleftrightarrow> ((\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> extreal x < y) \<and> (\<bar>y\<bar> = \<infinity> \<longrightarrow> x < 0))" | 
| 41973 | 355 | by (cases y) auto | 
| 356 | ||
| 357 | lemma real_less_extreal_iff: | |
| 41976 | 358 | "real y < x \<longleftrightarrow> ((\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> y < extreal x) \<and> (\<bar>y\<bar> = \<infinity> \<longrightarrow> 0 < x))" | 
| 41973 | 359 | by (cases y) auto | 
| 360 | ||
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 361 | lemma real_of_extreal_pos: | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 362 | fixes x :: extreal shows "0 \<le> x \<Longrightarrow> 0 \<le> real x" by (cases x) auto | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 363 | |
| 41973 | 364 | lemmas real_of_extreal_ord_simps = | 
| 365 | extreal_le_real_iff real_le_extreal_iff extreal_less_real_iff real_less_extreal_iff | |
| 366 | ||
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 367 | lemma abs_extreal_ge0[simp]: "0 \<le> x \<Longrightarrow> \<bar>x :: extreal\<bar> = x" | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 368 | by (cases x) auto | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 369 | |
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 370 | lemma abs_extreal_less0[simp]: "x < 0 \<Longrightarrow> \<bar>x :: extreal\<bar> = -x" | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 371 | by (cases x) auto | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 372 | |
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 373 | lemma abs_extreal_pos[simp]: "0 \<le> \<bar>x :: extreal\<bar>" | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 374 | by (cases x) auto | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 375 | |
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 376 | lemma real_of_extreal_le_0[simp]: "real (X :: extreal) \<le> 0 \<longleftrightarrow> (X \<le> 0 \<or> X = \<infinity>)" | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 377 | by (cases X) auto | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 378 | |
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 379 | lemma abs_real_of_extreal[simp]: "\<bar>real (X :: extreal)\<bar> = real \<bar>X\<bar>" | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 380 | by (cases X) auto | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 381 | |
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 382 | lemma zero_less_real_of_extreal: "0 < real X \<longleftrightarrow> (0 < X \<and> X \<noteq> \<infinity>)" | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 383 | by (cases X) auto | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 384 | |
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 385 | lemma extreal_0_le_uminus_iff[simp]: | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 386 | fixes a :: extreal shows "0 \<le> -a \<longleftrightarrow> a \<le> 0" | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 387 | by (cases rule: extreal2_cases[of a]) auto | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 388 | |
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 389 | lemma extreal_uminus_le_0_iff[simp]: | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 390 | fixes a :: extreal shows "-a \<le> 0 \<longleftrightarrow> 0 \<le> a" | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 391 | by (cases rule: extreal2_cases[of a]) auto | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 392 | |
| 41973 | 393 | lemma extreal_dense: | 
| 394 | fixes x y :: extreal assumes "x < y" | |
| 395 | shows "EX z. x < z & z < y" | |
| 396 | proof - | |
| 397 | { assume a: "x = (-\<infinity>)"
 | |
| 398 |   { assume "y = \<infinity>" hence ?thesis using a by (auto intro!: exI[of _ "0"]) }
 | |
| 399 | moreover | |
| 400 |   { assume "y ~= \<infinity>"
 | |
| 401 | with `x < y` obtain r where r: "y = extreal r" by (cases y) auto | |
| 402 | hence ?thesis using `x < y` a by (auto intro!: exI[of _ "extreal (r - 1)"]) | |
| 403 | } ultimately have ?thesis by auto | |
| 404 | } | |
| 405 | moreover | |
| 406 | { assume "x ~= (-\<infinity>)"
 | |
| 407 | with `x < y` obtain p where p: "x = extreal p" by (cases x) auto | |
| 408 |   { assume "y = \<infinity>" hence ?thesis using `x < y` p
 | |
| 409 | by (auto intro!: exI[of _ "extreal (p + 1)"]) } | |
| 410 | moreover | |
| 411 |   { assume "y ~= \<infinity>"
 | |
| 412 | with `x < y` obtain r where r: "y = extreal r" by (cases y) auto | |
| 413 | with p `x < y` have "p < r" by auto | |
| 414 | with dense obtain z where "p < z" "z < r" by auto | |
| 415 | hence ?thesis using r p by (auto intro!: exI[of _ "extreal z"]) | |
| 416 | } ultimately have ?thesis by auto | |
| 417 | } ultimately show ?thesis by auto | |
| 418 | qed | |
| 419 | ||
| 420 | lemma extreal_dense2: | |
| 421 | fixes x y :: extreal assumes "x < y" | |
| 422 | shows "EX z. x < extreal z & extreal z < y" | |
| 423 | by (metis extreal_dense[OF `x < y`] extreal_cases less_extreal.simps(2,3)) | |
| 424 | ||
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 425 | lemma extreal_add_strict_mono: | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 426 | fixes a b c d :: extreal | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 427 | assumes "a = b" "0 \<le> a" "a \<noteq> \<infinity>" "c < d" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 428 | shows "a + c < b + d" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 429 | using assms by (cases rule: extreal3_cases[case_product extreal_cases, of a b c d]) auto | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 430 | |
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 431 | lemma extreal_less_add: "\<bar>a\<bar> \<noteq> \<infinity> \<Longrightarrow> c < b \<Longrightarrow> a + c < a + b" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 432 | by (cases rule: extreal2_cases[of b c]) auto | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 433 | |
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 434 | lemma extreal_uminus_eq_reorder: "- a = b \<longleftrightarrow> a = (-b::extreal)" by auto | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 435 | |
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 436 | lemma extreal_uminus_less_reorder: "- a < b \<longleftrightarrow> -b < (a::extreal)" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 437 | by (subst (3) extreal_uminus_uminus[symmetric]) (simp only: extreal_minus_less_minus) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 438 | |
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 439 | lemma extreal_uminus_le_reorder: "- a \<le> b \<longleftrightarrow> -b \<le> (a::extreal)" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 440 | by (subst (3) extreal_uminus_uminus[symmetric]) (simp only: extreal_minus_le_minus) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 441 | |
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 442 | lemmas extreal_uminus_reorder = | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 443 | extreal_uminus_eq_reorder extreal_uminus_less_reorder extreal_uminus_le_reorder | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 444 | |
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 445 | lemma extreal_bot: | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 446 | fixes x :: extreal assumes "\<And>B. x \<le> extreal B" shows "x = - \<infinity>" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 447 | proof (cases x) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 448 | case (real r) with assms[of "r - 1"] show ?thesis by auto | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 449 | next case PInf with assms[of 0] show ?thesis by auto | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 450 | next case MInf then show ?thesis by simp | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 451 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 452 | |
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 453 | lemma extreal_top: | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 454 | fixes x :: extreal assumes "\<And>B. x \<ge> extreal B" shows "x = \<infinity>" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 455 | proof (cases x) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 456 | case (real r) with assms[of "r + 1"] show ?thesis by auto | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 457 | next case MInf with assms[of 0] show ?thesis by auto | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 458 | next case PInf then show ?thesis by simp | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 459 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 460 | |
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 461 | lemma | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 462 | shows extreal_max[simp]: "extreal (max x y) = max (extreal x) (extreal y)" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 463 | and extreal_min[simp]: "extreal (min x y) = min (extreal x) (extreal y)" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 464 | by (simp_all add: min_def max_def) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 465 | |
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 466 | lemma extreal_max_0: "max 0 (extreal r) = extreal (max 0 r)" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 467 | by (auto simp: zero_extreal_def) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 468 | |
| 41978 | 469 | lemma | 
| 470 | fixes f :: "nat \<Rightarrow> extreal" | |
| 471 | shows incseq_uminus[simp]: "incseq (\<lambda>x. - f x) \<longleftrightarrow> decseq f" | |
| 472 | and decseq_uminus[simp]: "decseq (\<lambda>x. - f x) \<longleftrightarrow> incseq f" | |
| 473 | unfolding decseq_def incseq_def by auto | |
| 474 | ||
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 475 | lemma incseq_extreal: "incseq f \<Longrightarrow> incseq (\<lambda>x. extreal (f x))" | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 476 | unfolding incseq_def by auto | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 477 | |
| 41978 | 478 | lemma extreal_add_nonneg_nonneg: | 
| 479 | fixes a b :: extreal shows "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> a + b" | |
| 480 | using add_mono[of 0 a 0 b] by simp | |
| 481 | ||
| 482 | lemma image_eqD: "f ` A = B \<Longrightarrow> (\<forall>x\<in>A. f x \<in> B)" | |
| 483 | by auto | |
| 484 | ||
| 485 | lemma incseq_setsumI: | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 486 |   fixes f :: "nat \<Rightarrow> 'a::{comm_monoid_add, ordered_ab_semigroup_add}"
 | 
| 41978 | 487 | assumes "\<And>i. 0 \<le> f i" | 
| 488 |   shows "incseq (\<lambda>i. setsum f {..< i})"
 | |
| 489 | proof (intro incseq_SucI) | |
| 490 |   fix n have "setsum f {..< n} + 0 \<le> setsum f {..<n} + f n"
 | |
| 491 | using assms by (rule add_left_mono) | |
| 492 |   then show "setsum f {..< n} \<le> setsum f {..< Suc n}"
 | |
| 493 | by auto | |
| 494 | qed | |
| 495 | ||
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 496 | lemma incseq_setsumI2: | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 497 |   fixes f :: "'i \<Rightarrow> nat \<Rightarrow> 'a::{comm_monoid_add, ordered_ab_semigroup_add}"
 | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 498 | assumes "\<And>n. n \<in> A \<Longrightarrow> incseq (f n)" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 499 | shows "incseq (\<lambda>i. \<Sum>n\<in>A. f n i)" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 500 | using assms unfolding incseq_def by (auto intro: setsum_mono) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 501 | |
| 41973 | 502 | subsubsection "Multiplication" | 
| 503 | ||
| 41976 | 504 | instantiation extreal :: "{comm_monoid_mult, sgn}"
 | 
| 41973 | 505 | begin | 
| 506 | ||
| 507 | definition "1 = extreal 1" | |
| 508 | ||
| 41976 | 509 | function sgn_extreal where | 
| 510 | "sgn (extreal r) = extreal (sgn r)" | |
| 511 | | "sgn \<infinity> = 1" | |
| 512 | | "sgn (-\<infinity>) = -1" | |
| 513 | by (auto intro: extreal_cases) | |
| 514 | termination proof qed (rule wf_empty) | |
| 515 | ||
| 41973 | 516 | function times_extreal where | 
| 517 | "extreal r * extreal p = extreal (r * p)" | | |
| 518 | "extreal r * \<infinity> = (if r = 0 then 0 else if r > 0 then \<infinity> else -\<infinity>)" | | |
| 519 | "\<infinity> * extreal r = (if r = 0 then 0 else if r > 0 then \<infinity> else -\<infinity>)" | | |
| 520 | "extreal r * -\<infinity> = (if r = 0 then 0 else if r > 0 then -\<infinity> else \<infinity>)" | | |
| 521 | "-\<infinity> * extreal r = (if r = 0 then 0 else if r > 0 then -\<infinity> else \<infinity>)" | | |
| 522 | "\<infinity> * \<infinity> = \<infinity>" | | |
| 523 | "-\<infinity> * \<infinity> = -\<infinity>" | | |
| 524 | "\<infinity> * -\<infinity> = -\<infinity>" | | |
| 525 | "-\<infinity> * -\<infinity> = \<infinity>" | |
| 526 | proof - | |
| 527 | case (goal1 P x) | |
| 528 | moreover then obtain a b where "x = (a, b)" by (cases x) auto | |
| 529 | ultimately show P by (cases rule: extreal2_cases[of a b]) auto | |
| 530 | qed simp_all | |
| 531 | termination by (relation "{}") simp
 | |
| 532 | ||
| 533 | instance | |
| 534 | proof | |
| 535 | fix a :: extreal show "1 * a = a" | |
| 536 | by (cases a) (simp_all add: one_extreal_def) | |
| 537 | fix b :: extreal show "a * b = b * a" | |
| 538 | by (cases rule: extreal2_cases[of a b]) simp_all | |
| 539 | fix c :: extreal show "a * b * c = a * (b * c)" | |
| 540 | by (cases rule: extreal3_cases[of a b c]) | |
| 541 | (simp_all add: zero_extreal_def zero_less_mult_iff) | |
| 542 | qed | |
| 543 | end | |
| 544 | ||
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 545 | lemma real_of_extreal_le_1: | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 546 | fixes a :: extreal shows "a \<le> 1 \<Longrightarrow> real a \<le> 1" | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 547 | by (cases a) (auto simp: one_extreal_def) | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 548 | |
| 41976 | 549 | lemma abs_extreal_one[simp]: "\<bar>1\<bar> = (1::extreal)" | 
| 550 | unfolding one_extreal_def by simp | |
| 551 | ||
| 41973 | 552 | lemma extreal_mult_zero[simp]: | 
| 553 | fixes a :: extreal shows "a * 0 = 0" | |
| 554 | by (cases a) (simp_all add: zero_extreal_def) | |
| 555 | ||
| 556 | lemma extreal_zero_mult[simp]: | |
| 557 | fixes a :: extreal shows "0 * a = 0" | |
| 558 | by (cases a) (simp_all add: zero_extreal_def) | |
| 559 | ||
| 560 | lemma extreal_m1_less_0[simp]: | |
| 561 | "-(1::extreal) < 0" | |
| 562 | by (simp add: zero_extreal_def one_extreal_def) | |
| 563 | ||
| 564 | lemma extreal_zero_m1[simp]: | |
| 565 | "1 \<noteq> (0::extreal)" | |
| 566 | by (simp add: zero_extreal_def one_extreal_def) | |
| 567 | ||
| 568 | lemma extreal_times_0[simp]: | |
| 569 | fixes x :: extreal shows "0 * x = 0" | |
| 570 | by (cases x) (auto simp: zero_extreal_def) | |
| 571 | ||
| 572 | lemma extreal_times[simp]: | |
| 573 | "1 \<noteq> \<infinity>" "\<infinity> \<noteq> 1" | |
| 574 | "1 \<noteq> -\<infinity>" "-\<infinity> \<noteq> 1" | |
| 575 | by (auto simp add: times_extreal_def one_extreal_def) | |
| 576 | ||
| 577 | lemma extreal_plus_1[simp]: | |
| 578 | "1 + extreal r = extreal (r + 1)" "extreal r + 1 = extreal (r + 1)" | |
| 579 | "1 + -\<infinity> = -\<infinity>" "-\<infinity> + 1 = -\<infinity>" | |
| 580 | unfolding one_extreal_def by auto | |
| 581 | ||
| 582 | lemma extreal_zero_times[simp]: | |
| 583 | fixes a b :: extreal shows "a * b = 0 \<longleftrightarrow> a = 0 \<or> b = 0" | |
| 584 | by (cases rule: extreal2_cases[of a b]) auto | |
| 585 | ||
| 586 | lemma extreal_mult_eq_PInfty[simp]: | |
| 587 | shows "a * b = \<infinity> \<longleftrightarrow> | |
| 588 | (a = \<infinity> \<and> b > 0) \<or> (a > 0 \<and> b = \<infinity>) \<or> (a = -\<infinity> \<and> b < 0) \<or> (a < 0 \<and> b = -\<infinity>)" | |
| 589 | by (cases rule: extreal2_cases[of a b]) auto | |
| 590 | ||
| 591 | lemma extreal_mult_eq_MInfty[simp]: | |
| 592 | shows "a * b = -\<infinity> \<longleftrightarrow> | |
| 593 | (a = \<infinity> \<and> b < 0) \<or> (a < 0 \<and> b = \<infinity>) \<or> (a = -\<infinity> \<and> b > 0) \<or> (a > 0 \<and> b = -\<infinity>)" | |
| 594 | by (cases rule: extreal2_cases[of a b]) auto | |
| 595 | ||
| 596 | lemma extreal_0_less_1[simp]: "0 < (1::extreal)" | |
| 597 | by (simp_all add: zero_extreal_def one_extreal_def) | |
| 598 | ||
| 599 | lemma extreal_zero_one[simp]: "0 \<noteq> (1::extreal)" | |
| 600 | by (simp_all add: zero_extreal_def one_extreal_def) | |
| 601 | ||
| 602 | lemma extreal_mult_minus_left[simp]: | |
| 603 | fixes a b :: extreal shows "-a * b = - (a * b)" | |
| 604 | by (cases rule: extreal2_cases[of a b]) auto | |
| 605 | ||
| 606 | lemma extreal_mult_minus_right[simp]: | |
| 607 | fixes a b :: extreal shows "a * -b = - (a * b)" | |
