| 27468 |      1 | (*  Title       : HLim.thy
 | 
|  |      2 |     ID          : $Id$
 | 
|  |      3 |     Author      : Jacques D. Fleuriot
 | 
|  |      4 |     Copyright   : 1998  University of Cambridge
 | 
|  |      5 |     Conversion to Isar and new proofs by Lawrence C Paulson, 2004
 | 
|  |      6 | *)
 | 
|  |      7 | 
 | 
|  |      8 | header{* Limits and Continuity (Nonstandard) *}
 | 
|  |      9 | 
 | 
|  |     10 | theory HLim
 | 
|  |     11 | imports Star Lim
 | 
|  |     12 | begin
 | 
|  |     13 | 
 | 
|  |     14 | text{*Nonstandard Definitions*}
 | 
|  |     15 | 
 | 
|  |     16 | definition
 | 
|  |     17 |   NSLIM :: "['a::real_normed_vector => 'b::real_normed_vector, 'a, 'b] => bool"
 | 
|  |     18 |             ("((_)/ -- (_)/ --NS> (_))" [60, 0, 60] 60) where
 | 
| 28562 |     19 |   [code del]: "f -- a --NS> L =
 | 
| 27468 |     20 |     (\<forall>x. (x \<noteq> star_of a & x @= star_of a --> ( *f* f) x @= star_of L))"
 | 
|  |     21 | 
 | 
|  |     22 | definition
 | 
|  |     23 |   isNSCont :: "['a::real_normed_vector => 'b::real_normed_vector, 'a] => bool" where
 | 
|  |     24 |     --{*NS definition dispenses with limit notions*}
 | 
| 28562 |     25 |   [code del]: "isNSCont f a = (\<forall>y. y @= star_of a -->
 | 
| 27468 |     26 |          ( *f* f) y @= star_of (f a))"
 | 
|  |     27 | 
 | 
|  |     28 | definition
 | 
|  |     29 |   isNSUCont :: "['a::real_normed_vector => 'b::real_normed_vector] => bool" where
 | 
| 28562 |     30 |   [code del]: "isNSUCont f = (\<forall>x y. x @= y --> ( *f* f) x @= ( *f* f) y)"
 | 
| 27468 |     31 | 
 | 
|  |     32 | 
 | 
|  |     33 | subsection {* Limits of Functions *}
 | 
|  |     34 | 
 | 
|  |     35 | lemma NSLIM_I:
 | 
|  |     36 |   "(\<And>x. \<lbrakk>x \<noteq> star_of a; x \<approx> star_of a\<rbrakk> \<Longrightarrow> starfun f x \<approx> star_of L)
 | 
|  |     37 |    \<Longrightarrow> f -- a --NS> L"
 | 
|  |     38 | by (simp add: NSLIM_def)
 | 
|  |     39 | 
 | 
|  |     40 | lemma NSLIM_D:
 | 
|  |     41 |   "\<lbrakk>f -- a --NS> L; x \<noteq> star_of a; x \<approx> star_of a\<rbrakk>
 | 
|  |     42 |    \<Longrightarrow> starfun f x \<approx> star_of L"
 | 
|  |     43 | by (simp add: NSLIM_def)
 | 
|  |     44 | 
 | 
|  |     45 | text{*Proving properties of limits using nonstandard definition.
