| author | bulwahn | 
| Fri, 11 Nov 2011 12:10:49 +0100 | |
| changeset 45461 | 130c90bb80b4 | 
| parent 44890 | 22f665a2e91c | 
| child 45932 | 6f08f8fe9752 | 
| permissions | -rw-r--r-- | 
| 8924 | 1 | (* Title: HOL/SetInterval.thy | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32596diff
changeset | 2 | Author: Tobias Nipkow | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32596diff
changeset | 3 | Author: Clemens Ballarin | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32596diff
changeset | 4 | Author: Jeremy Avigad | 
| 8924 | 5 | |
| 13735 | 6 | lessThan, greaterThan, atLeast, atMost and two-sided intervals | 
| 8924 | 7 | *) | 
| 8 | ||
| 14577 | 9 | header {* Set intervals *}
 | 
| 10 | ||
| 15131 | 11 | theory SetInterval | 
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 12 | imports Int Nat_Transfer | 
| 15131 | 13 | begin | 
| 8924 | 14 | |
| 24691 | 15 | context ord | 
| 16 | begin | |
| 44008 | 17 | |
| 24691 | 18 | definition | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32596diff
changeset | 19 |   lessThan    :: "'a => 'a set" ("(1{..<_})") where
 | 
| 25062 | 20 |   "{..<u} == {x. x < u}"
 | 
| 24691 | 21 | |
| 22 | definition | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32596diff
changeset | 23 |   atMost      :: "'a => 'a set" ("(1{.._})") where
 | 
| 25062 | 24 |   "{..u} == {x. x \<le> u}"
 | 
| 24691 | 25 | |
| 26 | definition | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32596diff
changeset | 27 |   greaterThan :: "'a => 'a set" ("(1{_<..})") where
 | 
| 25062 | 28 |   "{l<..} == {x. l<x}"
 | 
| 24691 | 29 | |
| 30 | definition | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32596diff
changeset | 31 |   atLeast     :: "'a => 'a set" ("(1{_..})") where
 | 
| 25062 | 32 |   "{l..} == {x. l\<le>x}"
 | 
| 24691 | 33 | |
| 34 | definition | |
| 25062 | 35 |   greaterThanLessThan :: "'a => 'a => 'a set"  ("(1{_<..<_})") where
 | 
| 36 |   "{l<..<u} == {l<..} Int {..<u}"
 | |
| 24691 | 37 | |
| 38 | definition | |
| 25062 | 39 |   atLeastLessThan :: "'a => 'a => 'a set"      ("(1{_..<_})") where
 | 
| 40 |   "{l..<u} == {l..} Int {..<u}"
 | |
| 24691 | 41 | |
| 42 | definition | |
| 25062 | 43 |   greaterThanAtMost :: "'a => 'a => 'a set"    ("(1{_<.._})") where
 | 
| 44 |   "{l<..u} == {l<..} Int {..u}"
 | |
| 24691 | 45 | |
| 46 | definition | |
| 25062 | 47 |   atLeastAtMost :: "'a => 'a => 'a set"        ("(1{_.._})") where
 | 
| 48 |   "{l..u} == {l..} Int {..u}"
 | |
| 24691 | 49 | |
| 50 | end | |
| 8924 | 51 | |
| 13735 | 52 | |
| 15048 | 53 | text{* A note of warning when using @{term"{..<n}"} on type @{typ
 | 
| 54 | nat}: it is equivalent to @{term"{0::nat..<n}"} but some lemmas involving
 | |
| 15052 | 55 | @{term"{m..<n}"} may not exist in @{term"{..<n}"}-form as well. *}
 | 
| 15048 | 56 | |
| 14418 | 57 | syntax | 
| 36364 
0e2679025aeb
fix syntax precedence declarations for UNION, INTER, SUP, INF
 huffman parents: 
36307diff
changeset | 58 |   "_UNION_le"   :: "'a => 'a => 'b set => 'b set"       ("(3UN _<=_./ _)" [0, 0, 10] 10)
 | 
| 
0e2679025aeb
fix syntax precedence declarations for UNION, INTER, SUP, INF
 huffman parents: 
36307diff
changeset | 59 |   "_UNION_less" :: "'a => 'a => 'b set => 'b set"       ("(3UN _<_./ _)" [0, 0, 10] 10)
 | 
| 
0e2679025aeb
fix syntax precedence declarations for UNION, INTER, SUP, INF
 huffman parents: 
36307diff
changeset | 60 |   "_INTER_le"   :: "'a => 'a => 'b set => 'b set"       ("(3INT _<=_./ _)" [0, 0, 10] 10)
 | 
| 
0e2679025aeb
fix syntax precedence declarations for UNION, INTER, SUP, INF
 huffman parents: 
36307diff
changeset | 61 |   "_INTER_less" :: "'a => 'a => 'b set => 'b set"       ("(3INT _<_./ _)" [0, 0, 10] 10)
 | 
| 14418 | 62 | |
| 30372 | 63 | syntax (xsymbols) | 
| 36364 
0e2679025aeb
fix syntax precedence declarations for UNION, INTER, SUP, INF
 huffman parents: 
36307diff
changeset | 64 |   "_UNION_le"   :: "'a => 'a => 'b set => 'b set"       ("(3\<Union> _\<le>_./ _)" [0, 0, 10] 10)
 | 
| 
0e2679025aeb
fix syntax precedence declarations for UNION, INTER, SUP, INF
 huffman parents: 
36307diff
changeset | 65 |   "_UNION_less" :: "'a => 'a => 'b set => 'b set"       ("(3\<Union> _<_./ _)" [0, 0, 10] 10)
 | 
| 
0e2679025aeb
fix syntax precedence declarations for UNION, INTER, SUP, INF
 huffman parents: 
36307diff
changeset | 66 |   "_INTER_le"   :: "'a => 'a => 'b set => 'b set"       ("(3\<Inter> _\<le>_./ _)" [0, 0, 10] 10)
 | 
| 
0e2679025aeb
fix syntax precedence declarations for UNION, INTER, SUP, INF
 huffman parents: 
