| author | nipkow | 
| Thu, 29 Nov 2001 13:33:45 +0100 | |
| changeset 12327 | 5a4d78204492 | 
| parent 12258 | 5da24e7e9aba | 
| child 12338 | de0f4a63baa5 | 
| permissions | -rw-r--r-- | 
| 1475 | 1  | 
(* Title: HOL/Fun.thy  | 
| 923 | 2  | 
ID: $Id$  | 
| 1475 | 3  | 
Author: Tobias Nipkow, Cambridge University Computer Laboratory  | 
| 923 | 4  | 
Copyright 1994 University of Cambridge  | 
5  | 
||
| 2912 | 6  | 
Notions about functions.  | 
| 923 | 7  | 
*)  | 
8  | 
||
| 12258 | 9  | 
Fun = Typedef +  | 
| 2912 | 10  | 
|
| 4059 | 11  | 
instance set :: (term) order  | 
12  | 
(subset_refl,subset_trans,subset_antisym,psubset_eq)  | 
|
| 6171 | 13  | 
consts  | 
14  | 
  fun_upd  :: "('a => 'b) => 'a => 'b => ('a => 'b)"
 | 
|
15  | 
||
| 9141 | 16  | 
nonterminals  | 
17  | 
updbinds updbind  | 
|
| 5305 | 18  | 
syntax  | 
19  | 
  "_updbind"       :: ['a, 'a] => updbind             ("(2_ :=/ _)")
 | 
|
20  | 
  ""               :: updbind => updbinds             ("_")
 | 
|
21  | 
  "_updbinds"      :: [updbind, updbinds] => updbinds ("_,/ _")
 | 
|
| 8258 | 22  | 
  "_Update"        :: ['a, updbinds] => 'a            ("_/'((_)')" [1000,0] 900)
 | 
| 5305 | 23  | 
|
24  | 
translations  | 
|
25  | 
"_Update f (_updbinds b bs)" == "_Update (_Update f b) bs"  | 
|
26  | 
"f(x:=y)" == "fun_upd f x y"  | 
|
| 2912 | 27  | 
|
28  | 
defs  | 
|
| 6171 | 29  | 
fun_upd_def "f(a:=b) == % x. if x=a then b else f x"  | 
| 2912 | 30  | 
|
| 9340 | 31  | 
(* Hint: to define the sum of two functions (or maps), use sum_case.  | 
32  | 
A nice infix syntax could be defined (in Datatype.thy or below) by  | 
|
33  | 
consts  | 
|
34  | 
  fun_sum :: "('a => 'c) => ('b => 'c) => (('a+'b) => 'c)" (infixr "'(+')"80)
 | 
|
35  | 
translations  | 
|
36  | 
"fun_sum" == "sum_case"  | 
|
37  | 
*)  | 
|
| 12258 | 38  | 
|
| 6171 | 39  | 
constdefs  | 
40  | 
id :: 'a => 'a  | 
|
41  | 
"id == %x. x"  | 
|
42  | 
||
43  | 
o :: ['b => 'c, 'a => 'b, 'a] => 'c (infixl 55)  | 
|
44  | 
"f o g == %x. f(g(x))"  | 
|
| 11123 | 45  | 
|
| 6171 | 46  | 
inj_on :: ['a => 'b, 'a set] => bool  | 
47  | 
"inj_on f A == ! x:A. ! y:A. f(x)=f(y) --> x=y"  | 
|
| 2912 | 48  | 
|
| 
12114
 
a8e860c86252
eliminated old "symbols" syntax, use "xsymbols" instead;
 
wenzelm 
parents: 
11609 
diff
changeset
 | 
49  | 
syntax (xsymbols)  | 
| 9352 | 50  | 
"op o" :: "['b => 'c, 'a => 'b, 'a] => 'c" (infixl "\\<circ>" 55)  | 
51  | 
||
| 6171 | 52  | 
syntax  | 
53  | 
  inj   :: ('a => 'b) => bool                   (*injective*)
 | 
|
54  | 
||
55  | 
translations  | 
|
56  | 
"inj f" == "inj_on f UNIV"  | 
|
| 5852 | 57  | 
|
| 7374 | 58  | 
constdefs  | 
59  | 
  surj :: ('a => 'b) => bool                   (*surjective*)
 | 
|
60  | 
"surj f == ! y. ? x. y=f(x)"  | 
|
| 12258 | 61  | 
|
| 7374 | 62  | 
  bij :: ('a => 'b) => bool                    (*bijective*)
 | 
63  | 
"bij f == inj f & surj f"  | 
|
| 12258 | 64  | 
|
| 7374 | 65  | 
|
| 5852 | 66  | 
(*The Pi-operator, by Florian Kammueller*)  | 
| 12258 | 67  | 
|
| 5852 | 68  | 
constdefs  | 
69  | 
  Pi      :: "['a set, 'a => 'b set] => ('a => 'b) set"
 | 
|
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents: 
11123 
diff
changeset
 | 
70  | 
    "Pi A B == {f. ! x. if x:A then f(x) : B(x) else f(x) = arbitrary}"
 | 
| 5852 | 71  | 
|
72  | 
  restrict :: "['a => 'b, 'a set] => ('a => 'b)"
 | 
|
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents: 
11123 
diff
changeset
 | 
73  | 
"restrict f A == (%x. if x : A then f x else arbitrary)"  | 
| 5852 | 74  | 
|
75  | 
syntax  | 
|
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents: 
11123 
diff
changeset
 | 
76  | 
  "@Pi"  :: "[pttrn, 'a set, 'b set] => ('a => 'b) set"  ("(3PI _:_./ _)" 10)
 | 
| 12258 | 77  | 
  funcset :: "['a set, 'b set] => ('a => 'b) set"      (infixr 60)
 | 
| 5852 | 78  | 
  "@lam" :: "[pttrn, 'a set, 'a => 'b] => ('a => 'b)"  ("(3lam _:_./ _)" 10)
 | 
79  | 
||
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents: 
11123 
diff
changeset
 | 
80  | 
(*Giving funcset the arrow syntax (namely ->) clashes with other theories*)  | 
| 
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents: 
11123 
diff
changeset
 | 
81  | 
|
| 
12114
 
a8e860c86252
eliminated old "symbols" syntax, use "xsymbols" instead;
 
wenzelm 
parents: 
11609 
diff
changeset
 | 
82  | 
syntax (xsymbols)  | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents: 
11123 
diff
changeset
 | 
83  | 
  "@Pi" :: "[pttrn, 'a set, 'b set] => ('a => 'b) set"  ("(3\\<Pi> _\\<in>_./ _)"   10)
 | 
| 5852 | 84  | 
|
85  | 
translations  | 
|
86  | 
"PI x:A. B" => "Pi A (%x. B)"  | 
|
87  | 
"A funcset B" => "Pi A (_K B)"  | 
|
88  | 
"lam x:A. f" == "restrict (%x. f) A"  | 
|
89  | 
||
90  | 
constdefs  | 
|
| 9309 | 91  | 
  compose :: "['a set, 'b => 'c, 'a => 'b] => ('a => 'c)"
 | 
| 5852 | 92  | 
"compose A g f == lam x : A. g(f x)"  | 
93  | 
||
| 2912 | 94  | 
end  | 
| 5852 | 95  | 
|
96  | 
ML  | 
|
97  | 
val print_translation = [("Pi", dependent_tr' ("@Pi", "op funcset"))];
 |