| 608 | by (cases rule: extreal2_cases[of a b]) auto | |
| 609 | ||
| 610 | lemma extreal_mult_infty[simp]: | |
| 611 | "a * \<infinity> = (if a = 0 then 0 else if 0 < a then \<infinity> else - \<infinity>)" | |
| 612 | by (cases a) auto | |
| 613 | ||
| 614 | lemma extreal_infty_mult[simp]: | |
| 615 | "\<infinity> * a = (if a = 0 then 0 else if 0 < a then \<infinity> else - \<infinity>)" | |
| 616 | by (cases a) auto | |
| 617 | ||
| 618 | lemma extreal_mult_strict_right_mono: | |
| 619 | assumes "a < b" and "0 < c" "c < \<infinity>" | |
| 620 | shows "a * c < b * c" | |
| 621 | using assms | |
| 622 | by (cases rule: extreal3_cases[of a b c]) | |
| 623 | (auto simp: zero_le_mult_iff extreal_less_PInfty) | |
| 624 | ||
| 625 | lemma extreal_mult_strict_left_mono: | |
| 626 | "\<lbrakk> a < b ; 0 < c ; c < \<infinity>\<rbrakk> \<Longrightarrow> c * a < c * b" | |
| 627 | using extreal_mult_strict_right_mono by (simp add: mult_commute[of c]) | |
| 628 | ||
| 629 | lemma extreal_mult_right_mono: | |
| 630 | fixes a b c :: extreal shows "\<lbrakk>a \<le> b; 0 \<le> c\<rbrakk> \<Longrightarrow> a*c \<le> b*c" | |
| 631 | using assms | |
| 632 | apply (cases "c = 0") apply simp | |
| 633 | by (cases rule: extreal3_cases[of a b c]) | |
| 634 | (auto simp: zero_le_mult_iff extreal_less_PInfty) | |
| 635 | ||
| 636 | lemma extreal_mult_left_mono: | |
| 637 | fixes a b c :: extreal shows "\<lbrakk>a \<le> b; 0 \<le> c\<rbrakk> \<Longrightarrow> c * a \<le> c * b" | |
| 638 | using extreal_mult_right_mono by (simp add: mult_commute[of c]) | |
| 639 | ||
| 41978 | 640 | lemma zero_less_one_extreal[simp]: "0 \<le> (1::extreal)" | 
| 641 | by (simp add: one_extreal_def zero_extreal_def) | |
| 642 | ||
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 643 | lemma extreal_0_le_mult[simp]: "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> a * (b :: extreal)" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 644 | by (cases rule: extreal2_cases[of a b]) (auto simp: mult_nonneg_nonneg) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 645 | |
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 646 | lemma extreal_right_distrib: | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 647 | fixes r a b :: extreal shows "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> r * (a + b) = r * a + r * b" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 648 | by (cases rule: extreal3_cases[of r a b]) (simp_all add: field_simps) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 649 | |
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 650 | lemma extreal_left_distrib: | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 651 | fixes r a b :: extreal shows "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> (a + b) * r = a * r + b * r" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 652 | by (cases rule: extreal3_cases[of r a b]) (simp_all add: field_simps) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 653 | |
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 654 | lemma extreal_mult_le_0_iff: | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 655 | fixes a b :: extreal | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 656 | shows "a * b \<le> 0 \<longleftrightarrow> (0 \<le> a \<and> b \<le> 0) \<or> (a \<le> 0 \<and> 0 \<le> b)" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 657 | by (cases rule: extreal2_cases[of a b]) (simp_all add: mult_le_0_iff) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 658 | |
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 659 | lemma extreal_zero_le_0_iff: | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 660 | fixes a b :: extreal | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 661 | shows "0 \<le> a * b \<longleftrightarrow> (0 \<le> a \<and> 0 \<le> b) \<or> (a \<le> 0 \<and> b \<le> 0)" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 662 | by (cases rule: extreal2_cases[of a b]) (simp_all add: zero_le_mult_iff) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 663 | |
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 664 | lemma extreal_mult_less_0_iff: | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 665 | fixes a b :: extreal | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 666 | shows "a * b < 0 \<longleftrightarrow> (0 < a \<and> b < 0) \<or> (a < 0 \<and> 0 < b)" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 667 | by (cases rule: extreal2_cases[of a b]) (simp_all add: mult_less_0_iff) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 668 | |
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 669 | lemma extreal_zero_less_0_iff: | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 670 | fixes a b :: extreal | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 671 | shows "0 < a * b \<longleftrightarrow> (0 < a \<and> 0 < b) \<or> (a < 0 \<and> b < 0)" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 672 | by (cases rule: extreal2_cases[of a b]) (simp_all add: zero_less_mult_iff) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 673 | |
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 674 | lemma extreal_distrib: | 
| 41978 | 675 | fixes a b c :: extreal | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 676 | assumes "a \<noteq> \<infinity> \<or> b \<noteq> -\<infinity>" "a \<noteq> -\<infinity> \<or> b \<noteq> \<infinity>" "\<bar>c\<bar> \<noteq> \<infinity>" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 677 | shows "(a + b) * c = a * c + b * c" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 678 | using assms | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 679 | by (cases rule: extreal3_cases[of a b c]) (simp_all add: field_simps) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 680 | |
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 681 | lemma extreal_le_epsilon: | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 682 | fixes x y :: extreal | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 683 | assumes "ALL e. 0 < e --> x <= y + e" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 684 | shows "x <= y" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 685 | proof- | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 686 | { assume a: "EX r. y = extreal r"
 | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 687 | from this obtain r where r_def: "y = extreal r" by auto | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 688 |   { assume "x=(-\<infinity>)" hence ?thesis by auto }
 | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 689 | moreover | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 690 |   { assume "~(x=(-\<infinity>))"
 | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 691 | from this obtain p where p_def: "x = extreal p" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 692 | using a assms[rule_format, of 1] by (cases x) auto | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 693 |     { fix e have "0 < e --> p <= r + e"
 | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 694 | using assms[rule_format, of "extreal e"] p_def r_def by auto } | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 695 | hence "p <= r" apply (subst field_le_epsilon) by auto | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 696 | hence ?thesis using r_def p_def by auto | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 697 | } ultimately have ?thesis by blast | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 698 | } | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 699 | moreover | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 700 | { assume "y=(-\<infinity>) | y=\<infinity>" hence ?thesis
 | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 701 | using assms[rule_format, of 1] by (cases x) auto | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 702 | } ultimately show ?thesis by (cases y) auto | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 703 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 704 | |
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 705 | |
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 706 | lemma extreal_le_epsilon2: | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 707 | fixes x y :: extreal | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 708 | assumes "ALL e. 0 < e --> x <= y + extreal e" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 709 | shows "x <= y" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 710 | proof- | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 711 | { fix e :: extreal assume "e>0"
 | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 712 |   { assume "e=\<infinity>" hence "x<=y+e" by auto }
 | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 713 | moreover | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 714 |   { assume "e~=\<infinity>"
 | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 715 | from this obtain r where "e = extreal r" using `e>0` apply (cases e) by auto | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 716 | hence "x<=y+e" using assms[rule_format, of r] `e>0` by auto | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 717 | } ultimately have "x<=y+e" by blast | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 718 | } from this show ?thesis using extreal_le_epsilon by auto | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 719 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 720 | |
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 721 | lemma extreal_le_real: | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 722 | fixes x y :: extreal | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 723 | assumes "ALL z. x <= extreal z --> y <= extreal z" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 724 | shows "y <= x" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 725 | by (metis assms extreal.exhaust extreal_bot extreal_less_eq(1) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 726 | extreal_less_eq(2) order_refl uminus_extreal.simps(2)) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 727 | |
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 728 | lemma extreal_le_extreal: | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 729 | fixes x y :: extreal | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 730 | assumes "\<And>B. B < x \<Longrightarrow> B <= y" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 731 | shows "x <= y" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 732 | by (metis assms extreal_dense leD linorder_le_less_linear) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 733 | |
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 734 | lemma extreal_ge_extreal: | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 735 | fixes x y :: extreal | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 736 | assumes "ALL B. B>x --> B >= y" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 737 | shows "x >= y" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 738 | by (metis assms extreal_dense leD linorder_le_less_linear) | 
| 41978 | 739 | |
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 740 | lemma setprod_extreal_0: | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 741 | fixes f :: "'a \<Rightarrow> extreal" | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 742 | shows "(\<Prod>i\<in>A. f i) = 0 \<longleftrightarrow> (finite A \<and> (\<exists>i\<in>A. f i = 0))" | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 743 | proof cases | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 744 | assume "finite A" | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 745 | then show ?thesis by (induct A) auto | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 746 | qed auto | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 747 | |
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 748 | lemma setprod_extreal_pos: | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 749 | fixes f :: "'a \<Rightarrow> extreal" assumes pos: "\<And>i. i \<in> I \<Longrightarrow> 0 \<le> f i" shows "0 \<le> (\<Prod>i\<in>I. f i)" | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 750 | proof cases | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 751 | assume "finite I" from this pos show ?thesis by induct auto | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 752 | qed simp | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 753 | |
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 754 | lemma setprod_PInf: | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 755 | assumes "\<And>i. i \<in> I \<Longrightarrow> 0 \<le> f i" | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 756 | shows "(\<Prod>i\<in>I. f i) = \<infinity> \<longleftrightarrow> finite I \<and> (\<exists>i\<in>I. f i = \<infinity>) \<and> (\<forall>i\<in>I. f i \<noteq> 0)" | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 757 | proof cases | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 758 | assume "finite I" from this assms show ?thesis | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 759 | proof (induct I) | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 760 | case (insert i I) | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 761 | then have pos: "0 \<le> f i" "0 \<le> setprod f I" by (auto intro!: setprod_extreal_pos) | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 762 | from insert have "(\<Prod>j\<in>insert i I. f j) = \<infinity> \<longleftrightarrow> setprod f I * f i = \<infinity>" by auto | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 763 | also have "\<dots> \<longleftrightarrow> (setprod f I = \<infinity> \<or> f i = \<infinity>) \<and> f i \<noteq> 0 \<and> setprod f I \<noteq> 0" | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 764 | using setprod_extreal_pos[of I f] pos | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 765 | by (cases rule: extreal2_cases[of "f i" "setprod f I"]) auto | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 766 | also have "\<dots> \<longleftrightarrow> finite (insert i I) \<and> (\<exists>j\<in>insert i I. f j = \<infinity>) \<and> (\<forall>j\<in>insert i I. f j \<noteq> 0)" | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 767 | using insert by (auto simp: setprod_extreal_0) | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 768 | finally show ?case . | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 769 | qed simp | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 770 | qed simp | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 771 | |
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 772 | lemma setprod_extreal: "(\<Prod>i\<in>A. extreal (f i)) = extreal (setprod f A)" | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 773 | proof cases | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 774 | assume "finite A" then show ?thesis | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 775 | by induct (auto simp: one_extreal_def) | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 776 | qed (simp add: one_extreal_def) | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 777 | |
| 41978 | 778 | subsubsection {* Power *}
 | 
| 779 | ||
| 780 | instantiation extreal :: power | |
| 781 | begin | |
| 782 | primrec power_extreal where | |
| 783 | "power_extreal x 0 = 1" | | |
| 784 | "power_extreal x (Suc n) = x * x ^ n" | |
| 785 | instance .. | |
| 786 | end | |
| 787 | ||
| 788 | lemma extreal_power[simp]: "(extreal x) ^ n = extreal (x^n)" | |
| 789 | by (induct n) (auto simp: one_extreal_def) | |
| 790 | ||
| 791 | lemma extreal_power_PInf[simp]: "\<infinity> ^ n = (if n = 0 then 1 else \<infinity>)" | |
| 792 | by (induct n) (auto simp: one_extreal_def) | |
| 793 | ||
| 794 | lemma extreal_power_uminus[simp]: | |
| 795 | fixes x :: extreal | |
| 796 | shows "(- x) ^ n = (if even n then x ^ n else - (x^n))" | |
| 797 | by (induct n) (auto simp: one_extreal_def) | |
| 798 | ||
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 799 | lemma extreal_power_number_of[simp]: | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 800 | "(number_of num :: extreal) ^ n = extreal (number_of num ^ n)" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 801 | by (induct n) (auto simp: one_extreal_def) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 802 | |
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 803 | lemma zero_le_power_extreal[simp]: | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 804 | fixes a :: extreal assumes "0 \<le> a" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 805 | shows "0 \<le> a ^ n" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 806 | using assms by (induct n) (auto simp: extreal_zero_le_0_iff) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 807 | |
| 41973 | 808 | subsubsection {* Subtraction *}