36307diff
changeset | 67 |   "_INTER_less" :: "'a => 'a => 'b set => 'b set"       ("(3\<Inter> _<_./ _)" [0, 0, 10] 10)
 | 
| 14418 | 68 | |
| 30372 | 69 | syntax (latex output) | 
| 36364 
0e2679025aeb
fix syntax precedence declarations for UNION, INTER, SUP, INF
 huffman parents: 
36307diff
changeset | 70 |   "_UNION_le"   :: "'a \<Rightarrow> 'a => 'b set => 'b set"       ("(3\<Union>(00_ \<le> _)/ _)" [0, 0, 10] 10)
 | 
| 
0e2679025aeb
fix syntax precedence declarations for UNION, INTER, SUP, INF
 huffman parents: 
36307diff
changeset | 71 |   "_UNION_less" :: "'a \<Rightarrow> 'a => 'b set => 'b set"       ("(3\<Union>(00_ < _)/ _)" [0, 0, 10] 10)
 | 
| 
0e2679025aeb
fix syntax precedence declarations for UNION, INTER, SUP, INF
 huffman parents: 
36307diff
changeset | 72 |   "_INTER_le"   :: "'a \<Rightarrow> 'a => 'b set => 'b set"       ("(3\<Inter>(00_ \<le> _)/ _)" [0, 0, 10] 10)
 | 
| 
0e2679025aeb
fix syntax precedence declarations for UNION, INTER, SUP, INF
 huffman parents: 
36307diff
changeset | 73 |   "_INTER_less" :: "'a \<Rightarrow> 'a => 'b set => 'b set"       ("(3\<Inter>(00_ < _)/ _)" [0, 0, 10] 10)
 | 
| 14418 | 74 | |
| 75 | translations | |
| 76 |   "UN i<=n. A"  == "UN i:{..n}. A"
 | |
| 15045 | 77 |   "UN i<n. A"   == "UN i:{..<n}. A"
 | 
| 14418 | 78 |   "INT i<=n. A" == "INT i:{..n}. A"
 | 
| 15045 | 79 |   "INT i<n. A"  == "INT i:{..<n}. A"
 | 
| 14418 | 80 | |
| 81 | ||
| 14485 | 82 | subsection {* Various equivalences *}
 | 
| 13735 | 83 | |
| 25062 | 84 | lemma (in ord) lessThan_iff [iff]: "(i: lessThan k) = (i<k)" | 
| 13850 | 85 | by (simp add: lessThan_def) | 
| 13735 | 86 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 87 | lemma Compl_lessThan [simp]: | 
| 13735 | 88 | "!!k:: 'a::linorder. -lessThan k = atLeast k" | 
| 13850 | 89 | apply (auto simp add: lessThan_def atLeast_def) | 
| 13735 | 90 | done | 
| 91 | ||
| 13850 | 92 | lemma single_Diff_lessThan [simp]: "!!k:: 'a::order. {k} - lessThan k = {k}"
 | 
| 93 | by auto | |
| 13735 | 94 | |
| 25062 | 95 | lemma (in ord) greaterThan_iff [iff]: "(i: greaterThan k) = (k<i)" | 
| 13850 | 96 | by (simp add: greaterThan_def) | 
| 13735 | 97 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 98 | lemma Compl_greaterThan [simp]: | 
| 13735 | 99 | "!!k:: 'a::linorder. -greaterThan k = atMost k" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25919diff
changeset | 100 | by (auto simp add: greaterThan_def atMost_def) | 
| 13735 | 101 | |
| 13850 | 102 | lemma Compl_atMost [simp]: "!!k:: 'a::linorder. -atMost k = greaterThan k" | 
| 103 | apply (subst Compl_greaterThan [symmetric]) | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 104 | apply (rule double_complement) | 
| 13735 | 105 | done | 
| 106 | ||
| 25062 | 107 | lemma (in ord) atLeast_iff [iff]: "(i: atLeast k) = (k<=i)" | 
| 13850 | 108 | by (simp add: atLeast_def) | 
| 13735 | 109 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 110 | lemma Compl_atLeast [simp]: | 
| 13735 | 111 | "!!k:: 'a::linorder. -atLeast k = lessThan k" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25919diff
changeset | 112 | by (auto simp add: lessThan_def atLeast_def) | 
| 13735 | 113 | |
| 25062 | 114 | lemma (in ord) atMost_iff [iff]: "(i: atMost k) = (i<=k)" | 
| 13850 | 115 | by (simp add: atMost_def) | 
| 13735 | 116 | |
| 14485 | 117 | lemma atMost_Int_atLeast: "!!n:: 'a::order. atMost n Int atLeast n = {n}"
 | 
| 118 | by (blast intro: order_antisym) | |
| 13850 | 119 | |
| 120 | ||
| 14485 | 121 | subsection {* Logical Equivalences for Set Inclusion and Equality *}
 | 
| 13850 | 122 | |
| 123 | lemma atLeast_subset_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 124 | "(atLeast x \<subseteq> atLeast y) = (y \<le> (x::'a::order))" | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 125 | by (blast intro: order_trans) | 
| 13850 | 126 | |
| 127 | lemma atLeast_eq_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 128 | "(atLeast x = atLeast y) = (x = (y::'a::linorder))" | 
| 13850 | 129 | by (blast intro: order_antisym order_trans) | 
| 130 | ||
| 131 | lemma greaterThan_subset_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 132 | "(greaterThan x \<subseteq> greaterThan y) = (y \<le> (x::'a::linorder))" | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 133 | apply (auto simp add: greaterThan_def) | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 134 | apply (subst linorder_not_less [symmetric], blast) | 
| 13850 | 135 | done | 
| 136 | ||