 | 
|  |     46 |       The properties hold for standard limits as well!*}
 | 
|  |     47 | 
 | 
|  |     48 | lemma NSLIM_mult:
 | 
|  |     49 |   fixes l m :: "'a::real_normed_algebra"
 | 
|  |     50 |   shows "[| f -- x --NS> l; g -- x --NS> m |]
 | 
|  |     51 |       ==> (%x. f(x) * g(x)) -- x --NS> (l * m)"
 | 
|  |     52 | by (auto simp add: NSLIM_def intro!: approx_mult_HFinite)
 | 
|  |     53 | 
 | 
|  |     54 | lemma starfun_scaleR [simp]:
 | 
|  |     55 |   "starfun (\<lambda>x. f x *\<^sub>R g x) = (\<lambda>x. scaleHR (starfun f x) (starfun g x))"
 | 
|  |     56 | by transfer (rule refl)
 | 
|  |     57 | 
 | 
|  |     58 | lemma NSLIM_scaleR:
 | 
|  |     59 |   "[| f -- x --NS> l; g -- x --NS> m |]
 | 
|  |     60 |       ==> (%x. f(x) *\<^sub>R g(x)) -- x --NS> (l *\<^sub>R m)"
 | 
|  |     61 | by (auto simp add: NSLIM_def intro!: approx_scaleR_HFinite)
 | 
|  |     62 | 
 | 
|  |     63 | lemma NSLIM_add:
 | 
|  |     64 |      "[| f -- x --NS> l; g -- x --NS> m |]
 | 
|  |     65 |       ==> (%x. f(x) + g(x)) -- x --NS> (l + m)"
 | 
|  |     66 | by (auto simp add: NSLIM_def intro!: approx_add)
 | 
|  |     67 | 
 | 
|  |     68 | lemma NSLIM_const [simp]: "(%x. k) -- x --NS> k"
 | 
|  |     69 | by (simp add: NSLIM_def)
 | 
|  |     70 | 
 | 
|  |     71 | lemma NSLIM_minus: "f -- a --NS> L ==> (%x. -f(x)) -- a --NS> -L"
 | 
|  |     72 | by (simp add: NSLIM_def)
 | 
|  |     73 | 
 | 
|  |     74 | lemma NSLIM_diff:
 | 
|  |     75 |   "\<lbrakk>f -- x --NS> l; g -- x --NS> m\<rbrakk> \<Longrightarrow> (\<lambda>x. f x - g x) -- x --NS> (l - m)"
 | 
|  |     76 | by (simp only: diff_def NSLIM_add NSLIM_minus)
 | 
|  |     77 | 
 | 
|  |     78 | lemma NSLIM_add_minus: "[| f -- x --NS> l; g -- x --NS> m |] ==> (%x. f(x) + -g(x)) -- x --NS> (l + -m)"
 | 
|  |     79 | by (simp only: NSLIM_add NSLIM_minus)
 | 
|  |     80 | 
 | 
|  |     81 | lemma NSLIM_inverse:
 | 
|  |     82 |   fixes L :: "'a::real_normed_div_algebra"
 | 
|  |     83 |   shows "[| f -- a --NS> L;  L \<noteq> 0 |]
 | 
|  |     84 |       ==> (%x. inverse(f(x))) -- a --NS> (inverse L)"
 | 
|  |     85 | apply (simp add: NSLIM_def, clarify)
 | 
|  |     86 | apply (drule spec)
 | 
|  |     87 | apply (auto simp add: star_of_approx_inverse)
 | 
|  |     88 | done
 | 
|  |     89 | 
 | 
|  |     90 | lemma NSLIM_zero:
 | 
|  |     91 |   assumes f: "f -- a --NS> l" shows "(%x. f(x) - l) -- a --NS> 0"
 | 
|  |     92 | proof -
 | 
|  |     93 |   have "(\<lambda>x. f x - l) -- a --NS> l - l"
 | 
|  |     94 |     by (rule NSLIM_diff [OF f NSLIM_const])
 | 
|  |     95 |   thus ?thesis by simp
 | 
|  |     96 | qed
 | 
|  |     97 | 
 | 
|  |     98 | lemma NSLIM_zero_cancel: "(%x. f(x) - l) -- x --NS> 0 ==> f -- x --NS> l"
 | 
|  |     99 | apply (drule_tac g = "%x. l" and m = l in NSLIM_add)
 | 
|  |    100 | apply (auto simp add: diff_minus add_assoc)
 | 
|  |    101 | done
 | 
|  |    102 | 
 | 
|  |    103 | lemma NSLIM_const_not_eq:
 | 
|  |    104 |   fixes a :: "'a::real_normed_algebra_1"
 | 