 | 
| 809 | ||
| 810 | lemma extreal_minus_minus_image[simp]: | |
| 811 | fixes S :: "extreal set" | |
| 812 | shows "uminus ` uminus ` S = S" | |
| 813 | by (auto simp: image_iff) | |
| 814 | ||
| 815 | lemma extreal_uminus_lessThan[simp]: | |
| 816 |   fixes a :: extreal shows "uminus ` {..<a} = {-a<..}"
 | |
| 817 | proof (safe intro!: image_eqI) | |
| 818 | fix x assume "-a < x" | |
| 819 | then have "- x < - (- a)" by (simp del: extreal_uminus_uminus) | |
| 820 | then show "- x < a" by simp | |
| 821 | qed auto | |
| 822 | ||
| 823 | lemma extreal_uminus_greaterThan[simp]: | |
| 824 |   "uminus ` {(a::extreal)<..} = {..<-a}"
 | |
| 825 | by (metis extreal_uminus_lessThan extreal_uminus_uminus | |
| 826 | extreal_minus_minus_image) | |
| 827 | ||
| 828 | instantiation extreal :: minus | |
| 829 | begin | |
| 830 | definition "x - y = x + -(y::extreal)" | |
| 831 | instance .. | |
| 832 | end | |
| 833 | ||
| 834 | lemma extreal_minus[simp]: | |
| 835 | "extreal r - extreal p = extreal (r - p)" | |
| 836 | "-\<infinity> - extreal r = -\<infinity>" | |
| 837 | "extreal r - \<infinity> = -\<infinity>" | |
| 838 | "\<infinity> - x = \<infinity>" | |
| 839 | "-\<infinity> - \<infinity> = -\<infinity>" | |
| 840 | "x - -y = x + y" | |
| 841 | "x - 0 = x" | |
| 842 | "0 - x = -x" | |
| 843 | by (simp_all add: minus_extreal_def) | |
| 844 | ||
| 845 | lemma extreal_x_minus_x[simp]: | |
| 41976 | 846 | "x - x = (if \<bar>x\<bar> = \<infinity> then \<infinity> else 0)" | 
| 41973 | 847 | by (cases x) simp_all | 
| 848 | ||
| 849 | lemma extreal_eq_minus_iff: | |
| 850 | fixes x y z :: extreal | |
| 851 | shows "x = z - y \<longleftrightarrow> | |
| 41976 | 852 | (\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> x + y = z) \<and> | 
| 41973 | 853 | (y = -\<infinity> \<longrightarrow> x = \<infinity>) \<and> | 
| 854 | (y = \<infinity> \<longrightarrow> z = \<infinity> \<longrightarrow> x = \<infinity>) \<and> | |
| 855 | (y = \<infinity> \<longrightarrow> z \<noteq> \<infinity> \<longrightarrow> x = -\<infinity>)" | |
| 856 | by (cases rule: extreal3_cases[of x y z]) auto | |
| 857 | ||
| 858 | lemma extreal_eq_minus: | |
| 859 | fixes x y z :: extreal | |
| 41976 | 860 | shows "\<bar>y\<bar> \<noteq> \<infinity> \<Longrightarrow> x = z - y \<longleftrightarrow> x + y = z" | 
| 861 | by (auto simp: extreal_eq_minus_iff) | |
| 41973 | 862 | |
| 863 | lemma extreal_less_minus_iff: | |
| 864 | fixes x y z :: extreal | |
| 865 | shows "x < z - y \<longleftrightarrow> | |
| 866 | (y = \<infinity> \<longrightarrow> z = \<infinity> \<and> x \<noteq> \<infinity>) \<and> | |
| 867 | (y = -\<infinity> \<longrightarrow> x \<noteq> \<infinity>) \<and> | |
| 41976 | 868 | (\<bar>y\<bar> \<noteq> \<infinity>\<longrightarrow> x + y < z)" | 
| 41973 | 869 | by (cases rule: extreal3_cases[of x y z]) auto | 
| 870 | ||
| 871 | lemma extreal_less_minus: | |
| 872 | fixes x y z :: extreal | |
| 41976 | 873 | shows "\<bar>y\<bar> \<noteq> \<infinity> \<Longrightarrow> x < z - y \<longleftrightarrow> x + y < z" | 
| 874 | by (auto simp: extreal_less_minus_iff) | |
| 41973 | 875 | |
| 876 | lemma extreal_le_minus_iff: | |
| 877 | fixes x y z :: extreal | |
| 878 | shows "x \<le> z - y \<longleftrightarrow> | |
| 879 | (y = \<infinity> \<longrightarrow> z \<noteq> \<infinity> \<longrightarrow> x = -\<infinity>) \<and> | |
| 41976 | 880 | (\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> x + y \<le> z)" | 
| 41973 | 881 | by (cases rule: extreal3_cases[of x y z]) auto | 
| 882 | ||
| 883 | lemma extreal_le_minus: | |
| 884 | fixes x y z :: extreal | |
| 41976 | 885 | shows "\<bar>y\<bar> \<noteq> \<infinity> \<Longrightarrow> x \<le> z - y \<longleftrightarrow> x + y \<le> z" | 
| 886 | by (auto simp: extreal_le_minus_iff) | |
| 41973 | 887 | |
| 888 | lemma extreal_minus_less_iff: | |
| 889 | fixes x y z :: extreal | |
| 890 | shows "x - y < z \<longleftrightarrow> | |
| 891 | y \<noteq> -\<infinity> \<and> (y = \<infinity> \<longrightarrow> x \<noteq> \<infinity> \<and> z \<noteq> -\<infinity>) \<and> | |
| 892 | (y \<noteq> \<infinity> \<longrightarrow> x < z + y)" | |
| 893 | by (cases rule: extreal3_cases[of x y z]) auto | |
| 894 | ||
| 895 | lemma extreal_minus_less: | |
| 896 | fixes x y z :: extreal | |
| 41976 | 897 | shows "\<bar>y\<bar> \<noteq> \<infinity> \<Longrightarrow> x - y < z \<longleftrightarrow> x < z + y" | 
| 898 | by (auto simp: extreal_minus_less_iff) | |
| 41973 | 899 | |
| 900 | lemma extreal_minus_le_iff: | |
| 901 | fixes x y z :: extreal | |
| 902 | shows "x - y \<le> z \<longleftrightarrow> | |
| 903 | (y = -\<infinity> \<longrightarrow> z = \<infinity>) \<and> | |
| 904 | (y = \<infinity> \<longrightarrow> x = \<infinity> \<longrightarrow> z = \<infinity>) \<and> | |
| 41976 | 905 | (\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> x \<le> z + y)" | 
| 41973 | 906 | by (cases rule: extreal3_cases[of x y z]) auto | 
| 907 | ||
| 908 | lemma extreal_minus_le: | |
| 909 | fixes x y z :: extreal | |
| 41976 | 910 | shows "\<bar>y\<bar> \<noteq> \<infinity> \<Longrightarrow> x - y \<le> z \<longleftrightarrow> x \<le> z + y" | 
| 911 | by (auto simp: extreal_minus_le_iff) | |
| 41973 | 912 | |
| 913 | lemma extreal_minus_eq_minus_iff: | |
| 914 | fixes a b c :: extreal | |
| 915 | shows "a - b = a - c \<longleftrightarrow> | |
| 916 | b = c \<or> a = \<infinity> \<or> (a = -\<infinity> \<and> b \<noteq> -\<infinity> \<and> c \<noteq> -\<infinity>)" | |
| 917 | by (cases rule: extreal3_cases[of a b c]) auto | |
| 918 | ||
| 919 | lemma extreal_add_le_add_iff: | |
| 920 | "c + a \<le> c + b \<longleftrightarrow> | |
| 921 | a \<le> b \<or> c = \<infinity> \<or> (c = -\<infinity> \<and> a \<noteq> \<infinity> \<and> b \<noteq> \<infinity>)" | |
| 922 | by (cases rule: extreal3_cases[of a b c]) (simp_all add: field_simps) | |
| 923 | ||
| 924 | lemma extreal_mult_le_mult_iff: | |
| 41976 | 925 | "\<bar>c\<bar> \<noteq> \<infinity> \<Longrightarrow> c * a \<le> c * b \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> a)" | 
| 41973 | 926 | by (cases rule: extreal3_cases[of a b c]) (simp_all add: mult_le_cancel_left) | 
| 927 | ||
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 928 | lemma extreal_minus_mono: | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 929 | fixes A B C D :: extreal assumes "A \<le> B" "D \<le> C" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 930 | shows "A - C \<le> B - D" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 931 | using assms | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 932 | by (cases rule: extreal3_cases[case_product extreal_cases, of A B C D]) simp_all | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 933 | |
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 934 | lemma real_of_extreal_minus: | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 935 | "real (a - b) = (if \<bar>a\<bar> = \<infinity> \<or> \<bar>b\<bar> = \<infinity> then 0 else real a - real b)" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 936 | by (cases rule: extreal2_cases[of a b]) auto | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 937 | |
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 938 | lemma extreal_diff_positive: | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 939 | fixes a b :: extreal shows "a \<le> b \<Longrightarrow> 0 \<le> b - a" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 940 | by (cases rule: extreal2_cases[of a b]) auto | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 941 | |
| 41973 | 942 | lemma extreal_between: | 
| 943 | fixes x e :: extreal | |
| 41976 | 944 | assumes "\<bar>x\<bar> \<noteq> \<infinity>" "0 < e" | 
| 41973 | 945 | shows "x - e < x" "x < x + e" | 
| 946 | using assms apply (cases x, cases e) apply auto | |
| 947 | using assms by (cases x, cases e) auto | |
| 948 | ||
| 949 | subsubsection {* Division *}
 | |
| 950 | ||
| 951 | instantiation extreal :: inverse | |
| 952 | begin | |
| 953 | ||
| 954 | function inverse_extreal where | |
| 955 | "inverse (extreal r) = (if r = 0 then \<infinity> else extreal (inverse r))" | | |
| 956 | "inverse \<infinity> = 0" | | |
| 957 | "inverse (-\<infinity>) = 0" | |
| 958 | by (auto intro: extreal_cases) | |
| 959 | termination by (relation "{}") simp
 | |
| 960 | ||
| 961 | definition "x / y = x * inverse (y :: extreal)" | |
| 962 | ||
| 963 | instance proof qed | |
| 964 | end | |
| 965 | ||
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 966 | lemma real_of_extreal_inverse[simp]: | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 967 | fixes a :: extreal | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 968 | shows "real (inverse a) = 1 / real a" | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 969 | by (cases a) (auto simp: inverse_eq_divide) | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 970 | |
| 41973 | 971 | lemma extreal_inverse[simp]: | 
| 972 | "inverse 0 = \<infinity>" | |
| 973 | "inverse (1::extreal) = 1" | |
| 974 | by (simp_all add: one_extreal_def zero_extreal_def) | |
| 975 | ||
| 976 | lemma extreal_divide[simp]: | |
| 977 | "extreal r / extreal p = (if p = 0 then extreal r * \<infinity> else extreal (r / p))" | |
| 978 | unfolding divide_extreal_def by (auto simp: divide_real_def) | |
| 979 | ||
| 980 | lemma extreal_divide_same[simp]: | |
| 41976 | 981 | "x / x = (if \<bar>x\<bar> = \<infinity> \<or> x = 0 then 0 else 1)" | 
| 41973 | 982 | by (cases x) | 
| 983 | (simp_all add: divide_real_def divide_extreal_def one_extreal_def) | |
| 984 | ||
| 985 | lemma extreal_inv_inv[simp]: | |
| 986 | "inverse (inverse x) = (if x \<noteq> -\<infinity> then x else \<infinity>)" | |
| 987 | by (cases x) auto | |
| 988 | ||
| 989 | lemma extreal_inverse_minus[simp]: | |
| 990 | "inverse (- x) = (if x = 0 then \<infinity> else -inverse x)" | |
| 991 | by (cases x) simp_all | |
| 992 | ||
| 993 | lemma extreal_uminus_divide[simp]: | |
| 994 | fixes x y :: extreal shows "- x / y = - (x / y)" | |
| 995 | unfolding divide_extreal_def by simp | |
| 996 | ||
| 997 | lemma extreal_divide_Infty[simp]: | |
| 998 | "x / \<infinity> = 0" "x / -\<infinity> = 0" | |
| 999 | unfolding divide_extreal_def by simp_all | |
| 1000 | ||
| 1001 | lemma extreal_divide_one[simp]: | |
| 1002 | "x / 1 = (x::extreal)" | |
| 1003 | unfolding divide_extreal_def by simp | |
| 1004 | ||
| 1005 | lemma extreal_divide_extreal[simp]: | |
| 1006 | "\<infinity> / extreal r = (if 0 \<le> r then \<infinity> else -\<infinity>)" | |
| 1007 | unfolding divide_extreal_def by simp | |
| 1008 | ||
| 41978 | 1009 | lemma zero_le_divide_extreal[simp]: | 
| 1010 | fixes a :: extreal assumes "0 \<le> a" "0 \<le> b" | |
| 1011 | shows "0 \<le> a / b" | |
| 1012 | using assms by (cases rule: extreal2_cases[of a b]) (auto simp: zero_le_divide_iff) | |
| 1013 | ||
| 41973 | 1014 | lemma extreal_le_divide_pos: | 
| 1015 | "x > 0 \<Longrightarrow> x \<noteq> \<infinity> \<Longrightarrow> y \<le> z / x \<longleftrightarrow> x * y \<le> z" | |
| 1016 | by (cases rule: extreal3_cases[of x y z]) (auto simp: field_simps) | |
| 1017 | ||
| 1018 | lemma extreal_divide_le_pos: | |
| 1019 | "x > 0 \<Longrightarrow> x \<noteq> \<infinity> \<Longrightarrow> z / x \<le> y \<longleftrightarrow> z \<le> x * y" | |
| 1020 | by (cases rule: extreal3_cases[of x y z]) (auto simp: field_simps) | |
| 1021 | ||
| 1022 | lemma extreal_le_divide_neg: | |
| 1023 | "x < 0 \<Longrightarrow> x \<noteq> -\<infinity> \<Longrightarrow> y \<le> z / x \<longleftrightarrow> z \<le> x * y" | |
| 1024 | by (cases rule: extreal3_cases[of x y z]) (auto simp: field_simps) | |
| 1025 | ||
| 1026 | lemma extreal_divide_le_neg: | |
| 1027 | "x < 0 \<Longrightarrow> x \<noteq> -\<infinity> \<Longrightarrow> z / x \<le> y \<longleftrightarrow> x * y \<le> z" | |
| 1028 | by (cases rule: extreal3_cases[of x y z]) (auto simp: field_simps) | |
| 1029 | ||
| 1030 | lemma extreal_inverse_antimono_strict: | |
| 1031 | fixes x y :: extreal | |
| 1032 | shows "0 \<le> x \<Longrightarrow> x < y \<Longrightarrow> inverse y < inverse x" | |
| 1033 | by (cases rule: extreal2_cases[of x y]) auto | |
| 1034 | ||
| 1035 | lemma extreal_inverse_antimono: | |
| 1036 | fixes x y :: extreal | |
| 1037 | shows "0 \<le> x \<Longrightarrow> x <= y \<Longrightarrow> inverse y <= inverse x" | |
| 1038 | by (cases rule: extreal2_cases[of x y]) auto | |
| 1039 | ||
| 1040 | lemma inverse_inverse_Pinfty_iff[simp]: | |
| 1041 | "inverse x = \<infinity> \<longleftrightarrow> x = 0" | |
| 1042 | by (cases x) auto | |
| 1043 | ||
| 1044 | lemma extreal_inverse_eq_0: | |
| 1045 | "inverse x = 0 \<longleftrightarrow> x = \<infinity> \<or> x = -\<infinity>" | |
| 1046 | by (cases x) auto | |
| 1047 | ||
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1048 | lemma extreal_0_gt_inverse: | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1049 | fixes x :: extreal shows "0 < inverse x \<longleftrightarrow> x \<noteq> \<infinity> \<and> 0 \<le> x" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1050 | by (cases x) auto | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1051 | |
| 41973 | 1052 | lemma extreal_mult_less_right: | 
| 1053 | assumes "b * a < c * a" "0 < a" "a < \<infinity>" | |
| 1054 | shows "b < c" | |
| 1055 | using assms | |
| 1056 | by (cases rule: extreal3_cases[of a b c]) | |
| 1057 | (auto split: split_if_asm simp: zero_less_mult_iff zero_le_mult_iff) | |
| 1058 | ||
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1059 | lemma extreal_power_divide: | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1060 | "y \<noteq> 0 \<Longrightarrow> (x / y :: extreal) ^ n = x^n / y^n" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1061 | by (cases rule: extreal2_cases[of x y]) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1062 | (auto simp: one_extreal_def zero_extreal_def power_divide not_le | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1063 | power_less_zero_eq zero_le_power_iff) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1064 | |
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1065 | lemma extreal_le_mult_one_interval: | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1066 | fixes x y :: extreal | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1067 | assumes y: "y \<noteq> -\<infinity>" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1068 | assumes z: "\<And>z. \<lbrakk> 0 < z ; z < 1 \<rbrakk> \<Longrightarrow> z * x \<le> y" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1069 | shows "x \<le> y" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1070 | proof (cases x) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1071 | case PInf with z[of "1 / 2"] show "x \<le> y" by (simp add: one_extreal_def) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1072 | next | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1073 | case (real r) note r = this | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1074 | show "x \<le> y" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1075 | proof (cases y) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1076 | case (real p) note p = this | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1077 | have "r \<le> p" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1078 | proof (rule field_le_mult_one_interval) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1079 | fix z :: real assume "0 < z" and "z < 1" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1080 | with z[of "extreal z"] | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1081 | show "z * r \<le> p" using p r by (auto simp: zero_le_mult_iff one_extreal_def) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1082 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1083 | then show "x \<le> y" using p r by simp | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1084 | qed (insert y, simp_all) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1085 | qed simp | 
| 41978 | 1086 | |
| 41973 | 1087 | subsection "Complete lattice" | 
| 1088 | ||
| 1089 | instantiation extreal :: lattice | |
| 1090 | begin | |
| 1091 | definition [simp]: "sup x y = (max x y :: extreal)" | |
| 1092 | definition [simp]: "inf x y = (min x y :: extreal)" | |
| 1093 | instance proof qed simp_all | |
| 1094 | end | |
| 1095 | ||
| 1096 | instantiation extreal :: complete_lattice | |
| 1097 | begin | |
| 1098 | ||
| 41976 | 1099 | definition "bot = -\<infinity>" | 
| 41973 | 1100 | definition "top = \<infinity>" | 
| 1101 | ||
| 1102 | definition "Sup S = (LEAST z. ALL x:S. x <= z :: extreal)" | |
| 1103 | definition "Inf S = (GREATEST z. ALL x:S. z <= x :: extreal)" | |
| 1104 | ||
| 1105 | lemma extreal_complete_Sup: | |
| 1106 |   fixes S :: "extreal set" assumes "S \<noteq> {}"
 | |
| 1107 | shows "\<exists>x. (\<forall>y\<in>S. y \<le> x) \<and> (\<forall>z. (\<forall>y\<in>S. y \<le> z) \<longrightarrow> x \<le> z)" | |