| 137 | lemma greaterThan_eq_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 138 | "(greaterThan x = greaterThan y) = (x = (y::'a::linorder))" | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 139 | apply (rule iffI) | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 140 | apply (erule equalityE) | 
| 29709 | 141 | apply simp_all | 
| 13850 | 142 | done | 
| 143 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 144 | lemma atMost_subset_iff [iff]: "(atMost x \<subseteq> atMost y) = (x \<le> (y::'a::order))" | 
| 13850 | 145 | by (blast intro: order_trans) | 
| 146 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 147 | lemma atMost_eq_iff [iff]: "(atMost x = atMost y) = (x = (y::'a::linorder))" | 
| 13850 | 148 | by (blast intro: order_antisym order_trans) | 
| 149 | ||
| 150 | lemma lessThan_subset_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 151 | "(lessThan x \<subseteq> lessThan y) = (x \<le> (y::'a::linorder))" | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 152 | apply (auto simp add: lessThan_def) | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 153 | apply (subst linorder_not_less [symmetric], blast) | 
| 13850 | 154 | done | 
| 155 | ||
| 156 | lemma lessThan_eq_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 157 | "(lessThan x = lessThan y) = (x = (y::'a::linorder))" | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 158 | apply (rule iffI) | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 159 | apply (erule equalityE) | 
| 29709 | 160 | apply simp_all | 
| 13735 | 161 | done | 
| 162 | ||
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 163 | lemma lessThan_strict_subset_iff: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 164 | fixes m n :: "'a::linorder" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 165 |   shows "{..<m} < {..<n} \<longleftrightarrow> m < n"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 166 | by (metis leD lessThan_subset_iff linorder_linear not_less_iff_gr_or_eq psubset_eq) | 
| 13735 | 167 | |
| 13850 | 168 | subsection {*Two-sided intervals*}
 | 
| 13735 | 169 | |
| 24691 | 170 | context ord | 
| 171 | begin | |
| 172 | ||
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35644diff
changeset | 173 | lemma greaterThanLessThan_iff [simp,no_atp]: | 
| 25062 | 174 |   "(i : {l<..<u}) = (l < i & i < u)"
 | 
| 13735 | 175 | by (simp add: greaterThanLessThan_def) | 
| 176 | ||
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35644diff
changeset | 177 | lemma atLeastLessThan_iff [simp,no_atp]: | 
| 25062 | 178 |   "(i : {l..<u}) = (l <= i & i < u)"
 | 
| 13735 | 179 | by (simp add: atLeastLessThan_def) | 
| 180 | ||
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35644diff
changeset | 181 | lemma greaterThanAtMost_iff [simp,no_atp]: | 
| 25062 | 182 |   "(i : {l<..u}) = (l < i & i <= u)"
 | 
| 13735 | 183 | by (simp add: greaterThanAtMost_def) | 
| 184 | ||
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35644diff
changeset | 185 | lemma atLeastAtMost_iff [simp,no_atp]: | 
| 25062 | 186 |   "(i : {l..u}) = (l <= i & i <= u)"
 | 
| 13735 | 187 | by (simp add: atLeastAtMost_def) | 
| 188 | ||
| 32436 
10cd49e0c067
Turned "x <= y ==> sup x y = y" (and relatives) into simp rules
 nipkow parents: 
32408diff
changeset | 189 | text {* The above four lemmas could be declared as iffs. Unfortunately this
 | 
| 
10cd49e0c067
Turned "x <= y ==> sup x y = y" (and relatives) into simp rules
 nipkow parents: 
32408diff
changeset | 190 | breaks many proofs. Since it only helps blast, it is better to leave well | 
| 
10cd49e0c067
Turned "x <= y ==> sup x y = y" (and relatives) into simp rules
 nipkow parents: 
32408diff
changeset | 191 | alone *} | 
| 
10cd49e0c067
Turned "x <= y ==> sup x y = y" (and relatives) into simp rules
 nipkow parents: 
32408diff
changeset | 192 | |
| 24691 | 193 | end | 
| 13735 | 194 | |
| 32400 | 195 | subsubsection{* Emptyness, singletons, subset *}
 | 
| 15554 | 196 | |
| 24691 | 197 | context order | 
| 198 | begin | |
| 15554 | 199 | |
| 32400 | 200 | lemma atLeastatMost_empty[simp]: | 
| 201 |   "b < a \<Longrightarrow> {a..b} = {}"
 | |
| 202 | by(auto simp: atLeastAtMost_def atLeast_def atMost_def) | |
| 203 | ||
| 204 | lemma atLeastatMost_empty_iff[simp]: | |
| 205 |   "{a..b} = {} \<longleftrightarrow> (~ a <= b)"
 | |
| 206 | by auto (blast intro: order_trans) | |
| 207 | ||
| 208 | lemma atLeastatMost_empty_iff2[simp]: | |
| 209 |   "{} = {a..b} \<longleftrightarrow> (~ a <= b)"
 | |
| 210 | by auto (blast intro: order_trans) | |
| 211 | ||
| 212 | lemma atLeastLessThan_empty[simp]: | |