|  |    105 |   shows "k \<noteq> L \<Longrightarrow> \<not> (\<lambda>x. k) -- a --NS> L"
 | 
|  |    106 | apply (simp add: NSLIM_def)
 | 
|  |    107 | apply (rule_tac x="star_of a + of_hypreal epsilon" in exI)
 | 
|  |    108 | apply (simp add: hypreal_epsilon_not_zero approx_def)
 | 
|  |    109 | done
 | 
|  |    110 | 
 | 
|  |    111 | lemma NSLIM_not_zero:
 | 
|  |    112 |   fixes a :: "'a::real_normed_algebra_1"
 | 
|  |    113 |   shows "k \<noteq> 0 \<Longrightarrow> \<not> (\<lambda>x. k) -- a --NS> 0"
 | 
|  |    114 | by (rule NSLIM_const_not_eq)
 | 
|  |    115 | 
 | 
|  |    116 | lemma NSLIM_const_eq:
 | 
|  |    117 |   fixes a :: "'a::real_normed_algebra_1"
 | 
|  |    118 |   shows "(\<lambda>x. k) -- a --NS> L \<Longrightarrow> k = L"
 | 
|  |    119 | apply (rule ccontr)
 | 
|  |    120 | apply (blast dest: NSLIM_const_not_eq)
 | 
|  |    121 | done
 | 
|  |    122 | 
 | 
|  |    123 | lemma NSLIM_unique:
 | 
|  |    124 |   fixes a :: "'a::real_normed_algebra_1"
 | 
|  |    125 |   shows "\<lbrakk>f -- a --NS> L; f -- a --NS> M\<rbrakk> \<Longrightarrow> L = M"
 | 
|  |    126 | apply (drule (1) NSLIM_diff)
 | 
|  |    127 | apply (auto dest!: NSLIM_const_eq)
 | 
|  |    128 | done
 | 
|  |    129 | 
 | 
|  |    130 | lemma NSLIM_mult_zero:
 | 
|  |    131 |   fixes f g :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_algebra"
 | 
|  |    132 |   shows "[| f -- x --NS> 0; g -- x --NS> 0 |] ==> (%x. f(x)*g(x)) -- x --NS> 0"
 | 
|  |    133 | by (drule NSLIM_mult, auto)
 | 
|  |    134 | 
 | 
|  |    135 | lemma NSLIM_self: "(%x. x) -- a --NS> a"
 | 
|  |    136 | by (simp add: NSLIM_def)
 | 
|  |    137 | 
 | 
|  |    138 | subsubsection {* Equivalence of @{term LIM} and @{term NSLIM} *}
 | 
|  |    139 | 
 | 
|  |    140 | lemma LIM_NSLIM:
 | 
|  |    141 |   assumes f: "f -- a --> L" shows "f -- a --NS> L"
 | 
|  |    142 | proof (rule NSLIM_I)
 | 
|  |    143 |   fix x
 | 
|  |    144 |   assume neq: "x \<noteq> star_of a"
 | 
|  |    145 |   assume approx: "x \<approx> star_of a"
 | 
|  |    146 |   have "starfun f x - star_of L \<in> Infinitesimal"
 | 
|  |    147 |   proof (rule InfinitesimalI2)
 | 
|  |    148 |     fix r::real assume r: "0 < r"
 | 
|  |    149 |     from LIM_D [OF f r]
 | 
|  |    150 |     obtain s where s: "0 < s" and
 | 
|  |    151 |       less_r: "\<And>x. \<lbrakk>x \<noteq> a; norm (x - a) < s\<rbrakk> \<Longrightarrow> norm (f x - L) < r"
 | 
|  |    152 |       by fast
 | 
|  |    153 |     from less_r have less_r':
 | 
|  |    154 |        "\<And>x. \<lbrakk>x \<noteq> star_of a; hnorm (x - star_of a) < star_of s\<rbrakk>
 | 
|  |    155 |         \<Longrightarrow> hnorm (starfun f x - star_of L) < star_of r"
 | 
|  |    156 |       by transfer
 | 
|  |    157 |     from approx have "x - star_of a \<in> Infinitesimal"
 | 
|  |    158 |       by (unfold approx_def)
 | 
|  |    159 |     hence "hnorm (x - star_of a) < star_of s"
 | 
|  |    160 |       using s by (rule InfinitesimalD2)
 | 
|  |    161 |     with neq show "hnorm (starfun f x - star_of L) < star_of r"
 | 
|  |    162 |       by (rule less_r')