| 1108 | proof cases | |
| 1109 | assume "\<exists>x. \<forall>a\<in>S. a \<le> extreal x" | |
| 1110 | then obtain y where y: "\<And>a. a\<in>S \<Longrightarrow> a \<le> extreal y" by auto | |
| 1111 | then have "\<infinity> \<notin> S" by force | |
| 1112 | show ?thesis | |
| 1113 | proof cases | |
| 1114 |     assume "S = {-\<infinity>}"
 | |
| 1115 | then show ?thesis by (auto intro!: exI[of _ "-\<infinity>"]) | |
| 1116 | next | |
| 1117 |     assume "S \<noteq> {-\<infinity>}"
 | |
| 1118 |     with `S \<noteq> {}` `\<infinity> \<notin> S` obtain x where "x \<in> S - {-\<infinity>}" "x \<noteq> \<infinity>" by auto
 | |
| 1119 |     with y `\<infinity> \<notin> S` have "\<forall>z\<in>real ` (S - {-\<infinity>}). z \<le> y"
 | |
| 1120 | by (auto simp: real_of_extreal_ord_simps) | |
| 1121 |     with reals_complete2[of "real ` (S - {-\<infinity>})"] `x \<in> S - {-\<infinity>}`
 | |
| 1122 | obtain s where s: | |
| 1123 |        "\<forall>y\<in>S - {-\<infinity>}. real y \<le> s" "\<And>z. (\<forall>y\<in>S - {-\<infinity>}. real y \<le> z) \<Longrightarrow> s \<le> z"
 | |
| 1124 | by auto | |
| 1125 | show ?thesis | |
| 1126 | proof (safe intro!: exI[of _ "extreal s"]) | |
| 1127 | fix z assume "z \<in> S" with `\<infinity> \<notin> S` show "z \<le> extreal s" | |
| 1128 | proof (cases z) | |
| 1129 | case (real r) | |
| 1130 | then show ?thesis | |
| 1131 | using s(1)[rule_format, of z] `z \<in> S` `z = extreal r` by auto | |
| 1132 | qed auto | |
| 1133 | next | |
| 1134 | fix z assume *: "\<forall>y\<in>S. y \<le> z" | |
| 1135 |       with `S \<noteq> {-\<infinity>}` `S \<noteq> {}` show "extreal s \<le> z"
 | |
| 1136 | proof (cases z) | |
| 1137 | case (real u) | |
| 1138 | with * have "s \<le> u" | |
| 1139 | by (intro s(2)[of u]) (auto simp: real_of_extreal_ord_simps) | |
| 1140 | then show ?thesis using real by simp | |
| 1141 | qed auto | |
| 1142 | qed | |
| 1143 | qed | |
| 1144 | next | |
| 1145 | assume *: "\<not> (\<exists>x. \<forall>a\<in>S. a \<le> extreal x)" | |
| 1146 | show ?thesis | |
| 1147 | proof (safe intro!: exI[of _ \<infinity>]) | |
| 1148 | fix y assume **: "\<forall>z\<in>S. z \<le> y" | |
| 1149 | with * show "\<infinity> \<le> y" | |
| 1150 | proof (cases y) | |
| 1151 | case MInf with * ** show ?thesis by (force simp: not_le) | |
| 1152 | qed auto | |
| 1153 | qed simp | |
| 1154 | qed | |
| 1155 | ||
| 1156 | lemma extreal_complete_Inf: | |
| 1157 |   fixes S :: "extreal set" assumes "S ~= {}"
 | |
| 1158 | shows "EX x. (ALL y:S. x <= y) & (ALL z. (ALL y:S. z <= y) --> z <= x)" | |
| 1159 | proof- | |
| 1160 | def S1 == "uminus ` S" | |
| 1161 | hence "S1 ~= {}" using assms by auto
 | |
| 1162 | from this obtain x where x_def: "(ALL y:S1. y <= x) & (ALL z. (ALL y:S1. y <= z) --> x <= z)" | |
| 1163 | using extreal_complete_Sup[of S1] by auto | |
| 1164 | { fix z assume "ALL y:S. z <= y"
 | |
| 1165 | hence "ALL y:S1. y <= -z" unfolding S1_def by auto | |
| 1166 | hence "x <= -z" using x_def by auto | |
| 1167 | hence "z <= -x" | |
| 1168 | apply (subst extreal_uminus_uminus[symmetric]) | |
| 1169 | unfolding extreal_minus_le_minus . } | |
| 1170 | moreover have "(ALL y:S. -x <= y)" | |
| 1171 | using x_def unfolding S1_def | |
| 1172 | apply simp | |
| 1173 | apply (subst (3) extreal_uminus_uminus[symmetric]) | |
| 1174 | unfolding extreal_minus_le_minus by simp | |
| 1175 | ultimately show ?thesis by auto | |
| 1176 | qed | |
| 1177 | ||
| 1178 | lemma extreal_complete_uminus_eq: | |
| 1179 | fixes S :: "extreal set" | |
| 1180 | shows "(\<forall>y\<in>uminus`S. y \<le> x) \<and> (\<forall>z. (\<forall>y\<in>uminus`S. y \<le> z) \<longrightarrow> x \<le> z) | |
| 1181 | \<longleftrightarrow> (\<forall>y\<in>S. -x \<le> y) \<and> (\<forall>z. (\<forall>y\<in>S. z \<le> y) \<longrightarrow> z \<le> -x)" | |
| 1182 | by simp (metis extreal_minus_le_minus extreal_uminus_uminus) | |
| 1183 | ||
| 1184 | lemma extreal_Sup_uminus_image_eq: | |
| 1185 | fixes S :: "extreal set" | |
| 1186 | shows "Sup (uminus ` S) = - Inf S" | |
| 1187 | proof cases | |
| 1188 |   assume "S = {}"
 | |
| 1189 | moreover have "(THE x. All (op \<le> x)) = (-\<infinity>::extreal)" | |
| 1190 | by (rule the_equality) (auto intro!: extreal_bot) | |
| 1191 | moreover have "(SOME x. \<forall>y. y \<le> x) = (\<infinity>::extreal)" | |
| 1192 | by (rule some_equality) (auto intro!: extreal_top) | |
| 1193 | ultimately show ?thesis unfolding Inf_extreal_def Sup_extreal_def | |
| 1194 | Least_def Greatest_def GreatestM_def by simp | |
| 1195 | next | |
| 1196 |   assume "S \<noteq> {}"
 | |
| 1197 | with extreal_complete_Sup[of "uminus`S"] | |
| 1198 | obtain x where x: "(\<forall>y\<in>S. -x \<le> y) \<and> (\<forall>z. (\<forall>y\<in>S. z \<le> y) \<longrightarrow> z \<le> -x)" | |
| 1199 | unfolding extreal_complete_uminus_eq by auto | |
| 1200 | show "Sup (uminus ` S) = - Inf S" | |
| 1201 | unfolding Inf_extreal_def Greatest_def GreatestM_def | |
| 1202 | proof (intro someI2[of _ _ "\<lambda>x. Sup (uminus`S) = - x"]) | |
| 1203 | show "(\<forall>y\<in>S. -x \<le> y) \<and> (\<forall>y. (\<forall>z\<in>S. y \<le> z) \<longrightarrow> y \<le> -x)" | |
| 1204 | using x . | |
| 1205 | fix x' assume "(\<forall>y\<in>S. x' \<le> y) \<and> (\<forall>y. (\<forall>z\<in>S. y \<le> z) \<longrightarrow> y \<le> x')" | |
| 1206 | then have "(\<forall>y\<in>uminus`S. y \<le> - x') \<and> (\<forall>y. (\<forall>z\<in>uminus`S. z \<le> y) \<longrightarrow> - x' \<le> y)" | |
| 1207 | unfolding extreal_complete_uminus_eq by simp | |
| 1208 | then show "Sup (uminus ` S) = -x'" | |
| 1209 | unfolding Sup_extreal_def extreal_uminus_eq_iff | |
| 1210 | by (intro Least_equality) auto | |
| 1211 | qed | |
| 1212 | qed | |
| 1213 | ||
| 1214 | instance | |
| 1215 | proof | |
| 1216 |   { fix x :: extreal and A
 | |
| 1217 | show "bot <= x" by (cases x) (simp_all add: bot_extreal_def) | |
| 1218 | show "x <= top" by (simp add: top_extreal_def) } | |
| 1219 | ||
| 1220 |   { fix x :: extreal and A assume "x : A"
 | |
| 1221 | with extreal_complete_Sup[of A] | |
| 1222 | obtain s where s: "\<forall>y\<in>A. y <= s" "\<forall>z. (\<forall>y\<in>A. y <= z) \<longrightarrow> s <= z" by auto | |
| 1223 | hence "x <= s" using `x : A` by auto | |
| 1224 | also have "... = Sup A" using s unfolding Sup_extreal_def | |
| 1225 | by (auto intro!: Least_equality[symmetric]) | |
| 1226 | finally show "x <= Sup A" . } | |
| 1227 | note le_Sup = this | |
| 1228 | ||
| 1229 |   { fix x :: extreal and A assume *: "!!z. (z : A ==> z <= x)"
 | |
| 1230 | show "Sup A <= x" | |
| 1231 |     proof (cases "A = {}")
 | |
| 1232 | case True | |
| 1233 | hence "Sup A = -\<infinity>" unfolding Sup_extreal_def | |
| 1234 | by (auto intro!: Least_equality) | |
| 1235 | thus "Sup A <= x" by simp | |
| 1236 | next | |
| 1237 | case False | |
| 1238 | with extreal_complete_Sup[of A] | |
| 1239 | obtain s where s: "\<forall>y\<in>A. y <= s" "\<forall>z. (\<forall>y\<in>A. y <= z) \<longrightarrow> s <= z" by auto | |
| 1240 | hence "Sup A = s" | |
| 1241 | unfolding Sup_extreal_def by (auto intro!: Least_equality) | |
| 1242 | also have "s <= x" using * s by auto | |
| 1243 | finally show "Sup A <= x" . | |
| 1244 | qed } | |
| 1245 | note Sup_le = this | |
| 1246 | ||
| 1247 |   { fix x :: extreal and A assume "x \<in> A"
 | |
| 1248 | with le_Sup[of "-x" "uminus`A"] show "Inf A \<le> x" | |
| 1249 | unfolding extreal_Sup_uminus_image_eq by simp } | |
| 1250 | ||
| 1251 |   { fix x :: extreal and A assume *: "!!z. (z : A ==> x <= z)"
 | |
| 1252 | with Sup_le[of "uminus`A" "-x"] show "x \<le> Inf A" | |
| 1253 | unfolding extreal_Sup_uminus_image_eq by force } | |
| 1254 | qed | |
| 1255 | end | |
| 1256 | ||
| 1257 | lemma extreal_SUPR_uminus: | |
| 1258 | fixes f :: "'a => extreal" | |
| 1259 | shows "(SUP i : R. -(f i)) = -(INF i : R. f i)" | |
| 1260 | unfolding SUPR_def INFI_def | |
| 1261 | using extreal_Sup_uminus_image_eq[of "f`R"] | |
| 1262 | by (simp add: image_image) | |
| 1263 | ||
| 1264 | lemma extreal_INFI_uminus: | |
| 1265 | fixes f :: "'a => extreal" | |
| 1266 | shows "(INF i : R. -(f i)) = -(SUP i : R. f i)" | |
| 1267 | using extreal_SUPR_uminus[of _ "\<lambda>x. - f x"] by simp | |
| 1268 | ||
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1269 | lemma extreal_Inf_uminus_image_eq: "Inf (uminus ` S) = - Sup (S::extreal set)" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1270 | using extreal_Sup_uminus_image_eq[of "uminus ` S"] by (simp add: image_image) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1271 | |
| 41973 | 1272 | lemma extreal_inj_on_uminus[intro, simp]: "inj_on uminus (A :: extreal set)" | 
| 1273 | by (auto intro!: inj_onI) | |
| 1274 | ||
| 1275 | lemma extreal_image_uminus_shift: | |
| 1276 | fixes X Y :: "extreal set" shows "uminus ` X = Y \<longleftrightarrow> X = uminus ` Y" | |
| 1277 | proof | |
| 1278 | assume "uminus ` X = Y" | |
| 1279 | then have "uminus ` uminus ` X = uminus ` Y" | |
| 1280 | by (simp add: inj_image_eq_iff) | |
| 1281 | then show "X = uminus ` Y" by (simp add: image_image) | |
| 1282 | qed (simp add: image_image) | |
| 1283 | ||
| 1284 | lemma Inf_extreal_iff: | |
| 1285 | fixes z :: extreal | |
| 1286 | shows "(!!x. x:X ==> z <= x) ==> (EX x:X. x<y) <-> Inf X < y" | |
| 1287 | by (metis complete_lattice_class.Inf_greatest complete_lattice_class.Inf_lower less_le_not_le linear | |
| 1288 | order_less_le_trans) | |
| 1289 | ||
| 1290 | lemma Sup_eq_MInfty: | |
| 1291 |   fixes S :: "extreal set" shows "Sup S = -\<infinity> \<longleftrightarrow> S = {} \<or> S = {-\<infinity>}"
 | |
| 1292 | proof | |
| 1293 | assume a: "Sup S = -\<infinity>" | |
| 1294 | with complete_lattice_class.Sup_upper[of _ S] | |
| 1295 |   show "S={} \<or> S={-\<infinity>}" by auto
 | |
| 1296 | next | |
| 1297 |   assume "S={} \<or> S={-\<infinity>}" then show "Sup S = -\<infinity>"
 | |
| 1298 | unfolding Sup_extreal_def by (auto intro!: Least_equality) | |
| 1299 | qed | |
| 1300 | ||
| 1301 | lemma Inf_eq_PInfty: | |
| 1302 |   fixes S :: "extreal set" shows "Inf S = \<infinity> \<longleftrightarrow> S = {} \<or> S = {\<infinity>}"
 | |
| 1303 | using Sup_eq_MInfty[of "uminus`S"] | |
| 1304 | unfolding extreal_Sup_uminus_image_eq extreal_image_uminus_shift by simp | |
| 1305 | ||
| 1306 | lemma Inf_eq_MInfty: "-\<infinity> : S ==> Inf S = -\<infinity>" | |
| 1307 | unfolding Inf_extreal_def | |
| 1308 | by (auto intro!: Greatest_equality) | |
| 1309 | ||
| 1310 | lemma Sup_eq_PInfty: "\<infinity> : S ==> Sup S = \<infinity>" | |
| 1311 | unfolding Sup_extreal_def | |
| 1312 | by (auto intro!: Least_equality) | |
| 1313 | ||
| 1314 | lemma extreal_SUPI: | |
| 1315 | fixes x :: extreal | |
| 1316 | assumes "!!i. i : A ==> f i <= x" | |
| 1317 | assumes "!!y. (!!i. i : A ==> f i <= y) ==> x <= y" | |
| 1318 | shows "(SUP i:A. f i) = x" | |
| 1319 | unfolding SUPR_def Sup_extreal_def | |
| 1320 | using assms by (auto intro!: Least_equality) | |
| 1321 | ||
| 1322 | lemma extreal_INFI: | |
| 1323 | fixes x :: extreal | |
| 1324 | assumes "!!i. i : A ==> f i >= x" | |
| 1325 | assumes "!!y. (!!i. i : A ==> f i >= y) ==> x >= y" | |
| 1326 | shows "(INF i:A. f i) = x" | |
| 1327 | unfolding INFI_def Inf_extreal_def | |
| 1328 | using assms by (auto intro!: Greatest_equality) | |
| 1329 | ||
| 1330 | lemma Sup_extreal_close: | |
| 1331 | fixes e :: extreal | |
| 41976 | 1332 |   assumes "0 < e" and S: "\<bar>Sup S\<bar> \<noteq> \<infinity>" "S \<noteq> {}"
 | 
| 41973 | 1333 | shows "\<exists>x\<in>S. Sup S - e < x" | 
| 41976 | 1334 | using assms by (cases e) (auto intro!: less_Sup_iff[THEN iffD1]) | 
| 41973 | 1335 | |
| 1336 | lemma Inf_extreal_close: | |
| 41976 | 1337 | fixes e :: extreal assumes "\<bar>Inf X\<bar> \<noteq> \<infinity>" "0 < e" | 
| 41973 | 1338 | shows "\<exists>x\<in>X. x < Inf X + e" | 
| 1339 | proof (rule Inf_less_iff[THEN iffD1]) | |
| 1340 | show "Inf X < Inf X + e" using assms | |
| 41976 | 1341 | by (cases e) auto | 
| 41973 | 1342 | qed | 
| 1343 | ||
| 1344 | lemma Sup_eq_top_iff: | |
| 1345 |   fixes A :: "'a::{complete_lattice, linorder} set"
 | |
| 1346 | shows "Sup A = top \<longleftrightarrow> (\<forall>x<top. \<exists>i\<in>A. x < i)" | |
| 1347 | proof | |
| 1348 | assume *: "Sup A = top" | |
| 1349 | show "(\<forall>x<top. \<exists>i\<in>A. x < i)" unfolding *[symmetric] | |
| 1350 | proof (intro allI impI) | |
| 1351 | fix x assume "x < Sup A" then show "\<exists>i\<in>A. x < i" | |
| 1352 | unfolding less_Sup_iff by auto | |
| 1353 | qed | |
| 1354 | next | |
| 1355 | assume *: "\<forall>x<top. \<exists>i\<in>A. x < i" | |
| 1356 | show "Sup A = top" | |
| 1357 | proof (rule ccontr) | |
| 1358 | assume "Sup A \<noteq> top" | |
| 1359 | with top_greatest[of "Sup A"] | |
| 1360 | have "Sup A < top" unfolding le_less by auto | |
| 1361 | then have "Sup A < Sup A" | |
| 1362 | using * unfolding less_Sup_iff by auto | |
| 1363 | then show False by auto | |
| 1364 | qed | |
| 1365 | qed | |
| 1366 | ||
| 1367 | lemma SUP_eq_top_iff: | |
| 1368 |   fixes f :: "'a \<Rightarrow> 'b::{complete_lattice, linorder}"
 | |
| 1369 | shows "(SUP i:A. f i) = top \<longleftrightarrow> (\<forall>x<top. \<exists>i\<in>A. x < f i)" | |
| 1370 | unfolding SUPR_def Sup_eq_top_iff by auto | |
| 1371 | ||
| 1372 | lemma SUP_nat_Infty: "(SUP i::nat. extreal (real i)) = \<infinity>" | |
| 1373 | proof - | |
| 1374 |   { fix x assume "x \<noteq> \<infinity>"
 | |
| 1375 | then have "\<exists>k::nat. x < extreal (real k)" | |
| 1376 | proof (cases x) | |
| 1377 | case MInf then show ?thesis by (intro exI[of _ 0]) auto | |
| 1378 | next | |
| 1379 | case (real r) | |
| 1380 | moreover obtain k :: nat where "r < real k" | |
| 1381 | using ex_less_of_nat by (auto simp: real_eq_of_nat) | |
| 1382 | ultimately show ?thesis by auto | |
| 1383 | qed simp } | |
| 1384 | then show ?thesis | |
| 1385 | using SUP_eq_top_iff[of UNIV "\<lambda>n::nat. extreal (real n)"] | |
| 1386 | by (auto simp: top_extreal_def) | |
| 1387 | qed | |
| 1388 | ||
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1389 | lemma extreal_le_Sup: | 
| 41973 | 1390 | fixes x :: extreal | 
| 1391 | shows "(x <= (SUP i:A. f i)) <-> (ALL y. y < x --> (EX i. i : A & y <= f i))" | |
| 1392 | (is "?lhs <-> ?rhs") | |
| 1393 | proof- | |
| 1394 | { assume "?rhs"
 | |
| 1395 |   { assume "~(x <= (SUP i:A. f i))" hence "(SUP i:A. f i)<x" by (simp add: not_le)
 | |
| 1396 | from this obtain y where y_def: "(SUP i:A. f i)<y & y<x" using extreal_dense by auto | |
| 1397 | from this obtain i where "i : A & y <= f i" using `?rhs` by auto | |
| 1398 | hence "y <= (SUP i:A. f i)" using le_SUPI[of i A f] by auto | |
| 1399 | hence False using y_def by auto | |
| 1400 | } hence "?lhs" by auto | |
| 1401 | } | |
| 1402 | moreover | |
| 1403 | { assume "?lhs" hence "?rhs"
 | |
| 1404 | by (metis Collect_def Collect_mem_eq SUP_leI assms atLeastatMost_empty atLeastatMost_empty_iff | |
| 1405 | inf_sup_ord(4) linorder_le_cases sup_absorb1 xt1(8)) | |
| 1406 | } ultimately show ?thesis by auto | |
| 1407 | qed | |
| 1408 | ||
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1409 | lemma extreal_Inf_le: | 
| 41973 | 1410 | fixes x :: extreal | 
| 1411 | shows "((INF i:A. f i) <= x) <-> (ALL y. x < y --> (EX i. i : A & f i <= y))" | |
| 1412 | (is "?lhs <-> ?rhs") | |
| 1413 | proof- | |
| 1414 | { assume "?rhs"
 | |
| 1415 |   { assume "~((INF i:A. f i) <= x)" hence "x < (INF i:A. f i)" by (simp add: not_le)
 | |
| 1416 | from this obtain y where y_def: "x<y & y<(INF i:A. f i)" using extreal_dense by auto | |
| 1417 | from this obtain i where "i : A & f i <= y" using `?rhs` by auto | |
| 1418 | hence "(INF i:A. f i) <= y" using INF_leI[of i A f] by auto | |
| 1419 | hence False using y_def by auto | |
| 1420 | } hence "?lhs" by auto | |
| 1421 | } | |
| 1422 | moreover | |
| 1423 | { assume "?lhs" hence "?rhs"
 | |
| 1424 | by (metis Collect_def Collect_mem_eq le_INFI assms atLeastatMost_empty atLeastatMost_empty_iff | |
| 1425 | inf_sup_ord(4) linorder_le_cases sup_absorb1 xt1(8)) | |
| 1426 | } ultimately show ?thesis by auto | |
| 1427 | qed | |
| 1428 | ||
| 1429 | lemma Inf_less: | |
| 1430 | fixes x :: extreal | |
| 1431 | assumes "(INF i:A. f i) < x" | |
| 1432 | shows "EX i. i : A & f i <= x" | |
| 1433 | proof(rule ccontr) | |
| 1434 | assume "~ (EX i. i : A & f i <= x)" | |
| 1435 | hence "ALL i:A. f i > x" by auto | |
| 1436 | hence "(INF i:A. f i) >= x" apply (subst le_INFI) by auto | |
| 1437 | thus False using assms by auto | |
| 1438 | qed | |
| 1439 | ||
| 1440 | lemma same_INF: | |
| 1441 | assumes "ALL e:A. f e = g e" | |
| 1442 | shows "(INF e:A. f e) = (INF e:A. g e)" | |
| 1443 | proof- | |
| 1444 | have "f ` A = g ` A" unfolding image_def using assms by auto | |
| 1445 | thus ?thesis unfolding INFI_def by auto | |
| 1446 | qed | |
| 1447 | ||