| 213 |   "b <= a \<Longrightarrow> {a..<b} = {}"
 | |
| 214 | by(auto simp: atLeastLessThan_def) | |
| 24691 | 215 | |
| 32400 | 216 | lemma atLeastLessThan_empty_iff[simp]: | 
| 217 |   "{a..<b} = {} \<longleftrightarrow> (~ a < b)"
 | |
| 218 | by auto (blast intro: le_less_trans) | |
| 219 | ||
| 220 | lemma atLeastLessThan_empty_iff2[simp]: | |
| 221 |   "{} = {a..<b} \<longleftrightarrow> (~ a < b)"
 | |
| 222 | by auto (blast intro: le_less_trans) | |
| 15554 | 223 | |
| 32400 | 224 | lemma greaterThanAtMost_empty[simp]: "l \<le> k ==> {k<..l} = {}"
 | 
| 17719 | 225 | by(auto simp:greaterThanAtMost_def greaterThan_def atMost_def) | 
| 226 | ||
| 32400 | 227 | lemma greaterThanAtMost_empty_iff[simp]: "{k<..l} = {} \<longleftrightarrow> ~ k < l"
 | 
| 228 | by auto (blast intro: less_le_trans) | |
| 229 | ||
| 230 | lemma greaterThanAtMost_empty_iff2[simp]: "{} = {k<..l} \<longleftrightarrow> ~ k < l"
 | |
| 231 | by auto (blast intro: less_le_trans) | |
| 232 | ||
| 29709 | 233 | lemma greaterThanLessThan_empty[simp]:"l \<le> k ==> {k<..<l} = {}"
 | 
| 17719 | 234 | by(auto simp:greaterThanLessThan_def greaterThan_def lessThan_def) | 
| 235 | ||
| 25062 | 236 | lemma atLeastAtMost_singleton [simp]: "{a..a} = {a}"
 | 
| 24691 | 237 | by (auto simp add: atLeastAtMost_def atMost_def atLeast_def) | 
| 238 | ||
| 36846 
0f67561ed5a6
Added atLeastAtMost_singleton_iff, atLeastAtMost_singleton'
 hoelzl parents: 
36755diff
changeset | 239 | lemma atLeastAtMost_singleton': "a = b \<Longrightarrow> {a .. b} = {a}" by simp
 | 
| 
0f67561ed5a6
Added atLeastAtMost_singleton_iff, atLeastAtMost_singleton'
 hoelzl parents: 
36755diff
changeset | 240 | |
| 32400 | 241 | lemma atLeastatMost_subset_iff[simp]: | 
| 242 |   "{a..b} <= {c..d} \<longleftrightarrow> (~ a <= b) | c <= a & b <= d"
 | |
| 243 | unfolding atLeastAtMost_def atLeast_def atMost_def | |
| 244 | by (blast intro: order_trans) | |
| 245 | ||
| 246 | lemma atLeastatMost_psubset_iff: | |
| 247 |   "{a..b} < {c..d} \<longleftrightarrow>
 | |
| 248 | ((~ a <= b) | c <= a & b <= d & (c < a | b < d)) & c <= d" | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 249 | by(simp add: psubset_eq set_eq_iff less_le_not_le)(blast intro: order_trans) | 
| 32400 | 250 | |
| 36846 
0f67561ed5a6
Added atLeastAtMost_singleton_iff, atLeastAtMost_singleton'
 hoelzl parents: 
36755diff
changeset | 251 | lemma atLeastAtMost_singleton_iff[simp]: | 
| 
0f67561ed5a6
Added atLeastAtMost_singleton_iff, atLeastAtMost_singleton'
 hoelzl parents: 
36755diff
changeset | 252 |   "{a .. b} = {c} \<longleftrightarrow> a = b \<and> b = c"
 | 
| 
0f67561ed5a6
Added atLeastAtMost_singleton_iff, atLeastAtMost_singleton'
 hoelzl parents: 
36755diff
changeset | 253 | proof | 
| 
0f67561ed5a6
Added atLeastAtMost_singleton_iff, atLeastAtMost_singleton'
 hoelzl parents: 
36755diff
changeset | 254 |   assume "{a..b} = {c}"
 | 
| 
0f67561ed5a6
Added atLeastAtMost_singleton_iff, atLeastAtMost_singleton'
 hoelzl parents: 
36755diff
changeset | 255 | hence "\<not> (\<not> a \<le> b)" unfolding atLeastatMost_empty_iff[symmetric] by simp | 
| 
0f67561ed5a6
Added atLeastAtMost_singleton_iff, atLeastAtMost_singleton'
 hoelzl parents: 
36755diff
changeset | 256 |   moreover with `{a..b} = {c}` have "c \<le> a \<and> b \<le> c" by auto
 | 
| 
0f67561ed5a6
Added atLeastAtMost_singleton_iff, atLeastAtMost_singleton'
 hoelzl parents: 
36755diff
changeset | 257 | ultimately show "a = b \<and> b = c" by auto | 
| 
0f67561ed5a6
Added atLeastAtMost_singleton_iff, atLeastAtMost_singleton'
 hoelzl parents: 
36755diff
changeset | 258 | qed simp | 
| 
0f67561ed5a6
Added atLeastAtMost_singleton_iff, atLeastAtMost_singleton'
 hoelzl parents: 
36755diff
changeset | 259 | |
| 24691 | 260 | end | 
| 14485 | 261 | |
| 42891 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 262 | context dense_linorder | 
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 263 | begin | 
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 264 | |
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 265 | lemma greaterThanLessThan_empty_iff[simp]: | 
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 266 |   "{ a <..< b } = {} \<longleftrightarrow> b \<le> a"
 | 
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 267 | using dense[of a b] by (cases "a < b") auto | 
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 268 | |
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 269 | lemma greaterThanLessThan_empty_iff2[simp]: | 