 | 
|  |    163 |   qed
 | 
|  |    164 |   thus "starfun f x \<approx> star_of L"
 | 
|  |    165 |     by (unfold approx_def)
 | 
|  |    166 | qed
 | 
|  |    167 | 
 | 
|  |    168 | lemma NSLIM_LIM:
 | 
|  |    169 |   assumes f: "f -- a --NS> L" shows "f -- a --> L"
 | 
|  |    170 | proof (rule LIM_I)
 | 
|  |    171 |   fix r::real assume r: "0 < r"
 | 
|  |    172 |   have "\<exists>s>0. \<forall>x. x \<noteq> star_of a \<and> hnorm (x - star_of a) < s
 | 
|  |    173 |         \<longrightarrow> hnorm (starfun f x - star_of L) < star_of r"
 | 
|  |    174 |   proof (rule exI, safe)
 | 
|  |    175 |     show "0 < epsilon" by (rule hypreal_epsilon_gt_zero)
 | 
|  |    176 |   next
 | 
|  |    177 |     fix x assume neq: "x \<noteq> star_of a"
 | 
|  |    178 |     assume "hnorm (x - star_of a) < epsilon"
 | 
|  |    179 |     with Infinitesimal_epsilon
 | 
|  |    180 |     have "x - star_of a \<in> Infinitesimal"
 | 
|  |    181 |       by (rule hnorm_less_Infinitesimal)
 | 
|  |    182 |     hence "x \<approx> star_of a"
 | 
|  |    183 |       by (unfold approx_def)
 | 
|  |    184 |     with f neq have "starfun f x \<approx> star_of L"
 | 
|  |    185 |       by (rule NSLIM_D)
 | 
|  |    186 |     hence "starfun f x - star_of L \<in> Infinitesimal"
 | 
|  |    187 |       by (unfold approx_def)
 | 
|  |    188 |     thus "hnorm (starfun f x - star_of L) < star_of r"
 | 
|  |    189 |       using r by (rule InfinitesimalD2)
 | 
|  |    190 |   qed
 | 
|  |    191 |   thus "\<exists>s>0. \<forall>x. x \<noteq> a \<and> norm (x - a) < s \<longrightarrow> norm (f x - L) < r"
 | 
|  |    192 |     by transfer
 | 
|  |    193 | qed
 | 
|  |    194 | 
 | 
|  |    195 | theorem LIM_NSLIM_iff: "(f -- x --> L) = (f -- x --NS> L)"
 | 
|  |    196 | by (blast intro: LIM_NSLIM NSLIM_LIM)
 | 
|  |    197 | 
 | 
|  |    198 | 
 | 
|  |    199 | subsection {* Continuity *}
 | 
|  |    200 | 
 | 
|  |    201 | lemma isNSContD:
 | 
|  |    202 |   "\<lbrakk>isNSCont f a; y \<approx> star_of a\<rbrakk> \<Longrightarrow> ( *f* f) y \<approx> star_of (f a)"
 | 
|  |    203 | by (simp add: isNSCont_def)
 | 
|  |    204 | 
 | 
|  |    205 | lemma isNSCont_NSLIM: "isNSCont f a ==> f -- a --NS> (f a) "
 | 
|  |    206 | by (simp add: isNSCont_def NSLIM_def)
 | 
|  |    207 | 
 | 
|  |    208 | lemma NSLIM_isNSCont: "f -- a --NS> (f a) ==> isNSCont f a"
 | 
|  |    209 | apply (simp add: isNSCont_def NSLIM_def, auto)
 | 
|  |    210 | apply (case_tac "y = star_of a", auto)
 | 
|  |    211 | done
 | 
|  |    212 | 
 | 
|  |    213 | text{*NS continuity can be defined using NS Limit in
 | 
|  |    214 |     similar fashion to standard def of continuity*}
 | 
|  |    215 | lemma isNSCont_NSLIM_iff: "(isNSCont f a) = (f -- a --NS> (f a))"
 | 
|  |    216 | by (blast intro: isNSCont_NSLIM NSLIM_isNSCont)
 | 
|  |    217 | 
 | 
|  |    218 | text{*Hence, NS continuity can be given
 | 
|  |    219 |   in terms of standard limit*}
 | 
|  |    220 | lemma isNSCont_LIM_iff: "(isNSCont f a) = (f -- a --> (f a))"
 | 