| 1448 | lemma same_SUP: | |
| 1449 | assumes "ALL e:A. f e = g e" | |
| 1450 | shows "(SUP e:A. f e) = (SUP e:A. g e)" | |
| 1451 | proof- | |
| 1452 | have "f ` A = g ` A" unfolding image_def using assms by auto | |
| 1453 | thus ?thesis unfolding SUPR_def by auto | |
| 1454 | qed | |
| 1455 | ||
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1456 | lemma SUPR_eq: | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1457 | assumes "\<forall>i\<in>A. \<exists>j\<in>B. f i \<le> g j" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1458 | assumes "\<forall>j\<in>B. \<exists>i\<in>A. g j \<le> f i" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1459 | shows "(SUP i:A. f i) = (SUP j:B. g j)" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1460 | proof (intro antisym) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1461 | show "(SUP i:A. f i) \<le> (SUP j:B. g j)" | 
| 41980 
28b51effc5ed
split Extended_Reals into parts for Library and Multivariate_Analysis
 hoelzl parents: 
41979diff
changeset | 1462 | using assms by (metis SUP_leI le_SUPI2) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1463 | show "(SUP i:B. g i) \<le> (SUP j:A. f j)" | 
| 41980 
28b51effc5ed
split Extended_Reals into parts for Library and Multivariate_Analysis
 hoelzl parents: 
41979diff
changeset | 1464 | using assms by (metis SUP_leI le_SUPI2) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1465 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1466 | |
| 41978 | 1467 | lemma SUP_extreal_le_addI: | 
| 1468 | assumes "\<And>i. f i + y \<le> z" and "y \<noteq> -\<infinity>" | |
| 1469 | shows "SUPR UNIV f + y \<le> z" | |
| 1470 | proof (cases y) | |
| 1471 | case (real r) | |
| 1472 | then have "\<And>i. f i \<le> z - y" using assms by (simp add: extreal_le_minus_iff) | |
| 1473 | then have "SUPR UNIV f \<le> z - y" by (rule SUP_leI) | |
| 1474 | then show ?thesis using real by (simp add: extreal_le_minus_iff) | |
| 1475 | qed (insert assms, auto) | |
| 1476 | ||
| 1477 | lemma SUPR_extreal_add: | |
| 1478 | fixes f g :: "nat \<Rightarrow> extreal" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1479 | assumes "incseq f" "incseq g" and pos: "\<And>i. f i \<noteq> -\<infinity>" "\<And>i. g i \<noteq> -\<infinity>" | 
| 41978 | 1480 | shows "(SUP i. f i + g i) = SUPR UNIV f + SUPR UNIV g" | 
| 1481 | proof (rule extreal_SUPI) | |
| 1482 | fix y assume *: "\<And>i. i \<in> UNIV \<Longrightarrow> f i + g i \<le> y" | |
| 1483 | have f: "SUPR UNIV f \<noteq> -\<infinity>" using pos | |
| 1484 | unfolding SUPR_def Sup_eq_MInfty by (auto dest: image_eqD) | |
| 1485 |   { fix j
 | |
| 1486 |     { fix i
 | |
| 1487 | have "f i + g j \<le> f i + g (max i j)" | |
| 1488 | using `incseq g`[THEN incseqD] by (rule add_left_mono) auto | |
| 1489 | also have "\<dots> \<le> f (max i j) + g (max i j)" | |
| 1490 | using `incseq f`[THEN incseqD] by (rule add_right_mono) auto | |
| 1491 | also have "\<dots> \<le> y" using * by auto | |
| 1492 | finally have "f i + g j \<le> y" . } | |
| 1493 | then have "SUPR UNIV f + g j \<le> y" | |
| 1494 | using assms(4)[of j] by (intro SUP_extreal_le_addI) auto | |
| 1495 | then have "g j + SUPR UNIV f \<le> y" by (simp add: ac_simps) } | |
| 1496 | then have "SUPR UNIV g + SUPR UNIV f \<le> y" | |
| 1497 | using f by (rule SUP_extreal_le_addI) | |
| 1498 | then show "SUPR UNIV f + SUPR UNIV g \<le> y" by (simp add: ac_simps) | |
| 1499 | qed (auto intro!: add_mono le_SUPI) | |
| 1500 | ||
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1501 | lemma SUPR_extreal_add_pos: | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1502 | fixes f g :: "nat \<Rightarrow> extreal" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1503 | assumes inc: "incseq f" "incseq g" and pos: "\<And>i. 0 \<le> f i" "\<And>i. 0 \<le> g i" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1504 | shows "(SUP i. f i + g i) = SUPR UNIV f + SUPR UNIV g" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1505 | proof (intro SUPR_extreal_add inc) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1506 | fix i show "f i \<noteq> -\<infinity>" "g i \<noteq> -\<infinity>" using pos[of i] by auto | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1507 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1508 | |
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1509 | lemma SUPR_extreal_setsum: | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1510 | fixes f g :: "'a \<Rightarrow> nat \<Rightarrow> extreal" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1511 | assumes "\<And>n. n \<in> A \<Longrightarrow> incseq (f n)" and pos: "\<And>n i. n \<in> A \<Longrightarrow> 0 \<le> f n i" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1512 | shows "(SUP i. \<Sum>n\<in>A. f n i) = (\<Sum>n\<in>A. SUPR UNIV (f n))" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1513 | proof cases | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1514 | assume "finite A" then show ?thesis using assms | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1515 | by induct (auto simp: incseq_setsumI2 setsum_nonneg SUPR_extreal_add_pos) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1516 | qed simp | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1517 | |
| 41978 | 1518 | lemma SUPR_extreal_cmult: | 
| 1519 | fixes f :: "nat \<Rightarrow> extreal" assumes "\<And>i. 0 \<le> f i" "0 \<le> c" | |
| 1520 | shows "(SUP i. c * f i) = c * SUPR UNIV f" | |
| 1521 | proof (rule extreal_SUPI) | |
| 1522 | fix i have "f i \<le> SUPR UNIV f" by (rule le_SUPI) auto | |
| 1523 | then show "c * f i \<le> c * SUPR UNIV f" | |
| 1524 | using `0 \<le> c` by (rule extreal_mult_left_mono) | |
| 1525 | next | |
| 1526 | fix y assume *: "\<And>i. i \<in> UNIV \<Longrightarrow> c * f i \<le> y" | |
| 1527 | show "c * SUPR UNIV f \<le> y" | |
| 1528 | proof cases | |
| 1529 | assume c: "0 < c \<and> c \<noteq> \<infinity>" | |
| 1530 | with * have "SUPR UNIV f \<le> y / c" | |
| 1531 | by (intro SUP_leI) (auto simp: extreal_le_divide_pos) | |
| 1532 | with c show ?thesis | |
| 1533 | by (auto simp: extreal_le_divide_pos) | |
| 1534 | next | |
| 1535 |     { assume "c = \<infinity>" have ?thesis
 | |
| 1536 | proof cases | |
| 1537 | assume "\<forall>i. f i = 0" | |
| 1538 |         moreover then have "range f = {0}" by auto
 | |
| 1539 | ultimately show "c * SUPR UNIV f \<le> y" using * by (auto simp: SUPR_def) | |
| 1540 | next | |
| 1541 | assume "\<not> (\<forall>i. f i = 0)" | |
| 1542 | then obtain i where "f i \<noteq> 0" by auto | |
| 1543 | with *[of i] `c = \<infinity>` `0 \<le> f i` show ?thesis by (auto split: split_if_asm) | |
| 1544 | qed } | |
| 1545 | moreover assume "\<not> (0 < c \<and> c \<noteq> \<infinity>)" | |
| 1546 | ultimately show ?thesis using * `0 \<le> c` by auto | |
| 1547 | qed | |
| 1548 | qed | |
| 1549 | ||
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1550 | lemma SUP_PInfty: | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1551 | fixes f :: "'a \<Rightarrow> extreal" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1552 | assumes "\<And>n::nat. \<exists>i\<in>A. extreal (real n) \<le> f i" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1553 | shows "(SUP i:A. f i) = \<infinity>" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1554 | unfolding SUPR_def Sup_eq_top_iff[where 'a=extreal, unfolded top_extreal_def] | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1555 | apply simp | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1556 | proof safe | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1557 | fix x assume "x \<noteq> \<infinity>" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1558 | show "\<exists>i\<in>A. x < f i" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1559 | proof (cases x) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1560 | case PInf with `x \<noteq> \<infinity>` show ?thesis by simp | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1561 | next | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1562 | case MInf with assms[of "0"] show ?thesis by force | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1563 | next | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1564 | case (real r) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1565 | with less_PInf_Ex_of_nat[of x] obtain n :: nat where "x < extreal (real n)" by auto | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1566 | moreover from assms[of n] guess i .. | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1567 | ultimately show ?thesis | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1568 | by (auto intro!: bexI[of _ i]) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1569 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1570 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1571 | |
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1572 | lemma Sup_countable_SUPR: | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1573 |   assumes "A \<noteq> {}"
 | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1574 | shows "\<exists>f::nat \<Rightarrow> extreal. range f \<subseteq> A \<and> Sup A = SUPR UNIV f" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1575 | proof (cases "Sup A") | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1576 | case (real r) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1577 | have "\<forall>n::nat. \<exists>x. x \<in> A \<and> Sup A < x + 1 / extreal (real n)" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1578 | proof | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1579 | fix n ::nat have "\<exists>x\<in>A. Sup A - 1 / extreal (real n) < x" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1580 | using assms real by (intro Sup_extreal_close) (auto simp: one_extreal_def) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1581 | then guess x .. | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1582 | then show "\<exists>x. x \<in> A \<and> Sup A < x + 1 / extreal (real n)" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1583 | by (auto intro!: exI[of _ x] simp: extreal_minus_less_iff) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1584 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1585 | from choice[OF this] guess f .. note f = this | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1586 | have "SUPR UNIV f = Sup A" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1587 | proof (rule extreal_SUPI) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1588 | fix i show "f i \<le> Sup A" using f | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1589 | by (auto intro!: complete_lattice_class.Sup_upper) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1590 | next | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1591 | fix y assume bound: "\<And>i. i \<in> UNIV \<Longrightarrow> f i \<le> y" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1592 | show "Sup A \<le> y" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1593 | proof (rule extreal_le_epsilon, intro allI impI) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1594 | fix e :: extreal assume "0 < e" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1595 | show "Sup A \<le> y + e" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1596 | proof (cases e) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1597 | case (real r) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1598 | hence "0 < r" using `0 < e` by auto | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1599 | then obtain n ::nat where *: "1 / real n < r" "0 < n" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1600 | using ex_inverse_of_nat_less by (auto simp: real_eq_of_nat inverse_eq_divide) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1601 | have "Sup A \<le> f n + 1 / extreal (real n)" using f[THEN spec, of n] by auto | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1602 | also have "1 / extreal (real n) \<le> e" using real * by (auto simp: one_extreal_def ) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1603 | with bound have "f n + 1 / extreal (real n) \<le> y + e" by (rule add_mono) simp | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1604 | finally show "Sup A \<le> y + e" . | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1605 | qed (insert `0 < e`, auto) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1606 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1607 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1608 | with f show ?thesis by (auto intro!: exI[of _ f]) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1609 | next | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1610 | case PInf | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1611 |   from `A \<noteq> {}` obtain x where "x \<in> A" by auto
 | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1612 | show ?thesis | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1613 | proof cases | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1614 | assume "\<infinity> \<in> A" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1615 | moreover then have "\<infinity> \<le> Sup A" by (intro complete_lattice_class.Sup_upper) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1616 | ultimately show ?thesis by (auto intro!: exI[of _ "\<lambda>x. \<infinity>"]) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1617 | next | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1618 | assume "\<infinity> \<notin> A" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1619 | have "\<exists>x\<in>A. 0 \<le> x" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1620 | by (metis Infty_neq_0 PInf complete_lattice_class.Sup_least extreal_infty_less_eq2 linorder_linear) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1621 | then obtain x where "x \<in> A" "0 \<le> x" by auto | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1622 | have "\<forall>n::nat. \<exists>f. f \<in> A \<and> x + extreal (real n) \<le> f" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1623 | proof (rule ccontr) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1624 | assume "\<not> ?thesis" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1625 | then have "\<exists>n::nat. Sup A \<le> x + extreal (real n)" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1626 | by (simp add: Sup_le_iff not_le less_imp_le Ball_def) (metis less_imp_le) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1627 | then show False using `x \<in> A` `\<infinity> \<notin> A` PInf | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1628 | by(cases x) auto | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1629 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1630 | from choice[OF this] guess f .. note f = this | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1631 | have "SUPR UNIV f = \<infinity>" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1632 | proof (rule SUP_PInfty) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1633 | fix n :: nat show "\<exists>i\<in>UNIV. extreal (real n) \<le> f i" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1634 | using f[THEN spec, of n] `0 \<le> x` | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1635 | by (cases rule: extreal2_cases[of "f n" x]) (auto intro!: exI[of _ n]) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1636 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1637 | then show ?thesis using f PInf by (auto intro!: exI[of _ f]) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1638 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1639 | next | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1640 | case MInf | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1641 |   with `A \<noteq> {}` have "A = {-\<infinity>}" by (auto simp: Sup_eq_MInfty)
 | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1642 | then show ?thesis using MInf by (auto intro!: exI[of _ "\<lambda>x. -\<infinity>"]) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1643 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1644 | |
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1645 | lemma SUPR_countable_SUPR: | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1646 |   "A \<noteq> {} \<Longrightarrow> \<exists>f::nat \<Rightarrow> extreal. range f \<subseteq> g`A \<and> SUPR A g = SUPR UNIV f"
 | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1647 | using Sup_countable_SUPR[of "g`A"] by (auto simp: SUPR_def) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1648 | |
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1649 | |
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1650 | lemma Sup_extreal_cadd: | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1651 |   fixes A :: "extreal set" assumes "A \<noteq> {}" and "a \<noteq> -\<infinity>"
 | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1652 | shows "Sup ((\<lambda>x. a + x) ` A) = a + Sup A" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1653 | proof (rule antisym) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1654 | have *: "\<And>a::extreal. \<And>A. Sup ((\<lambda>x. a + x) ` A) \<le> a + Sup A" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1655 | by (auto intro!: add_mono complete_lattice_class.Sup_least complete_lattice_class.Sup_upper) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1656 | then show "Sup ((\<lambda>x. a + x) ` A) \<le> a + Sup A" . | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1657 | show "a + Sup A \<le> Sup ((\<lambda>x. a + x) ` A)" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1658 | proof (cases a) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1659 |     case PInf with `A \<noteq> {}` show ?thesis by (auto simp: image_constant)
 | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1660 | next | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1661 | case (real r) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1662 | then have **: "op + (- a) ` op + a ` A = A" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1663 | by (auto simp: image_iff ac_simps zero_extreal_def[symmetric]) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1664 | from *[of "-a" "(\<lambda>x. a + x) ` A"] real show ?thesis unfolding ** | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1665 | by (cases rule: extreal2_cases[of "Sup A" "Sup (op + a ` A)"]) auto | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1666 | qed (insert `a \<noteq> -\<infinity>`, auto) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1667 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1668 | |
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1669 | lemma Sup_extreal_cminus: | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1670 |   fixes A :: "extreal set" assumes "A \<noteq> {}" and "a \<noteq> -\<infinity>"
 | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1671 | shows "Sup ((\<lambda>x. a - x) ` A) = a - Inf A" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1672 | using Sup_extreal_cadd[of "uminus ` A" a] assms | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1673 | by (simp add: comp_def image_image minus_extreal_def | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1674 | extreal_Sup_uminus_image_eq) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1675 | |
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1676 | lemma SUPR_extreal_cminus: | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1677 |   fixes A assumes "A \<noteq> {}" and "a \<noteq> -\<infinity>"
 | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1678 | shows "(SUP x:A. a - f x) = a - (INF x:A. f x)" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1679 | using Sup_extreal_cminus[of "f`A" a] assms | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1680 | unfolding SUPR_def INFI_def image_image by auto | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1681 | |
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1682 | lemma Inf_extreal_cminus: | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1683 |   fixes A :: "extreal set" assumes "A \<noteq> {}" and "\<bar>a\<bar> \<noteq> \<infinity>"
 | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1684 | shows "Inf ((\<lambda>x. a - x) ` A) = a - Sup A" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1685 | proof - | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1686 |   { fix x have "-a - -x = -(a - x)" using assms by (cases x) auto }
 | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1687 | moreover then have "(\<lambda>x. -a - x)`uminus`A = uminus ` (\<lambda>x. a - x) ` A" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1688 | by (auto simp: image_image) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1689 | ultimately show ?thesis | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1690 | using Sup_extreal_cminus[of "uminus ` A" "-a"] assms | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1691 | by (auto simp add: extreal_Sup_uminus_image_eq extreal_Inf_uminus_image_eq) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1692 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1693 | |
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1694 | lemma INFI_extreal_cminus: | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1695 |   fixes A assumes "A \<noteq> {}" and "\<bar>a\<bar> \<noteq> \<infinity>"
 | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1696 | shows "(INF x:A. a - f x) = a - (SUP x:A. f x)" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1697 | using Inf_extreal_cminus[of "f`A" a] assms | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1698 | unfolding SUPR_def INFI_def image_image | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1699 | by auto | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1700 | |
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1701 | lemma uminus_extreal_add_uminus_uminus: | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1702 | fixes a b :: extreal shows "a \<noteq> \<infinity> \<Longrightarrow> b \<noteq> \<infinity> \<Longrightarrow> - (- a + - b) = a + b" | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1703 | by (cases rule: extreal2_cases[of a b]) auto | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1704 | |
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1705 | lemma INFI_extreal_add: | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1706 | assumes "decseq f" "decseq g" and fin: "\<And>i. f i \<noteq> \<infinity>" "\<And>i. g i \<noteq> \<infinity>" | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1707 | shows "(INF i. f i + g i) = INFI UNIV f + INFI UNIV g" | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1708 | proof - | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1709 | have INF_less: "(INF i. f i) < \<infinity>" "(INF i. g i) < \<infinity>" | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1710 | using assms unfolding INF_less_iff by auto | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1711 |   { fix i from fin[of i] have "- ((- f i) + (- g i)) = f i + g i"
 | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1712 | by (rule uminus_extreal_add_uminus_uminus) } | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1713 | then have "(INF i. f i + g i) = (INF i. - ((- f i) + (- g i)))" | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1714 | by simp | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1715 | also have "\<dots> = INFI UNIV f + INFI UNIV g" | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1716 | unfolding extreal_INFI_uminus | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1717 | using assms INF_less | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1718 | by (subst SUPR_extreal_add) | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1719 | (auto simp: extreal_SUPR_uminus intro!: uminus_extreal_add_uminus_uminus) | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1720 | finally show ?thesis . | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1721 | qed | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1722 | |
| 41973 | 1723 | subsection "Limits on @{typ extreal}"
 | 
| 1724 | ||
| 1725 | subsubsection "Topological space" | |
| 1726 | ||
| 1727 | instantiation extreal :: topological_space | |
| 1728 | begin | |
| 1729 | ||
| 41975 | 1730 | definition "open A \<longleftrightarrow> open (extreal -` A) | 
| 41973 | 1731 |        \<and> (\<infinity> \<in> A \<longrightarrow> (\<exists>x. {extreal x <..} \<subseteq> A))
 | 
| 1732 |        \<and> (-\<infinity> \<in> A \<longrightarrow> (\<exists>x. {..<extreal x} \<subseteq> A))"
 | |
| 1733 | ||
| 41975 | 1734 | lemma open_PInfty: "open A \<Longrightarrow> \<infinity> \<in> A \<Longrightarrow> (\<exists>x. {extreal x<..} \<subseteq> A)"
 | 
| 41973 | 1735 | unfolding open_extreal_def by auto | 
| 1736 | ||
| 41975 | 1737 | lemma open_MInfty: "open A \<Longrightarrow> -\<infinity> \<in> A \<Longrightarrow> (\<exists>x. {..<extreal x} \<subseteq> A)"
 | 
| 41973 | 1738 | unfolding open_extreal_def by auto | 
| 1739 | ||
| 41975 | 1740 | lemma open_PInfty2: assumes "open A" "\<infinity> \<in> A" obtains x where "{extreal x<..} \<subseteq> A"
 | 
| 41973 | 1741 | using open_PInfty[OF assms] by auto | 
| 1742 | ||
| 41975 | 1743 | lemma open_MInfty2: assumes "open A" "-\<infinity> \<in> A" obtains x where "{..<extreal x} \<subseteq> A"
 | 
| 41973 | 1744 | using open_MInfty[OF assms] by auto | 
| 1745 | ||
| 41975 | 1746 | lemma extreal_openE: assumes "open A" obtains x y where | 
| 1747 | "open (extreal -` A)" | |
| 1748 |   "\<infinity> \<in> A \<Longrightarrow> {extreal x<..} \<subseteq> A"
 | |
| 1749 |   "-\<infinity> \<in> A \<Longrightarrow> {..<extreal y} \<subseteq> A"
 | |
| 41973 | 1750 | using assms open_extreal_def by auto | 
| 1751 | ||
| 1752 | instance | |
| 1753 | proof | |
| 1754 | let ?U = "UNIV::extreal set" | |
| 1755 | show "open ?U" unfolding open_extreal_def | |
| 41975 | 1756 | by (auto intro!: exI[of _ 0]) | 
| 41973 | 1757 | next | 
| 1758 | fix S T::"extreal set" assume "open S" and "open T" | |
| 41975 | 1759 | from `open S`[THEN extreal_openE] guess xS yS . | 
| 1760 | moreover from `open T`[THEN extreal_openE] guess xT yT . | |
| 1761 | ultimately have | |
| 1762 | "open (extreal -` (S \<inter> T))" | |
| 1763 |     "\<infinity> \<in> S \<inter> T \<Longrightarrow> {extreal (max xS xT) <..} \<subseteq> S \<inter> T"
 | |
| 1764 |     "-\<infinity> \<in> S \<inter> T \<Longrightarrow> {..< extreal (min yS yT)} \<subseteq> S \<inter> T"
 | |
| 1765 | by auto | |
| 1766 | then show "open (S Int T)" unfolding open_extreal_def by blast | |
| 41973 | 1767 | next | 
| 41975 | 1768 | fix K :: "extreal set set" assume "\<forall>S\<in>K. open S" | 
| 1769 | then have *: "\<forall>S. \<exists>x y. S \<in> K \<longrightarrow> open (extreal -` S) \<and> | |
| 1770 |     (\<infinity> \<in> S \<longrightarrow> {extreal x <..} \<subseteq> S) \<and> (-\<infinity> \<in> S \<longrightarrow> {..< extreal y} \<subseteq> S)"
 | |
| 1771 | by (auto simp: open_extreal_def) | |
| 1772 | then show "open (Union K)" unfolding open_extreal_def | |
| 1773 | proof (intro conjI impI) | |
| 1774 | show "open (extreal -` \<Union>K)" | |
| 41980 
28b51effc5ed
split Extended_Reals into parts for Library and Multivariate_Analysis
 hoelzl parents: 
41979diff
changeset | 1775 | using *[THEN choice] by (auto simp: vimage_Union) | 
| 41975 | 1776 | qed ((metis UnionE Union_upper subset_trans *)+) | 
| 41973 | 1777 | qed | 
| 1778 | end | |
| 1779 | ||
| 41976 | 1780 | lemma open_extreal: "open S \<Longrightarrow> open (extreal ` S)" | 
| 1781 | by (auto simp: inj_vimage_image_eq open_extreal_def) | |
| 1782 | ||
| 1783 | lemma open_extreal_vimage: "open S \<Longrightarrow> open (extreal -` S)" | |
| 1784 | unfolding open_extreal_def by auto | |
| 1785 | ||
| 41975 | 1786 | lemma open_extreal_lessThan[intro, simp]: "open {..< a :: extreal}"
 | 
| 1787 | proof - | |
| 1788 |   have "\<And>x. extreal -` {..<extreal x} = {..< x}"
 | |
| 1789 |     "extreal -` {..< \<infinity>} = UNIV" "extreal -` {..< -\<infinity>} = {}" by auto
 | |
| 1790 | then show ?thesis by (cases a) (auto simp: open_extreal_def) | |
| 1791 | qed | |
| 1792 | ||
| 1793 | lemma open_extreal_greaterThan[intro, simp]: | |
| 41973 | 1794 |   "open {a :: extreal <..}"
 | 
| 41975 | 1795 | proof - | 
| 1796 |   have "\<And>x. extreal -` {extreal x<..} = {x<..}"
 | |
| 1797 |     "extreal -` {\<infinity><..} = {}" "extreal -` {-\<infinity><..} = UNIV" by auto
 | |
| 1798 | then show ?thesis by (cases a) (auto simp: open_extreal_def) | |
| 1799 | qed | |
| 1800 | ||
| 1801 | lemma extreal_open_greaterThanLessThan[intro, simp]: "open {a::extreal <..< b}"
 | |
| 41973 | 1802 | unfolding greaterThanLessThan_def by auto | 
| 1803 | ||
| 1804 | lemma closed_extreal_atLeast[simp, intro]: "closed {a :: extreal ..}"
 | |
| 1805 | proof - | |
| 1806 |   have "- {a ..} = {..< a}" by auto
 | |
| 1807 |   then show "closed {a ..}"
 | |
| 1808 | unfolding closed_def using open_extreal_lessThan by auto | |
| 1809 | qed | |
| 1810 | ||
| 1811 | lemma closed_extreal_atMost[simp, intro]: "closed {.. b :: extreal}"
 | |
| 1812 | proof - | |
| 1813 |   have "- {.. b} = {b <..}" by auto
 | |
| 1814 |   then show "closed {.. b}"
 | |
| 1815 | unfolding closed_def using open_extreal_greaterThan by auto | |
| 1816 | qed | |
| 1817 | ||
| 1818 | lemma closed_extreal_atLeastAtMost[simp, intro]: | |
| 1819 |   shows "closed {a :: extreal .. b}"
 | |
| 1820 | unfolding atLeastAtMost_def by auto | |
| 1821 | ||
| 1822 | lemma closed_extreal_singleton: | |
| 1823 |   "closed {a :: extreal}"
 | |
| 1824 | by (metis atLeastAtMost_singleton closed_extreal_atLeastAtMost) | |
| 1825 | ||
| 1826 | lemma extreal_open_cont_interval: | |
| 41976 | 1827 | assumes "open S" "x \<in> S" "\<bar>x\<bar> \<noteq> \<infinity>" | 
| 41973 | 1828 |   obtains e where "e>0" "{x-e <..< x+e} \<subseteq> S"
 | 
| 1829 | proof- | |
| 41975 | 1830 | from `open S` have "open (extreal -` S)" by (rule extreal_openE) | 
| 41980 
28b51effc5ed
split Extended_Reals into parts for Library and Multivariate_Analysis
 hoelzl parents: 
41979diff
changeset | 1831 | then obtain e where "0 < e" and e: "\<And>y. dist y (real x) < e \<Longrightarrow> extreal y \<in> S" | 
| 
28b51effc5ed
split Extended_Reals into parts for Library and Multivariate_Analysis
 hoelzl parents: 
41979diff
changeset | 1832 | using assms unfolding open_dist by force | 
| 41975 | 1833 | show thesis | 
| 1834 | proof (intro that subsetI) | |
| 1835 | show "0 < extreal e" using `0 < e` by auto | |
| 1836 |     fix y assume "y \<in> {x - extreal e<..<x + extreal e}"
 | |
| 41980 
28b51effc5ed
split Extended_Reals into parts for Library and Multivariate_Analysis
 hoelzl parents: 
41979diff
changeset | 1837 | with assms obtain t where "y = extreal t" "dist t (real x) < e" | 
| 
28b51effc5ed
split Extended_Reals into parts for Library and Multivariate_Analysis
 hoelzl parents: 
41979diff
changeset | 1838 | apply (cases y) by (auto simp: dist_real_def) | 
| 
28b51effc5ed
split Extended_Reals into parts for Library and Multivariate_Analysis
 hoelzl parents: 
41979diff
changeset | 1839 | then show "y \<in> S" using e[of t] by auto | 
| 41975 | 1840 | qed | 
| 41973 | 1841 | qed | 
| 1842 | ||
| 1843 | lemma extreal_open_cont_interval2: | |
| 41976 | 1844 | assumes "open S" "x \<in> S" and x: "\<bar>x\<bar> \<noteq> \<infinity>" | 
| 41973 | 1845 |   obtains a b where "a < x" "x < b" "{a <..< b} \<subseteq> S"
 | 
| 1846 | proof- | |
| 1847 | guess e using extreal_open_cont_interval[OF assms] . | |
| 1848 | with that[of "x-e" "x+e"] extreal_between[OF x, of e] | |
| 1849 | show thesis by auto | |
| 1850 | qed | |
| 1851 | ||
| 1852 | instance extreal :: t2_space | |
| 1853 | proof | |
| 1854 | fix x y :: extreal assume "x ~= y" | |
| 1855 |   let "?P x (y::extreal)" = "EX U V. open U & open V & x : U & y : V & U Int V = {}"
 | |
| 1856 | ||
| 1857 |   { fix x y :: extreal assume "x < y"
 | |
| 1858 | from extreal_dense[OF this] obtain z where z: "x < z" "z < y" by auto | |
| 1859 | have "?P x y" | |
| 1860 |       apply (rule exI[of _ "{..<z}"])
 | |
| 1861 |       apply (rule exI[of _ "{z<..}"])
 | |
| 1862 | using z by auto } | |
| 1863 | note * = this | |
| 1864 | ||
| 1865 | from `x ~= y` | |
| 1866 |   show "EX U V. open U & open V & x : U & y : V & U Int V = {}"
 | |
| 1867 | proof (cases rule: linorder_cases) | |
| 1868 | assume "x = y" with `x ~= y` show ?thesis by simp | |
| 1869 | next assume "x < y" from *[OF this] show ?thesis by auto | |
| 1870 | next assume "y < x" from *[OF this] show ?thesis by auto | |
| 1871 | qed | |
| 1872 | qed | |
| 1873 | ||
| 1874 | subsubsection {* Convergent sequences *}
 | |
| 1875 | ||
| 1876 | lemma lim_extreal[simp]: | |
| 1877 | "((\<lambda>n. extreal (f n)) ---> extreal x) net \<longleftrightarrow> (f ---> x) net" (is "?l = ?r") | |
| 1878 | proof (intro iffI topological_tendstoI) | |
| 1879 | fix S assume "?l" "open S" "x \<in> S" | |
| 1880 | then show "eventually (\<lambda>x. f x \<in> S) net" | |
| 1881 | using `?l`[THEN topological_tendstoD, OF open_extreal, OF `open S`] | |
| 1882 | by (simp add: inj_image_mem_iff) | |
| 1883 | next | |
| 1884 | fix S assume "?r" "open S" "extreal x \<in> S" | |
| 1885 | show "eventually (\<lambda>x. extreal (f x) \<in> S) net" | |
| 41975 | 1886 | using `?r`[THEN topological_tendstoD, OF open_extreal_vimage, OF `open S`] | 
| 1887 | using `extreal x \<in> S` by auto | |
| 41973 | 1888 | qed | 
| 1889 | ||
| 1890 | lemma lim_real_of_extreal[simp]: | |
| 1891 | assumes lim: "(f ---> extreal x) net" | |
| 1892 | shows "((\<lambda>x. real (f x)) ---> x) net" | |
| 1893 | proof (intro topological_tendstoI) | |