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 270 |   "{} = { a <..< b } \<longleftrightarrow> b \<le> a"
 | 
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 271 | using dense[of a b] by (cases "a < b") auto | 
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 272 | |
| 42901 | 273 | lemma atLeastLessThan_subseteq_atLeastAtMost_iff: | 
| 274 |   "{a ..< b} \<subseteq> { c .. d } \<longleftrightarrow> (a < b \<longrightarrow> c \<le> a \<and> b \<le> d)"
 | |
| 275 | using dense[of "max a d" "b"] | |
| 276 | by (force simp: subset_eq Ball_def not_less[symmetric]) | |
| 277 | ||
| 278 | lemma greaterThanAtMost_subseteq_atLeastAtMost_iff: | |
| 279 |   "{a <.. b} \<subseteq> { c .. d } \<longleftrightarrow> (a < b \<longrightarrow> c \<le> a \<and> b \<le> d)"
 | |
| 280 | using dense[of "a" "min c b"] | |
| 281 | by (force simp: subset_eq Ball_def not_less[symmetric]) | |
| 282 | ||
| 283 | lemma greaterThanLessThan_subseteq_atLeastAtMost_iff: | |
| 284 |   "{a <..< b} \<subseteq> { c .. d } \<longleftrightarrow> (a < b \<longrightarrow> c \<le> a \<and> b \<le> d)"
 | |
| 285 | using dense[of "a" "min c b"] dense[of "max a d" "b"] | |
| 286 | by (force simp: subset_eq Ball_def not_less[symmetric]) | |
| 287 | ||
| 43657 | 288 | lemma atLeastAtMost_subseteq_atLeastLessThan_iff: | 
| 289 |   "{a .. b} \<subseteq> { c ..< d } \<longleftrightarrow> (a \<le> b \<longrightarrow> c \<le> a \<and> b < d)"
 | |
| 290 | using dense[of "max a d" "b"] | |
| 291 | by (force simp: subset_eq Ball_def not_less[symmetric]) | |
| 292 | ||
| 293 | lemma greaterThanAtMost_subseteq_atLeastLessThan_iff: | |
| 294 |   "{a <.. b} \<subseteq> { c ..< d } \<longleftrightarrow> (a < b \<longrightarrow> c \<le> a \<and> b < d)"
 | |
| 295 | using dense[of "a" "min c b"] | |
| 296 | by (force simp: subset_eq Ball_def not_less[symmetric]) | |
| 297 | ||
| 298 | lemma greaterThanLessThan_subseteq_atLeastLessThan_iff: | |
| 299 |   "{a <..< b} \<subseteq> { c ..< d } \<longleftrightarrow> (a < b \<longrightarrow> c \<le> a \<and> b \<le> d)"
 | |
| 300 | using dense[of "a" "min c b"] dense[of "max a d" "b"] | |
| 301 | by (force simp: subset_eq Ball_def not_less[symmetric]) | |
| 302 | ||
| 42891 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 303 | end | 
| 
e2f473671937
simp rules for empty intervals on dense linear order
 hoelzl parents: 
40703diff
changeset | 304 | |
| 32408 | 305 | lemma (in linorder) atLeastLessThan_subset_iff: | 
| 306 |   "{a..<b} <= {c..<d} \<Longrightarrow> b <= a | c<=a & b<=d"
 | |
| 307 | apply (auto simp:subset_eq Ball_def) | |
| 308 | apply(frule_tac x=a in spec) | |
| 309 | apply(erule_tac x=d in allE) | |
| 310 | apply (simp add: less_imp_le) | |
| 311 | done | |
| 312 | ||
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 313 | lemma atLeastLessThan_inj: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 314 | fixes a b c d :: "'a::linorder" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 315 |   assumes eq: "{a ..< b} = {c ..< d}" and "a < b" "c < d"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 316 | shows "a = c" "b = d" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 317 | using assms by (metis atLeastLessThan_subset_iff eq less_le_not_le linorder_antisym_conv2 subset_refl)+ | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 318 | |
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 319 | lemma atLeastLessThan_eq_iff: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 320 | fixes a b c d :: "'a::linorder" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 321 | assumes "a < b" "c < d" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 322 |   shows "{a ..< b} = {c ..< d} \<longleftrightarrow> a = c \<and> b = d"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 323 | using atLeastLessThan_inj assms by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 324 | |
| 32456 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 325 | subsubsection {* Intersection *}
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 326 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 327 | context linorder | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 328 | begin | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 329 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 330 | lemma Int_atLeastAtMost[simp]: "{a..b} Int {c..d} = {max a c .. min b d}"
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 331 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 332 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 333 | lemma Int_atLeastAtMostR1[simp]: "{..b} Int {c..d} = {c .. min b d}"