|  |    221 | by (simp add: LIM_NSLIM_iff isNSCont_NSLIM_iff)
 | 
|  |    222 | 
 | 
|  |    223 | text{*Moreover, it's trivial now that NS continuity
 | 
|  |    224 |   is equivalent to standard continuity*}
 | 
|  |    225 | lemma isNSCont_isCont_iff: "(isNSCont f a) = (isCont f a)"
 | 
|  |    226 | apply (simp add: isCont_def)
 | 
|  |    227 | apply (rule isNSCont_LIM_iff)
 | 
|  |    228 | done
 | 
|  |    229 | 
 | 
|  |    230 | text{*Standard continuity ==> NS continuity*}
 | 
|  |    231 | lemma isCont_isNSCont: "isCont f a ==> isNSCont f a"
 | 
|  |    232 | by (erule isNSCont_isCont_iff [THEN iffD2])
 | 
|  |    233 | 
 | 
|  |    234 | text{*NS continuity ==> Standard continuity*}
 | 
|  |    235 | lemma isNSCont_isCont: "isNSCont f a ==> isCont f a"
 | 
|  |    236 | by (erule isNSCont_isCont_iff [THEN iffD1])
 | 
|  |    237 | 
 | 
|  |    238 | text{*Alternative definition of continuity*}
 | 
|  |    239 | 
 | 
|  |    240 | (* Prove equivalence between NS limits - *)
 | 
|  |    241 | (* seems easier than using standard def  *)
 | 
|  |    242 | lemma NSLIM_h_iff: "(f -- a --NS> L) = ((%h. f(a + h)) -- 0 --NS> L)"
 | 
|  |    243 | apply (simp add: NSLIM_def, auto)
 | 
|  |    244 | apply (drule_tac x = "star_of a + x" in spec)
 | 
|  |    245 | apply (drule_tac [2] x = "- star_of a + x" in spec, safe, simp)
 | 
|  |    246 | apply (erule mem_infmal_iff [THEN iffD2, THEN Infinitesimal_add_approx_self [THEN approx_sym]])
 | 
|  |    247 | apply (erule_tac [3] approx_minus_iff2 [THEN iffD1])
 | 
|  |    248 |  prefer 2 apply (simp add: add_commute diff_def [symmetric])
 | 
|  |    249 | apply (rule_tac x = x in star_cases)
 | 
|  |    250 | apply (rule_tac [2] x = x in star_cases)
 | 
|  |    251 | apply (auto simp add: starfun star_of_def star_n_minus star_n_add add_assoc approx_refl star_n_zero_num)
 | 
|  |    252 | done
 | 
|  |    253 | 
 | 
|  |    254 | lemma NSLIM_isCont_iff: "(f -- a --NS> f a) = ((%h. f(a + h)) -- 0 --NS> f a)"
 | 
|  |    255 | by (rule NSLIM_h_iff)
 | 
|  |    256 | 
 | 
|  |    257 | lemma isNSCont_minus: "isNSCont f a ==> isNSCont (%x. - f x) a"
 | 
|  |    258 | by (simp add: isNSCont_def)
 | 
|  |    259 | 
 | 
|  |    260 | lemma isNSCont_inverse:
 | 
|  |    261 |   fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_div_algebra"
 | 
|  |    262 |   shows "[| isNSCont f x; f x \<noteq> 0 |] ==> isNSCont (%x. inverse (f x)) x"
 | 
|  |    263 | by (auto intro: isCont_inverse simp add: isNSCont_isCont_iff)
 | 
|  |    264 | 
 | 
|  |    265 | lemma isNSCont_const [simp]: "isNSCont (%x. k) a"
 | 
|  |    266 | by (simp add: isNSCont_def)
 | 
|  |    267 | 
 | 
|  |    268 | lemma isNSCont_abs [simp]: "isNSCont abs (a::real)"
 | 
|  |    269 | apply (simp add: isNSCont_def)
 | 
|  |    270 | apply (auto intro: approx_hrabs simp add: starfun_rabs_hrabs)
 | 
|  |    271 | done
 | 
|  |    272 | 
 | 
|  |    273 | 
 | 
|  |    274 | subsection {* Uniform Continuity *}
 | 
|  |    275 | 
 | 
|  |    276 | lemma isNSUContD: "[| isNSUCont f; x \<approx> y|] ==> ( *f* f) x \<approx> ( *f* f) y"
 | 