| 1894 | fix S assume "open S" "x \<in> S" | |
| 1895 | then have S: "open S" "extreal x \<in> extreal ` S" | |
| 1896 | by (simp_all add: inj_image_mem_iff) | |
| 1897 | have "\<forall>x. f x \<in> extreal ` S \<longrightarrow> real (f x) \<in> S" by auto | |
| 1898 | from this lim[THEN topological_tendstoD, OF open_extreal, OF S] | |
| 1899 | show "eventually (\<lambda>x. real (f x) \<in> S) net" | |
| 1900 | by (rule eventually_mono) | |
| 1901 | qed | |
| 1902 | ||
| 1903 | lemma Lim_PInfty: "f ----> \<infinity> <-> (ALL B. EX N. ALL n>=N. f n >= extreal B)" (is "?l = ?r") | |
| 1904 | proof assume ?r show ?l apply(rule topological_tendstoI) | |
| 1905 | unfolding eventually_sequentially | |
| 1906 | proof- fix S assume "open S" "\<infinity> : S" | |
| 1907 | from open_PInfty[OF this] guess B .. note B=this | |
| 1908 | from `?r`[rule_format,of "B+1"] guess N .. note N=this | |
| 1909 | show "EX N. ALL n>=N. f n : S" apply(rule_tac x=N in exI) | |
| 1910 | proof safe case goal1 | |
| 1911 | have "extreal B < extreal (B + 1)" by auto | |
| 1912 | also have "... <= f n" using goal1 N by auto | |
| 1913 | finally show ?case using B by fastsimp | |
| 1914 | qed | |
| 1915 | qed | |
| 1916 | next assume ?l show ?r | |
| 1917 |   proof fix B::real have "open {extreal B<..}" "\<infinity> : {extreal B<..}" by auto
 | |
| 1918 | from topological_tendstoD[OF `?l` this,unfolded eventually_sequentially] | |
| 1919 | guess N .. note N=this | |
| 1920 | show "EX N. ALL n>=N. extreal B <= f n" apply(rule_tac x=N in exI) using N by auto | |
| 1921 | qed | |
| 1922 | qed | |
| 1923 | ||
| 1924 | ||
| 1925 | lemma Lim_MInfty: "f ----> (-\<infinity>) <-> (ALL B. EX N. ALL n>=N. f n <= extreal B)" (is "?l = ?r") | |
| 1926 | proof assume ?r show ?l apply(rule topological_tendstoI) | |
| 1927 | unfolding eventually_sequentially | |
| 1928 | proof- fix S assume "open S" "(-\<infinity>) : S" | |
| 1929 | from open_MInfty[OF this] guess B .. note B=this | |
| 1930 | from `?r`[rule_format,of "B-(1::real)"] guess N .. note N=this | |
| 1931 | show "EX N. ALL n>=N. f n : S" apply(rule_tac x=N in exI) | |
| 1932 | proof safe case goal1 | |
| 1933 | have "extreal (B - 1) >= f n" using goal1 N by auto | |
| 1934 | also have "... < extreal B" by auto | |
| 1935 | finally show ?case using B by fastsimp | |
| 1936 | qed | |
| 1937 | qed | |
| 1938 | next assume ?l show ?r | |
| 1939 |   proof fix B::real have "open {..<extreal B}" "(-\<infinity>) : {..<extreal B}" by auto
 | |
| 1940 | from topological_tendstoD[OF `?l` this,unfolded eventually_sequentially] | |
| 1941 | guess N .. note N=this | |
| 1942 | show "EX N. ALL n>=N. extreal B >= f n" apply(rule_tac x=N in exI) using N by auto | |
| 1943 | qed | |
| 1944 | qed | |
| 1945 | ||
| 1946 | ||
| 1947 | lemma Lim_bounded_PInfty: assumes lim:"f ----> l" and "!!n. f n <= extreal B" shows "l ~= \<infinity>" | |
| 1948 | proof(rule ccontr,unfold not_not) let ?B = "B + 1" assume as:"l=\<infinity>" | |
| 1949 | from lim[unfolded this Lim_PInfty,rule_format,of "?B"] | |
| 1950 | guess N .. note N=this[rule_format,OF le_refl] | |
| 1951 | hence "extreal ?B <= extreal B" using assms(2)[of N] by(rule order_trans) | |
| 1952 | hence "extreal ?B < extreal ?B" apply (rule le_less_trans) by auto | |
| 1953 | thus False by auto | |
| 1954 | qed | |
| 1955 | ||
| 1956 | ||
| 1957 | lemma Lim_bounded_MInfty: assumes lim:"f ----> l" and "!!n. f n >= extreal B" shows "l ~= (-\<infinity>)" | |
| 1958 | proof(rule ccontr,unfold not_not) let ?B = "B - 1" assume as:"l=(-\<infinity>)" | |
| 1959 | from lim[unfolded this Lim_MInfty,rule_format,of "?B"] | |
| 1960 | guess N .. note N=this[rule_format,OF le_refl] | |
| 1961 | hence "extreal B <= extreal ?B" using assms(2)[of N] order_trans[of "extreal B" "f N" "extreal(B - 1)"] by blast | |
| 1962 | thus False by auto | |
| 1963 | qed | |
| 1964 | ||
| 1965 | ||
| 1966 | lemma tendsto_explicit: | |
| 1967 | "f ----> f0 <-> (ALL S. open S --> f0 : S --> (EX N. ALL n>=N. f n : S))" | |
| 1968 | unfolding tendsto_def eventually_sequentially by auto | |
| 1969 | ||
| 1970 | ||
| 1971 | lemma tendsto_obtains_N: | |
| 1972 | assumes "f ----> f0" | |
| 1973 | assumes "open S" "f0 : S" | |
| 1974 | obtains N where "ALL n>=N. f n : S" | |
| 1975 | using tendsto_explicit[of f f0] assms by auto | |
| 1976 | ||
| 1977 | ||
| 1978 | lemma tail_same_limit: | |
| 1979 | fixes X Y N | |
| 1980 | assumes "X ----> L" "ALL n>=N. X n = Y n" | |
| 1981 | shows "Y ----> L" | |
| 1982 | proof- | |
| 1983 | { fix S assume "open S" and "L:S"
 | |
| 1984 | from this obtain N1 where "ALL n>=N1. X n : S" | |
| 1985 | using assms unfolding tendsto_def eventually_sequentially by auto | |
| 1986 | hence "ALL n>=max N N1. Y n : S" using assms by auto | |
| 1987 | hence "EX N. ALL n>=N. Y n : S" apply(rule_tac x="max N N1" in exI) by auto | |
| 1988 | } | |
| 1989 | thus ?thesis using tendsto_explicit by auto | |
| 1990 | qed | |
| 1991 | ||
| 1992 | ||
| 1993 | lemma Lim_bounded_PInfty2: | |
| 1994 | assumes lim:"f ----> l" and "ALL n>=N. f n <= extreal B" | |
| 1995 | shows "l ~= \<infinity>" | |
| 1996 | proof- | |
| 1997 | def g == "(%n. if n>=N then f n else extreal B)" | |
| 1998 | hence "g ----> l" using tail_same_limit[of f l N g] lim by auto | |
| 1999 | moreover have "!!n. g n <= extreal B" using g_def assms by auto | |
| 2000 | ultimately show ?thesis using Lim_bounded_PInfty by auto | |
| 2001 | qed | |
| 2002 | ||
| 2003 | lemma Lim_bounded_extreal: | |
| 2004 | assumes lim:"f ----> (l :: extreal)" | |
| 2005 | and "ALL n>=M. f n <= C" | |
| 2006 | shows "l<=C" | |
| 2007 | proof- | |
| 2008 | { assume "l=(-\<infinity>)" hence ?thesis by auto }
 | |
| 2009 | moreover | |
| 2010 | { assume "~(l=(-\<infinity>))"
 | |
| 2011 |   { assume "C=\<infinity>" hence ?thesis by auto }
 | |
| 2012 | moreover | |
| 2013 |   { assume "C=(-\<infinity>)" hence "ALL n>=M. f n = (-\<infinity>)" using assms by auto
 | |
| 2014 | hence "l=(-\<infinity>)" using assms | |
| 41980 
28b51effc5ed
split Extended_Reals into parts for Library and Multivariate_Analysis
 hoelzl parents: 
41979diff
changeset | 2015 | tendsto_unique[OF trivial_limit_sequentially] tail_same_limit[of "\<lambda>n. -\<infinity>" "-\<infinity>" M f, OF tendsto_const] by auto | 
| 41973 | 2016 | hence ?thesis by auto } | 
| 2017 | moreover | |
| 2018 |   { assume "EX B. C = extreal B"
 | |
| 2019 | from this obtain B where B_def: "C=extreal B" by auto | |
| 2020 | hence "~(l=\<infinity>)" using Lim_bounded_PInfty2 assms by auto | |
| 2021 | from this obtain m where m_def: "extreal m=l" using `~(l=(-\<infinity>))` by (cases l) auto | |
| 2022 |     from this obtain N where N_def: "ALL n>=N. f n : {extreal(m - 1) <..< extreal(m+1)}"
 | |
| 2023 |        apply (subst tendsto_obtains_N[of f l "{extreal(m - 1) <..< extreal(m+1)}"]) using assms by auto
 | |
| 2024 |     { fix n assume "n>=N"
 | |
| 2025 | hence "EX r. extreal r = f n" using N_def by (cases "f n") auto | |
| 2026 | } from this obtain g where g_def: "ALL n>=N. extreal (g n) = f n" by metis | |
| 2027 | hence "(%n. extreal (g n)) ----> l" using tail_same_limit[of f l N] assms by auto | |
| 2028 | hence *: "(%n. g n) ----> m" using m_def by auto | |
| 2029 |     { fix n assume "n>=max N M"
 | |
| 2030 | hence "extreal (g n) <= extreal B" using assms g_def B_def by auto | |
| 2031 | hence "g n <= B" by auto | |
| 2032 | } hence "EX N. ALL n>=N. g n <= B" by blast | |
| 2033 | hence "m<=B" using * LIMSEQ_le_const2[of g m B] by auto | |
| 2034 | hence ?thesis using m_def B_def by auto | |
| 2035 | } ultimately have ?thesis by (cases C) auto | |
| 2036 | } ultimately show ?thesis by blast | |
| 2037 | qed | |
| 2038 | ||
| 2039 | lemma real_of_extreal_mult[simp]: | |
| 2040 | fixes a b :: extreal shows "real (a * b) = real a * real b" | |
| 2041 | by (cases rule: extreal2_cases[of a b]) auto | |
| 2042 | ||
| 2043 | lemma real_of_extreal_eq_0: | |
| 2044 | "real x = 0 \<longleftrightarrow> x = \<infinity> \<or> x = -\<infinity> \<or> x = 0" | |
| 2045 | by (cases x) auto | |
| 2046 | ||
| 2047 | lemma tendsto_extreal_realD: | |
| 2048 | fixes f :: "'a \<Rightarrow> extreal" | |
| 2049 | assumes "x \<noteq> 0" and tendsto: "((\<lambda>x. extreal (real (f x))) ---> x) net" | |
| 2050 | shows "(f ---> x) net" | |
| 2051 | proof (intro topological_tendstoI) | |
| 2052 | fix S assume S: "open S" "x \<in> S" | |
| 2053 |   with `x \<noteq> 0` have "open (S - {0})" "x \<in> S - {0}" by auto
 | |
| 2054 | from tendsto[THEN topological_tendstoD, OF this] | |
| 2055 | show "eventually (\<lambda>x. f x \<in> S) net" | |
| 2056 | by (rule eventually_rev_mp) (auto simp: extreal_real real_of_extreal_0) | |
| 2057 | qed | |
| 2058 | ||
| 2059 | lemma tendsto_extreal_realI: | |
| 2060 | fixes f :: "'a \<Rightarrow> extreal" | |
| 41976 | 2061 | assumes x: "\<bar>x\<bar> \<noteq> \<infinity>" and tendsto: "(f ---> x) net" | 
| 41973 | 2062 | shows "((\<lambda>x. extreal (real (f x))) ---> x) net" | 
| 2063 | proof (intro topological_tendstoI) | |
| 2064 | fix S assume "open S" "x \<in> S" | |
| 2065 |   with x have "open (S - {\<infinity>, -\<infinity>})" "x \<in> S - {\<infinity>, -\<infinity>}" by auto
 | |
| 2066 | from tendsto[THEN topological_tendstoD, OF this] | |
| 2067 | show "eventually (\<lambda>x. extreal (real (f x)) \<in> S) net" | |
| 2068 | by (elim eventually_elim1) (auto simp: extreal_real) | |
| 2069 | qed | |
| 2070 | ||
| 2071 | lemma extreal_mult_cancel_left: | |
| 2072 | fixes a b c :: extreal shows "a * b = a * c \<longleftrightarrow> | |
| 41976 | 2073 | ((\<bar>a\<bar> = \<infinity> \<and> 0 < b * c) \<or> a = 0 \<or> b = c)" | 
| 41973 | 2074 | by (cases rule: extreal3_cases[of a b c]) | 
| 2075 | (simp_all add: zero_less_mult_iff) | |
| 2076 | ||
| 2077 | lemma extreal_inj_affinity: | |
| 41976 | 2078 | assumes "\<bar>m\<bar> \<noteq> \<infinity>" "m \<noteq> 0" "\<bar>t\<bar> \<noteq> \<infinity>" | 
| 41973 | 2079 | shows "inj_on (\<lambda>x. m * x + t) A" | 
| 2080 | using assms | |
| 2081 | by (cases rule: extreal2_cases[of m t]) | |
| 2082 | (auto intro!: inj_onI simp: extreal_add_cancel_right extreal_mult_cancel_left) | |
| 2083 | ||
| 2084 | lemma extreal_PInfty_eq_plus[simp]: | |
| 2085 | shows "\<infinity> = a + b \<longleftrightarrow> a = \<infinity> \<or> b = \<infinity>" | |
| 2086 | by (cases rule: extreal2_cases[of a b]) auto | |
| 2087 | ||
| 2088 | lemma extreal_MInfty_eq_plus[simp]: | |
| 2089 | shows "-\<infinity> = a + b \<longleftrightarrow> (a = -\<infinity> \<and> b \<noteq> \<infinity>) \<or> (b = -\<infinity> \<and> a \<noteq> \<infinity>)" | |
| 2090 | by (cases rule: extreal2_cases[of a b]) auto | |
| 2091 | ||
| 2092 | lemma extreal_less_divide_pos: | |
| 2093 | "x > 0 \<Longrightarrow> x \<noteq> \<infinity> \<Longrightarrow> y < z / x \<longleftrightarrow> x * y < z" | |
| 2094 | by (cases rule: extreal3_cases[of x y z]) (auto simp: field_simps) | |
| 2095 | ||
| 2096 | lemma extreal_divide_less_pos: | |
| 2097 | "x > 0 \<Longrightarrow> x \<noteq> \<infinity> \<Longrightarrow> y / x < z \<longleftrightarrow> y < x * z" | |
| 2098 | by (cases rule: extreal3_cases[of x y z]) (auto simp: field_simps) | |
| 2099 | ||
| 2100 | lemma extreal_divide_eq: | |
| 41976 | 2101 | "b \<noteq> 0 \<Longrightarrow> \<bar>b\<bar> \<noteq> \<infinity> \<Longrightarrow> a / b = c \<longleftrightarrow> a = b * c" | 
| 41973 | 2102 | by (cases rule: extreal3_cases[of a b c]) | 
| 2103 | (simp_all add: field_simps) | |
| 2104 | ||
| 2105 | lemma extreal_inverse_not_MInfty[simp]: "inverse a \<noteq> -\<infinity>" | |
| 2106 | by (cases a) auto | |
| 2107 | ||
| 2108 | lemma extreal_mult_m1[simp]: "x * extreal (-1) = -x" | |
| 2109 | by (cases x) auto | |
| 2110 | ||
| 2111 | lemma extreal_LimI_finite: | |
| 41976 | 2112 | assumes "\<bar>x\<bar> \<noteq> \<infinity>" | 
| 41973 | 2113 | assumes "!!r. 0 < r ==> EX N. ALL n>=N. u n < x + r & x < u n + r" | 
| 2114 | shows "u ----> x" | |
| 2115 | proof (rule topological_tendstoI, unfold eventually_sequentially) | |
| 2116 | obtain rx where rx_def: "x=extreal rx" using assms by (cases x) auto | |
| 2117 | fix S assume "open S" "x : S" | |
| 41975 | 2118 | then have "open (extreal -` S)" unfolding open_extreal_def by auto | 
| 2119 | with `x \<in> S` obtain r where "0 < r" and dist: "!!y. dist y rx < r ==> extreal y \<in> S" | |
| 2120 | unfolding open_real_def rx_def by auto | |
| 41973 | 2121 | then obtain n where | 
| 2122 | upper: "!!N. n <= N ==> u N < x + extreal r" and | |
| 41976 | 2123 | lower: "!!N. n <= N ==> x < u N + extreal r" using assms(2)[of "extreal r"] by auto | 
| 41973 | 2124 | show "EX N. ALL n>=N. u n : S" | 
| 2125 | proof (safe intro!: exI[of _ n]) | |
| 2126 | fix N assume "n <= N" | |
| 2127 | from upper[OF this] lower[OF this] assms `0 < r` | |
| 2128 |     have "u N ~: {\<infinity>,(-\<infinity>)}" by auto
 | |
| 2129 | from this obtain ra where ra_def: "(u N) = extreal ra" by (cases "u N") auto | |
| 2130 | hence "rx < ra + r" and "ra < rx + r" | |
| 2131 | using rx_def assms `0 < r` lower[OF `n <= N`] upper[OF `n <= N`] by auto | |
| 41975 | 2132 | hence "dist (real (u N)) rx < r" | 
| 41973 | 2133 | using rx_def ra_def | 
| 2134 | by (auto simp: dist_real_def abs_diff_less_iff field_simps) | |
| 41976 | 2135 |     from dist[OF this] show "u N : S" using `u N  ~: {\<infinity>, -\<infinity>}`
 | 
| 2136 | by (auto simp: extreal_real split: split_if_asm) | |
| 41973 | 2137 | qed | 
| 2138 | qed | |
| 2139 | ||
| 2140 | lemma extreal_LimI_finite_iff: | |
| 41976 | 2141 | assumes "\<bar>x\<bar> \<noteq> \<infinity>" | 
| 41973 | 2142 | shows "u ----> x <-> (ALL r. 0 < r --> (EX N. ALL n>=N. u n < x + r & x < u n + r))" | 
| 2143 | (is "?lhs <-> ?rhs") | |
| 41976 | 2144 | proof | 
| 2145 | assume lim: "u ----> x" | |
| 41973 | 2146 |   { fix r assume "(r::extreal)>0"
 | 
| 2147 |     from this obtain N where N_def: "ALL n>=N. u n : {x - r <..< x + r}"
 | |
| 2148 |        apply (subst tendsto_obtains_N[of u x "{x - r <..< x + r}"])
 | |
| 2149 | using lim extreal_between[of x r] assms `r>0` by auto | |
| 2150 | hence "EX N. ALL n>=N. u n < x + r & x < u n + r" | |
| 2151 | using extreal_minus_less[of r x] by (cases r) auto | |
| 41976 | 2152 | } then show "?rhs" by auto | 
| 2153 | next | |
| 2154 | assume ?rhs then show "u ----> x" | |
| 2155 | using extreal_LimI_finite[of x] assms by auto | |
| 41973 | 2156 | qed | 
| 2157 | ||
| 2158 | ||
| 2159 | subsubsection {* @{text Liminf} and @{text Limsup} *}
 | |
| 2160 | ||
| 2161 | definition | |
| 2162 | "Liminf net f = (GREATEST l. \<forall>y<l. eventually (\<lambda>x. y < f x) net)" | |
| 2163 | ||
| 2164 | definition | |
| 2165 | "Limsup net f = (LEAST l. \<forall>y>l. eventually (\<lambda>x. f x < y) net)" | |
| 2166 | ||
| 2167 | lemma Liminf_Sup: | |
| 2168 |   fixes f :: "'a => 'b::{complete_lattice, linorder}"
 | |
| 2169 |   shows "Liminf net f = Sup {l. \<forall>y<l. eventually (\<lambda>x. y < f x) net}"
 | |
| 2170 | by (auto intro!: Greatest_equality complete_lattice_class.Sup_upper simp: less_Sup_iff Liminf_def) | |
| 2171 | ||
| 2172 | lemma Limsup_Inf: | |
| 2173 |   fixes f :: "'a => 'b::{complete_lattice, linorder}"
 | |
| 2174 |   shows "Limsup net f = Inf {l. \<forall>y>l. eventually (\<lambda>x. f x < y) net}"
 | |
| 2175 | by (auto intro!: Least_equality complete_lattice_class.Inf_lower simp: Inf_less_iff Limsup_def) | |
| 2176 | ||
| 2177 | lemma extreal_SupI: | |
| 2178 | fixes x :: extreal | |
| 2179 | assumes "\<And>y. y \<in> A \<Longrightarrow> y \<le> x" | |
| 2180 | assumes "\<And>y. (\<And>z. z \<in> A \<Longrightarrow> z \<le> y) \<Longrightarrow> x \<le> y" | |
| 2181 | shows "Sup A = x" | |
| 2182 | unfolding Sup_extreal_def | |
| 2183 | using assms by (auto intro!: Least_equality) | |
| 2184 | ||
| 2185 | lemma extreal_InfI: | |
| 2186 | fixes x :: extreal | |
| 2187 | assumes "\<And>i. i \<in> A \<Longrightarrow> x \<le> i" | |
| 2188 | assumes "\<And>y. (\<And>i. i \<in> A \<Longrightarrow> y \<le> i) \<Longrightarrow> y \<le> x" | |
| 2189 | shows "Inf A = x" | |
| 2190 | unfolding Inf_extreal_def | |
| 2191 | using assms by (auto intro!: Greatest_equality) | |
| 2192 | ||
| 2193 | lemma Limsup_const: | |
| 2194 |   fixes c :: "'a::{complete_lattice, linorder}"
 | |
| 2195 | assumes ntriv: "\<not> trivial_limit net" | |
| 2196 | shows "Limsup net (\<lambda>x. c) = c" | |
| 2197 | unfolding Limsup_Inf | |
| 2198 | proof (safe intro!: antisym complete_lattice_class.Inf_greatest complete_lattice_class.Inf_lower) | |
| 2199 | fix x assume *: "\<forall>y>x. eventually (\<lambda>_. c < y) net" | |
| 2200 | show "c \<le> x" | |
| 2201 | proof (rule ccontr) | |
| 2202 | assume "\<not> c \<le> x" then have "x < c" by auto | |
| 2203 | then show False using ntriv * by (auto simp: trivial_limit_def) | |
| 2204 | qed | |
| 2205 | qed auto | |
| 2206 | ||