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 334 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 335 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 336 | lemma Int_atLeastAtMostR2[simp]: "{a..} Int {c..d} = {max a c .. d}"
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 337 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 338 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 339 | lemma Int_atLeastAtMostL1[simp]: "{a..b} Int {..d} = {a .. min b d}"
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 340 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 341 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 342 | lemma Int_atLeastAtMostL2[simp]: "{a..b} Int {c..} = {max a c .. b}"
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 343 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 344 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 345 | lemma Int_atLeastLessThan[simp]: "{a..<b} Int {c..<d} = {max a c ..< min b d}"
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 346 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 347 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 348 | lemma Int_greaterThanAtMost[simp]: "{a<..b} Int {c<..d} = {max a c <.. min b d}"
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 349 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 350 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 351 | lemma Int_greaterThanLessThan[simp]: "{a<..<b} Int {c<..<d} = {max a c <..< min b d}"
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 352 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 353 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 354 | end | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 355 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 356 | |
| 14485 | 357 | subsection {* Intervals of natural numbers *}
 | 
| 358 | ||
| 15047 | 359 | subsubsection {* The Constant @{term lessThan} *}
 | 
| 360 | ||
| 14485 | 361 | lemma lessThan_0 [simp]: "lessThan (0::nat) = {}"
 | 
| 362 | by (simp add: lessThan_def) | |
| 363 | ||
| 364 | lemma lessThan_Suc: "lessThan (Suc k) = insert k (lessThan k)" | |
| 365 | by (simp add: lessThan_def less_Suc_eq, blast) | |
| 366 | ||
| 43156 | 367 | text {* The following proof is convenient in induction proofs where
 | 
| 39072 | 368 | new elements get indices at the beginning. So it is used to transform | 
| 369 | @{term "{..<Suc n}"} to @{term "0::nat"} and @{term "{..< n}"}. *}
 | |
| 370 | ||
| 371 | lemma lessThan_Suc_eq_insert_0: "{..<Suc n} = insert 0 (Suc ` {..<n})"
 | |
| 372 | proof safe | |
| 373 |   fix x assume "x < Suc n" "x \<notin> Suc ` {..<n}"
 | |
| 374 | then have "x \<noteq> Suc (x - 1)" by auto | |
| 375 | with `x < Suc n` show "x = 0" by auto | |
| 376 | qed | |
| 377 | ||
| 14485 | 378 | lemma lessThan_Suc_atMost: "lessThan (Suc k) = atMost k" | 
| 379 | by (simp add: lessThan_def atMost_def less_Suc_eq_le) | |
| 380 | ||
| 381 | lemma UN_lessThan_UNIV: "(UN m::nat. lessThan m) = UNIV" | |
| 382 | by blast | |
| 383 | ||
| 15047 | 384 | subsubsection {* The Constant @{term greaterThan} *}
 | 
| 385 | ||
| 14485 | 386 | lemma greaterThan_0 [simp]: "greaterThan 0 = range Suc" | 
| 387 | apply (simp add: greaterThan_def) | |
| 388 | apply (blast dest: gr0_conv_Suc [THEN iffD1]) | |
| 389 | done | |
| 390 | ||
| 391 | lemma greaterThan_Suc: "greaterThan (Suc k) = greaterThan k - {Suc k}"
 | |
| 392 | apply (simp add: greaterThan_def) | |
| 393 | apply (auto elim: linorder_neqE) | |
| 394 | done | |
| 395 | ||
| 396 | lemma INT_greaterThan_UNIV: "(INT m::nat. greaterThan m) = {}"
 | |
| 397 | by blast | |
| 398 | ||
| 15047 | 399 | subsubsection {* The Constant @{term atLeast} *}
 | 
| 400 | ||
| 14485 | 401 | lemma atLeast_0 [simp]: "atLeast (0::nat) = UNIV" | 
| 402 | by (unfold atLeast_def UNIV_def, simp) | |
| 403 | ||
| 404 | lemma atLeast_Suc: "atLeast (Suc k) = atLeast k - {k}"
 | |
| 405 | apply (simp add: atLeast_def) | |
| 406 | apply (simp add: Suc_le_eq) | |
| 407 | apply (simp add: order_le_less, blast) | |
| 408 | done | |
| 409 | ||
| 410 | lemma atLeast_Suc_greaterThan: "atLeast (Suc k) = greaterThan k" | |
| 411 | by (auto simp add: greaterThan_def atLeast_def less_Suc_eq_le) | |
| 412 | ||
| 413 | lemma UN_atLeast_UNIV: "(UN m::nat. atLeast m) = UNIV" | |
| 414 | by blast | |
| 415 | ||
| 15047 | 416 | subsubsection {* The Constant @{term atMost} *}
 | 
| 417 | ||
| 14485 | 418 | lemma atMost_0 [simp]: "atMost (0::nat) = {0}"
 | 