|  |    277 | by (simp add: isNSUCont_def)
 | 
|  |    278 | 
 | 
|  |    279 | lemma isUCont_isNSUCont:
 | 
|  |    280 |   fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector"
 | 
|  |    281 |   assumes f: "isUCont f" shows "isNSUCont f"
 | 
|  |    282 | proof (unfold isNSUCont_def, safe)
 | 
|  |    283 |   fix x y :: "'a star"
 | 
|  |    284 |   assume approx: "x \<approx> y"
 | 
|  |    285 |   have "starfun f x - starfun f y \<in> Infinitesimal"
 | 
|  |    286 |   proof (rule InfinitesimalI2)
 | 
|  |    287 |     fix r::real assume r: "0 < r"
 | 
|  |    288 |     with f obtain s where s: "0 < s" and
 | 
|  |    289 |       less_r: "\<And>x y. norm (x - y) < s \<Longrightarrow> norm (f x - f y) < r"
 | 
|  |    290 |       by (auto simp add: isUCont_def)
 | 
|  |    291 |     from less_r have less_r':
 | 
|  |    292 |        "\<And>x y. hnorm (x - y) < star_of s
 | 
|  |    293 |         \<Longrightarrow> hnorm (starfun f x - starfun f y) < star_of r"
 | 
|  |    294 |       by transfer
 | 
|  |    295 |     from approx have "x - y \<in> Infinitesimal"
 | 
|  |    296 |       by (unfold approx_def)
 | 
|  |    297 |     hence "hnorm (x - y) < star_of s"
 | 
|  |    298 |       using s by (rule InfinitesimalD2)
 | 
|  |    299 |     thus "hnorm (starfun f x - starfun f y) < star_of r"
 | 
|  |    300 |       by (rule less_r')
 | 
|  |    301 |   qed
 | 
|  |    302 |   thus "starfun f x \<approx> starfun f y"
 | 
|  |    303 |     by (unfold approx_def)
 | 
|  |    304 | qed
 | 
|  |    305 | 
 | 
|  |    306 | lemma isNSUCont_isUCont:
 | 
|  |    307 |   fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector"
 | 
|  |    308 |   assumes f: "isNSUCont f" shows "isUCont f"
 | 
|  |    309 | proof (unfold isUCont_def, safe)
 | 
|  |    310 |   fix r::real assume r: "0 < r"
 | 
|  |    311 |   have "\<exists>s>0. \<forall>x y. hnorm (x - y) < s
 | 
|  |    312 |         \<longrightarrow> hnorm (starfun f x - starfun f y) < star_of r"
 | 
|  |    313 |   proof (rule exI, safe)
 | 
|  |    314 |     show "0 < epsilon" by (rule hypreal_epsilon_gt_zero)
 | 
|  |    315 |   next
 | 
|  |    316 |     fix x y :: "'a star"
 | 
|  |    317 |     assume "hnorm (x - y) < epsilon"
 | 
|  |    318 |     with Infinitesimal_epsilon
 | 
|  |    319 |     have "x - y \<in> Infinitesimal"
 | 
|  |    320 |       by (rule hnorm_less_Infinitesimal)
 | 
|  |    321 |     hence "x \<approx> y"
 | 
|  |    322 |       by (unfold approx_def)
 | 
|  |    323 |     with f have "starfun f x \<approx> starfun f y"
 | 
|  |    324 |       by (simp add: isNSUCont_def)
 | 
|  |    325 |     hence "starfun f x - starfun f y \<in> Infinitesimal"
 | 
|  |    326 |       by (unfold approx_def)
 | 
|  |    327 |     thus "hnorm (starfun f x - starfun f y) < star_of r"
 | 
|  |    328 |       using r by (rule InfinitesimalD2)
 | 
|  |    329 |   qed
 | 
|  |    330 |   thus "\<exists>s>0. \<forall>x y. norm (x - y) < s \<longrightarrow> norm (f x - f y) < r"
 | 
|  |    331 |     by transfer
 | 
|  |    332 | qed
 | 
|  |    333 | 
 | 
|  |    334 | end
 |