| 2207 | lemma Liminf_const: | |
| 2208 |   fixes c :: "'a::{complete_lattice, linorder}"
 | |
| 2209 | assumes ntriv: "\<not> trivial_limit net" | |
| 2210 | shows "Liminf net (\<lambda>x. c) = c" | |
| 2211 | unfolding Liminf_Sup | |
| 2212 | proof (safe intro!: antisym complete_lattice_class.Sup_least complete_lattice_class.Sup_upper) | |
| 2213 | fix x assume *: "\<forall>y<x. eventually (\<lambda>_. y < c) net" | |
| 2214 | show "x \<le> c" | |
| 2215 | proof (rule ccontr) | |
| 2216 | assume "\<not> x \<le> c" then have "c < x" by auto | |
| 2217 | then show False using ntriv * by (auto simp: trivial_limit_def) | |
| 2218 | qed | |
| 2219 | qed auto | |
| 2220 | ||
| 2221 | lemma mono_set: | |
| 2222 |   fixes S :: "('a::order) set"
 | |
| 2223 | shows "mono S \<longleftrightarrow> (\<forall>x y. x \<le> y \<longrightarrow> x \<in> S \<longrightarrow> y \<in> S)" | |
| 2224 | by (auto simp: mono_def mem_def) | |
| 2225 | ||
| 2226 | lemma mono_greaterThan[intro, simp]: "mono {B<..}" unfolding mono_set by auto
 | |
| 2227 | lemma mono_atLeast[intro, simp]: "mono {B..}" unfolding mono_set by auto
 | |
| 2228 | lemma mono_UNIV[intro, simp]: "mono UNIV" unfolding mono_set by auto | |
| 2229 | lemma mono_empty[intro, simp]: "mono {}" unfolding mono_set by auto
 | |
| 2230 | ||
| 2231 | lemma mono_set_iff: | |
| 2232 |   fixes S :: "'a::{linorder,complete_lattice} set"
 | |
| 2233 | defines "a \<equiv> Inf S" | |
| 2234 |   shows "mono S \<longleftrightarrow> (S = {a <..} \<or> S = {a..})" (is "_ = ?c")
 | |
| 2235 | proof | |
| 2236 | assume "mono S" | |
| 2237 | then have mono: "\<And>x y. x \<le> y \<Longrightarrow> x \<in> S \<Longrightarrow> y \<in> S" by (auto simp: mono_set) | |
| 2238 | show ?c | |
| 2239 | proof cases | |
| 2240 | assume "a \<in> S" | |
| 2241 | show ?c | |
| 2242 | using mono[OF _ `a \<in> S`] | |
| 2243 | by (auto intro: complete_lattice_class.Inf_lower simp: a_def) | |
| 2244 | next | |
| 2245 | assume "a \<notin> S" | |
| 2246 |     have "S = {a <..}"
 | |
| 2247 | proof safe | |
| 2248 | fix x assume "x \<in> S" | |
| 2249 | then have "a \<le> x" unfolding a_def by (rule complete_lattice_class.Inf_lower) | |
| 2250 | then show "a < x" using `x \<in> S` `a \<notin> S` by (cases "a = x") auto | |
| 2251 | next | |
| 2252 | fix x assume "a < x" | |
| 2253 | then obtain y where "y < x" "y \<in> S" unfolding a_def Inf_less_iff .. | |
| 2254 | with mono[of y x] show "x \<in> S" by auto | |
| 2255 | qed | |
| 2256 | then show ?c .. | |
| 2257 | qed | |
| 2258 | qed auto | |
| 2259 | ||
| 2260 | lemma lim_imp_Liminf: | |
| 2261 | fixes f :: "'a \<Rightarrow> extreal" | |
| 2262 | assumes ntriv: "\<not> trivial_limit net" | |
| 2263 | assumes lim: "(f ---> f0) net" | |
| 2264 | shows "Liminf net f = f0" | |
| 2265 | unfolding Liminf_Sup | |
| 2266 | proof (safe intro!: extreal_SupI) | |
| 2267 | fix y assume *: "\<forall>y'<y. eventually (\<lambda>x. y' < f x) net" | |
| 2268 | show "y \<le> f0" | |
| 2269 | proof (rule extreal_le_extreal) | |
| 2270 | fix B assume "B < y" | |
| 2271 |     { assume "f0 < B"
 | |
| 2272 | then have "eventually (\<lambda>x. f x < B \<and> B < f x) net" | |
| 2273 |          using topological_tendstoD[OF lim, of "{..<B}"] *[rule_format, OF `B < y`]
 | |
| 2274 | by (auto intro: eventually_conj) | |
| 2275 | also have "(\<lambda>x. f x < B \<and> B < f x) = (\<lambda>x. False)" by (auto simp: fun_eq_iff) | |
| 2276 | finally have False using ntriv[unfolded trivial_limit_def] by auto | |
| 2277 | } then show "B \<le> f0" by (metis linorder_le_less_linear) | |
| 2278 | qed | |
| 2279 | next | |
| 2280 |   fix y assume *: "\<forall>z. z \<in> {l. \<forall>y<l. eventually (\<lambda>x. y < f x) net} \<longrightarrow> z \<le> y"
 | |
| 2281 | show "f0 \<le> y" | |
| 2282 | proof (safe intro!: *[rule_format]) | |
| 2283 | fix y assume "y < f0" then show "eventually (\<lambda>x. y < f x) net" | |
| 2284 |       using lim[THEN topological_tendstoD, of "{y <..}"] by auto
 | |
| 2285 | qed | |
| 2286 | qed | |
| 2287 | ||
| 2288 | lemma extreal_Liminf_le_Limsup: | |
| 2289 | fixes f :: "'a \<Rightarrow> extreal" | |
| 2290 | assumes ntriv: "\<not> trivial_limit net" | |
| 2291 | shows "Liminf net f \<le> Limsup net f" | |
| 2292 | unfolding Limsup_Inf Liminf_Sup | |
| 2293 | proof (safe intro!: complete_lattice_class.Inf_greatest complete_lattice_class.Sup_least) | |
| 2294 | fix u v assume *: "\<forall>y<u. eventually (\<lambda>x. y < f x) net" "\<forall>y>v. eventually (\<lambda>x. f x < y) net" | |
| 2295 | show "u \<le> v" | |
| 2296 | proof (rule ccontr) | |
| 2297 | assume "\<not> u \<le> v" | |
| 2298 | then obtain t where "t < u" "v < t" | |
| 2299 | using extreal_dense[of v u] by (auto simp: not_le) | |
| 2300 | then have "eventually (\<lambda>x. t < f x \<and> f x < t) net" | |
| 2301 | using * by (auto intro: eventually_conj) | |
| 2302 | also have "(\<lambda>x. t < f x \<and> f x < t) = (\<lambda>x. False)" by (auto simp: fun_eq_iff) | |
| 2303 | finally show False using ntriv by (auto simp: trivial_limit_def) | |
| 2304 | qed | |
| 2305 | qed | |
| 2306 | ||
| 2307 | lemma Liminf_mono: | |
| 2308 | fixes f g :: "'a => extreal" | |
| 2309 | assumes ev: "eventually (\<lambda>x. f x \<le> g x) net" | |
| 2310 | shows "Liminf net f \<le> Liminf net g" | |
| 2311 | unfolding Liminf_Sup | |
| 2312 | proof (safe intro!: Sup_mono bexI) | |
| 2313 | fix a y assume "\<forall>y<a. eventually (\<lambda>x. y < f x) net" and "y < a" | |
| 2314 | then have "eventually (\<lambda>x. y < f x) net" by auto | |
| 2315 | then show "eventually (\<lambda>x. y < g x) net" | |
| 2316 | by (rule eventually_rev_mp) (rule eventually_mono[OF _ ev], auto) | |
| 2317 | qed simp | |
| 2318 | ||
| 2319 | lemma Liminf_eq: | |
| 2320 | fixes f g :: "'a \<Rightarrow> extreal" | |
| 2321 | assumes "eventually (\<lambda>x. f x = g x) net" | |
| 2322 | shows "Liminf net f = Liminf net g" | |
| 2323 | by (intro antisym Liminf_mono eventually_mono[OF _ assms]) auto | |
| 2324 | ||
| 2325 | lemma Liminf_mono_all: | |
| 2326 | fixes f g :: "'a \<Rightarrow> extreal" | |
| 2327 | assumes "\<And>x. f x \<le> g x" | |
| 2328 | shows "Liminf net f \<le> Liminf net g" | |
| 2329 | using assms by (intro Liminf_mono always_eventually) auto | |
| 2330 | ||
| 2331 | lemma Limsup_mono: | |
| 2332 | fixes f g :: "'a \<Rightarrow> extreal" | |
| 2333 | assumes ev: "eventually (\<lambda>x. f x \<le> g x) net" | |
| 2334 | shows "Limsup net f \<le> Limsup net g" | |
| 2335 | unfolding Limsup_Inf | |
| 2336 | proof (safe intro!: Inf_mono bexI) | |
| 2337 | fix a y assume "\<forall>y>a. eventually (\<lambda>x. g x < y) net" and "a < y" | |
| 2338 | then have "eventually (\<lambda>x. g x < y) net" by auto | |
| 2339 | then show "eventually (\<lambda>x. f x < y) net" | |
| 2340 | by (rule eventually_rev_mp) (rule eventually_mono[OF _ ev], auto) | |
| 2341 | qed simp | |
| 2342 | ||
| 2343 | lemma Limsup_mono_all: | |
| 2344 | fixes f g :: "'a \<Rightarrow> extreal" | |
| 2345 | assumes "\<And>x. f x \<le> g x" | |
| 2346 | shows "Limsup net f \<le> Limsup net g" | |
| 2347 | using assms by (intro Limsup_mono always_eventually) auto | |
| 2348 | ||
| 2349 | lemma Limsup_eq: | |
| 2350 | fixes f g :: "'a \<Rightarrow> extreal" | |
| 2351 | assumes "eventually (\<lambda>x. f x = g x) net" | |
| 2352 | shows "Limsup net f = Limsup net g" | |
| 2353 | by (intro antisym Limsup_mono eventually_mono[OF _ assms]) auto | |
| 2354 | ||
| 2355 | abbreviation "liminf \<equiv> Liminf sequentially" | |
| 2356 | ||
| 2357 | abbreviation "limsup \<equiv> Limsup sequentially" | |
| 2358 | ||
| 2359 | lemma (in complete_lattice) less_INFD: | |
| 2360 | assumes "y < INFI A f"" i \<in> A" shows "y < f i" | |
| 2361 | proof - | |
| 2362 | note `y < INFI A f` | |
| 2363 | also have "INFI A f \<le> f i" using `i \<in> A` by (rule INF_leI) | |
| 2364 | finally show "y < f i" . | |
| 2365 | qed | |
| 2366 | ||
| 2367 | lemma liminf_SUPR_INFI: | |
| 2368 | fixes f :: "nat \<Rightarrow> extreal" | |
| 2369 |   shows "liminf f = (SUP n. INF m:{n..}. f m)"
 | |
| 2370 | unfolding Liminf_Sup eventually_sequentially | |
| 2371 | proof (safe intro!: antisym complete_lattice_class.Sup_least) | |
| 2372 |   fix x assume *: "\<forall>y<x. \<exists>N. \<forall>n\<ge>N. y < f n" show "x \<le> (SUP n. INF m:{n..}. f m)"
 | |
| 2373 | proof (rule extreal_le_extreal) | |
| 2374 | fix y assume "y < x" | |
| 2375 | with * obtain N where "\<And>n. N \<le> n \<Longrightarrow> y < f n" by auto | |
| 2376 |     then have "y \<le> (INF m:{N..}. f m)" by (force simp: le_INF_iff)
 | |
| 2377 |     also have "\<dots> \<le> (SUP n. INF m:{n..}. f m)" by (intro le_SUPI) auto
 | |
| 2378 |     finally show "y \<le> (SUP n. INF m:{n..}. f m)" .
 | |
| 2379 | qed | |
| 2380 | next | |
| 2381 |   show "(SUP n. INF m:{n..}. f m) \<le> Sup {l. \<forall>y<l. \<exists>N. \<forall>n\<ge>N. y < f n}"
 | |
| 2382 | proof (unfold SUPR_def, safe intro!: Sup_mono bexI) | |
| 2383 |     fix y n assume "y < INFI {n..} f"
 | |
| 2384 | from less_INFD[OF this] show "\<exists>N. \<forall>n\<ge>N. y < f n" by (intro exI[of _ n]) auto | |
| 2385 | qed (rule order_refl) | |
| 2386 | qed | |
| 2387 | ||
| 2388 | lemma tail_same_limsup: | |
| 2389 | fixes X Y :: "nat => extreal" | |
| 2390 | assumes "\<And>n. N \<le> n \<Longrightarrow> X n = Y n" | |
| 2391 | shows "limsup X = limsup Y" | |
| 2392 | using Limsup_eq[of X Y sequentially] eventually_sequentially assms by auto | |
| 2393 | ||
| 2394 | lemma tail_same_liminf: | |
| 2395 | fixes X Y :: "nat => extreal" | |
| 2396 | assumes "\<And>n. N \<le> n \<Longrightarrow> X n = Y n" | |
| 2397 | shows "liminf X = liminf Y" | |
| 2398 | using Liminf_eq[of X Y sequentially] eventually_sequentially assms by auto | |
| 2399 | ||
| 2400 | lemma liminf_mono: | |
| 2401 | fixes X Y :: "nat \<Rightarrow> extreal" | |
| 2402 | assumes "\<And>n. N \<le> n \<Longrightarrow> X n <= Y n" | |
| 2403 | shows "liminf X \<le> liminf Y" | |
| 2404 | using Liminf_mono[of X Y sequentially] eventually_sequentially assms by auto | |
| 2405 | ||
| 2406 | lemma limsup_mono: | |
| 2407 | fixes X Y :: "nat => extreal" | |
| 2408 | assumes "\<And>n. N \<le> n \<Longrightarrow> X n <= Y n" | |
| 2409 | shows "limsup X \<le> limsup Y" | |
| 2410 | using Limsup_mono[of X Y sequentially] eventually_sequentially assms by auto | |
| 2411 | ||
| 2412 | declare trivial_limit_sequentially[simp] | |
| 2413 | ||
| 41978 | 2414 | lemma | 
| 2415 | fixes X :: "nat \<Rightarrow> extreal" | |
| 41980 
28b51effc5ed
split Extended_Reals into parts for Library and Multivariate_Analysis
 hoelzl parents: 
41979diff
changeset | 2416 | shows extreal_incseq_uminus[simp]: "incseq (\<lambda>i. - X i) = decseq X" | 
| 
28b51effc5ed
split Extended_Reals into parts for Library and Multivariate_Analysis
 hoelzl parents: 
41979diff
changeset | 2417 | and extreal_decseq_uminus[simp]: "decseq (\<lambda>i. - X i) = incseq X" | 
| 41978 | 2418 | unfolding incseq_def decseq_def by auto | 
| 2419 | ||
| 41973 | 2420 | lemma liminf_bounded: | 
| 2421 | fixes X Y :: "nat \<Rightarrow> extreal" | |
| 2422 | assumes "\<And>n. N \<le> n \<Longrightarrow> C \<le> X n" | |
| 2423 | shows "C \<le> liminf X" | |
| 2424 | using liminf_mono[of N "\<lambda>n. C" X] assms Liminf_const[of sequentially C] by simp | |
| 2425 | ||
| 2426 | lemma limsup_bounded: | |
| 2427 | fixes X Y :: "nat => extreal" | |
| 2428 | assumes "\<And>n. N \<le> n \<Longrightarrow> X n <= C" | |
| 2429 | shows "limsup X \<le> C" | |
| 2430 | using limsup_mono[of N X "\<lambda>n. C"] assms Limsup_const[of sequentially C] by simp | |
| 2431 | ||
| 2432 | lemma liminf_bounded_iff: | |
| 2433 | fixes x :: "nat \<Rightarrow> extreal" | |
| 2434 | shows "C \<le> liminf x \<longleftrightarrow> (\<forall>B<C. \<exists>N. \<forall>n\<ge>N. B < x n)" (is "?lhs <-> ?rhs") | |
| 2435 | proof safe | |
| 2436 | fix B assume "B < C" "C \<le> liminf x" | |
| 2437 | then have "B < liminf x" by auto | |
| 2438 |   then obtain N where "B < (INF m:{N..}. x m)"
 | |
| 2439 | unfolding liminf_SUPR_INFI SUPR_def less_Sup_iff by auto | |
| 2440 | from less_INFD[OF this] show "\<exists>N. \<forall>n\<ge>N. B < x n" by auto | |
| 2441 | next | |
| 2442 | assume *: "\<forall>B<C. \<exists>N. \<forall>n\<ge>N. B < x n" | |
| 2443 |   { fix B assume "B<C"
 | |
| 2444 | then obtain N where "\<forall>n\<ge>N. B < x n" using `?rhs` by auto | |
| 2445 |     hence "B \<le> (INF m:{N..}. x m)" by (intro le_INFI) auto
 | |
| 2446 | also have "... \<le> liminf x" unfolding liminf_SUPR_INFI by (intro le_SUPI) simp | |
| 2447 | finally have "B \<le> liminf x" . | |
| 2448 | } then show "?lhs" by (metis * leD liminf_bounded linorder_le_less_linear) | |
| 2449 | qed | |
| 2450 | ||
| 2451 | lemma liminf_subseq_mono: | |
| 2452 | fixes X :: "nat \<Rightarrow> extreal" | |
| 2453 | assumes "subseq r" | |
| 2454 | shows "liminf X \<le> liminf (X \<circ> r) " | |
| 2455 | proof- | |
| 2456 |   have "\<And>n. (INF m:{n..}. X m) \<le> (INF m:{n..}. (X \<circ> r) m)"
 | |
| 2457 | proof (safe intro!: INF_mono) | |
| 2458 |     fix n m :: nat assume "n \<le> m" then show "\<exists>ma\<in>{n..}. X ma \<le> (X \<circ> r) m"
 | |
| 2459 | using seq_suble[OF `subseq r`, of m] by (intro bexI[of _ "r m"]) auto | |
| 2460 | qed | |
| 2461 | then show ?thesis by (auto intro!: SUP_mono simp: liminf_SUPR_INFI comp_def) | |
| 2462 | qed | |
| 2463 | ||
| 41976 | 2464 | lemma extreal_real': assumes "\<bar>x\<bar> \<noteq> \<infinity>" shows "extreal (real x) = x" | 
| 2465 | using assms by auto | |
| 41973 | 2466 | |
| 41978 | 2467 | lemma extreal_le_extreal_bounded: | 
| 2468 | fixes x y z :: extreal | |
| 2469 | assumes "z \<le> y" | |
| 2470 | assumes *: "\<And>B. z < B \<Longrightarrow> B < x \<Longrightarrow> B \<le> y" | |
| 2471 | shows "x \<le> y" | |
| 2472 | proof (rule extreal_le_extreal) | |
| 2473 | fix B assume "B < x" | |
| 2474 | show "B \<le> y" | |
| 2475 | proof cases | |
| 2476 | assume "z < B" from *[OF this `B < x`] show "B \<le> y" . | |
| 41976 | 2477 | next | 
| 41978 | 2478 | assume "\<not> z < B" with `z \<le> y` show "B \<le> y" by auto | 
| 41976 | 2479 | qed | 
| 41973 | 2480 | qed | 
| 2481 | ||
| 41978 | 2482 | lemma fixes x y :: extreal | 
| 2483 |   shows Sup_atMost[simp]: "Sup {.. y} = y"
 | |
| 2484 |     and Sup_lessThan[simp]: "Sup {..< y} = y"
 | |
| 2485 |     and Sup_atLeastAtMost[simp]: "x \<le> y \<Longrightarrow> Sup { x .. y} = y"
 | |
| 2486 |     and Sup_greaterThanAtMost[simp]: "x < y \<Longrightarrow> Sup { x <.. y} = y"
 | |
| 2487 |     and Sup_atLeastLessThan[simp]: "x < y \<Longrightarrow> Sup { x ..< y} = y"
 | |
| 2488 | by (auto simp: Sup_extreal_def intro!: Least_equality | |
| 2489 | intro: extreal_le_extreal extreal_le_extreal_bounded[of x]) | |
| 2490 | ||
| 2491 | lemma Sup_greaterThanlessThan[simp]: | |
| 2492 |   fixes x y :: extreal assumes "x < y" shows "Sup { x <..< y} = y"
 | |
| 2493 | unfolding Sup_extreal_def | |
| 2494 | proof (intro Least_equality extreal_le_extreal_bounded[of _ _ y]) | |
| 2495 |   fix z assume z: "\<forall>u\<in>{x<..<y}. u \<le> z"
 | |
| 2496 | from extreal_dense[OF `x < y`] guess w .. note w = this | |
| 2497 | with z[THEN bspec, of w] show "x \<le> z" by auto | |
| 2498 | qed auto | |
| 2499 | ||
| 41973 | 2500 | lemma real_extreal_id: "real o extreal = id" | 
| 2501 | proof- | |
| 2502 | { fix x have "(real o extreal) x = id x" by auto }
 | |
| 2503 | from this show ?thesis using ext by blast | |
| 2504 | qed | |
| 2505 | ||
| 2506 | lemma open_image_extreal: "open(UNIV-{\<infinity>,(-\<infinity>)})"
 | |
| 2507 | by (metis range_extreal open_extreal open_UNIV) | |
| 2508 | ||
| 2509 | lemma extreal_le_distrib: | |
| 2510 | fixes a b c :: extreal shows "c * (a + b) \<le> c * a + c * b" | |
| 2511 | by (cases rule: extreal3_cases[of a b c]) | |
| 2512 | (auto simp add: field_simps not_le mult_le_0_iff mult_less_0_iff) | |
| 2513 | ||
| 2514 | lemma extreal_pos_distrib: | |
| 2515 | fixes a b c :: extreal assumes "0 \<le> c" "c \<noteq> \<infinity>" shows "c * (a + b) = c * a + c * b" | |
| 2516 | using assms by (cases rule: extreal3_cases[of a b c]) | |
| 2517 | (auto simp add: field_simps not_le mult_le_0_iff mult_less_0_iff) | |
| 2518 | ||
| 2519 | lemma extreal_pos_le_distrib: | |
| 2520 | fixes a b c :: extreal | |
| 2521 | assumes "c>=0" | |
| 2522 | shows "c * (a + b) <= c * a + c * b" | |
| 2523 | using assms by (cases rule: extreal3_cases[of a b c]) | |
| 2524 | (auto simp add: field_simps) | |
| 2525 | ||
| 2526 | lemma extreal_max_mono: | |
| 2527 | "[| (a::extreal) <= b; c <= d |] ==> max a c <= max b d" | |
| 2528 | by (metis sup_extreal_def sup_mono) | |
| 2529 | ||
| 2530 | ||
| 2531 | lemma extreal_max_least: | |
| 2532 | "[| (a::extreal) <= x; c <= x |] ==> max a c <= x" | |
| 2533 | by (metis sup_extreal_def sup_least) | |
| 2534 | ||
| 2535 | end |