| 419 | by (simp add: atMost_def) | |
| 420 | ||
| 421 | lemma atMost_Suc: "atMost (Suc k) = insert (Suc k) (atMost k)" | |
| 422 | apply (simp add: atMost_def) | |
| 423 | apply (simp add: less_Suc_eq order_le_less, blast) | |
| 424 | done | |
| 425 | ||
| 426 | lemma UN_atMost_UNIV: "(UN m::nat. atMost m) = UNIV" | |
| 427 | by blast | |
| 428 | ||
| 15047 | 429 | subsubsection {* The Constant @{term atLeastLessThan} *}
 | 
| 430 | ||
| 28068 | 431 | text{*The orientation of the following 2 rules is tricky. The lhs is
 | 
| 24449 | 432 | defined in terms of the rhs. Hence the chosen orientation makes sense | 
| 433 | in this theory --- the reverse orientation complicates proofs (eg | |
| 434 | nontermination). But outside, when the definition of the lhs is rarely | |
| 435 | used, the opposite orientation seems preferable because it reduces a | |
| 436 | specific concept to a more general one. *} | |
| 28068 | 437 | |
| 15047 | 438 | lemma atLeast0LessThan: "{0::nat..<n} = {..<n}"
 | 
| 15042 | 439 | by(simp add:lessThan_def atLeastLessThan_def) | 
| 24449 | 440 | |
| 28068 | 441 | lemma atLeast0AtMost: "{0..n::nat} = {..n}"
 | 
| 442 | by(simp add:atMost_def atLeastAtMost_def) | |
| 443 | ||
| 31998 
2c7a24f74db9
code attributes use common underscore convention
 haftmann parents: 
31509diff
changeset | 444 | declare atLeast0LessThan[symmetric, code_unfold] | 
| 
2c7a24f74db9
code attributes use common underscore convention
 haftmann parents: 
31509diff
changeset | 445 | atLeast0AtMost[symmetric, code_unfold] | 
| 24449 | 446 | |
| 447 | lemma atLeastLessThan0: "{m..<0::nat} = {}"
 | |
| 15047 | 448 | by (simp add: atLeastLessThan_def) | 
| 24449 | 449 | |
| 15047 | 450 | subsubsection {* Intervals of nats with @{term Suc} *}
 | 
| 451 | ||
| 452 | text{*Not a simprule because the RHS is too messy.*}
 | |
| 453 | lemma atLeastLessThanSuc: | |
| 454 |     "{m..<Suc n} = (if m \<le> n then insert n {m..<n} else {})"
 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 455 | by (auto simp add: atLeastLessThan_def) | 
| 15047 | 456 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 457 | lemma atLeastLessThan_singleton [simp]: "{m..<Suc m} = {m}"
 | 
| 15047 | 458 | by (auto simp add: atLeastLessThan_def) | 
| 16041 | 459 | (* | 
| 15047 | 460 | lemma atLeast_sum_LessThan [simp]: "{m + k..<k::nat} = {}"
 | 
| 461 | by (induct k, simp_all add: atLeastLessThanSuc) | |
| 462 | ||
| 463 | lemma atLeastSucLessThan [simp]: "{Suc n..<n} = {}"
 | |
| 464 | by (auto simp add: atLeastLessThan_def) | |
| 16041 | 465 | *) | 
| 15045 | 466 | lemma atLeastLessThanSuc_atLeastAtMost: "{l..<Suc u} = {l..u}"
 | 
| 14485 | 467 | by (simp add: lessThan_Suc_atMost atLeastAtMost_def atLeastLessThan_def) | 
| 468 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 469 | lemma atLeastSucAtMost_greaterThanAtMost: "{Suc l..u} = {l<..u}"
 | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 470 | by (simp add: atLeast_Suc_greaterThan atLeastAtMost_def | 
| 14485 | 471 | greaterThanAtMost_def) | 
| 472 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 473 | lemma atLeastSucLessThan_greaterThanLessThan: "{Suc l..<u} = {l<..<u}"
 | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 474 | by (simp add: atLeast_Suc_greaterThan atLeastLessThan_def | 
| 14485 | 475 | greaterThanLessThan_def) | 
| 476 | ||
| 15554 | 477 | lemma atLeastAtMostSuc_conv: "m \<le> Suc n \<Longrightarrow> {m..Suc n} = insert (Suc n) {m..n}"
 | 
| 478 | by (auto simp add: atLeastAtMost_def) | |
| 479 | ||
| 43157 | 480 | text {* The analogous result is useful on @{typ int}: *}
 | 
| 481 | (* here, because we don't have an own int section *) | |
| 482 | lemma atLeastAtMostPlus1_int_conv: | |
| 483 |   "m <= 1+n \<Longrightarrow> {m..1+n} = insert (1+n) {m..n::int}"
 | |
| 484 | by (auto intro: set_eqI) | |
| 485 | ||
| 33044 | 486 | lemma atLeastLessThan_add_Un: "i \<le> j \<Longrightarrow> {i..<j+k} = {i..<j} \<union> {j..<j+k::nat}"
 | 
| 487 | apply (induct k) | |
| 488 | apply (simp_all add: atLeastLessThanSuc) | |
| 489 | done | |
| 490 | ||
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 491 | subsubsection {* Image *}
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 492 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 493 | lemma image_add_atLeastAtMost: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 494 |   "(%n::nat. n+k) ` {i..j} = {i+k..j+k}" (is "?A = ?B")
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 495 | proof | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 496 | show "?A \<subseteq> ?B" by auto | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 497 | next | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 498 | show "?B \<subseteq> ?A" | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 499 | proof | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 500 | fix n assume a: "n : ?B" | 
| 20217 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 webertj parents: 
19538diff
changeset | 501 |     hence "n - k : {i..j}" by auto
 | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 502 | moreover have "n = (n - k) + k" using a by auto | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 503 | ultimately show "n : ?A" by blast | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 504 | qed | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 505 | qed | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 506 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 507 | lemma image_add_atLeastLessThan: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 508 |   "(%n::nat. n+k) ` {i..<j} = {i+k..<j+k}" (is "?A = ?B")
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 509 | proof | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 510 | show "?A \<subseteq> ?B" by auto | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 511 | next | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 512 | show "?B \<subseteq> ?A" | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 513 | proof | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 514 | fix n assume a: "n : ?B" | 
| 20217 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 webertj parents: 
19538diff
changeset | 515 |     hence "n - k : {i..<j}" by auto
 | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 516 | moreover have "n = (n - k) + k" using a by auto | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 517 | ultimately show "n : ?A" by blast | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 518 | qed | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 519 | qed | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 520 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 521 | corollary image_Suc_atLeastAtMost[simp]: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 522 |   "Suc ` {i..j} = {Suc i..Suc j}"
 | 
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
29960diff
changeset | 523 | using image_add_atLeastAtMost[where k="Suc 0"] by simp | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 524 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 525 | corollary image_Suc_atLeastLessThan[simp]: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 526 |   "Suc ` {i..<j} = {Suc i..<Suc j}"
 | 
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
29960diff
changeset | 527 | using image_add_atLeastLessThan[where k="Suc 0"] by simp | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 528 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 529 | lemma image_add_int_atLeastLessThan: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 530 |     "(%x. x + (l::int)) ` {0..<u-l} = {l..<u}"
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 531 | apply (auto simp add: image_def) | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 532 | apply (rule_tac x = "x - l" in bexI) | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 533 | apply auto | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 534 | done | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 535 | |
| 37664 | 536 | lemma image_minus_const_atLeastLessThan_nat: | 
| 537 | fixes c :: nat | |
| 538 |   shows "(\<lambda>i. i - c) ` {x ..< y} =
 | |
| 539 |       (if c < y then {x - c ..< y - c} else if x < y then {0} else {})"
 | |
| 540 | (is "_ = ?right") | |
| 541 | proof safe | |
| 542 | fix a assume a: "a \<in> ?right" | |
| 543 |   show "a \<in> (\<lambda>i. i - c) ` {x ..< y}"
 | |
| 544 | proof cases | |
| 545 | assume "c < y" with a show ?thesis | |
| 546 | by (auto intro!: image_eqI[of _ _ "a + c"]) | |
| 547 | next | |
| 548 | assume "\<not> c < y" with a show ?thesis | |
| 549 | by (auto intro!: image_eqI[of _ _ x] split: split_if_asm) | |
| 550 | qed | |
| 551 | qed auto | |
| 552 | ||
| 35580 | 553 | context ordered_ab_group_add | 
| 554 | begin | |
| 555 | ||
| 556 | lemma | |
| 557 | fixes x :: 'a | |
| 558 |   shows image_uminus_greaterThan[simp]: "uminus ` {x<..} = {..<-x}"
 | |
| 559 |   and image_uminus_atLeast[simp]: "uminus ` {x..} = {..-x}"
 | |
| 560 | proof safe | |
| 561 | fix y assume "y < -x" | |
| 562 | hence *: "x < -y" using neg_less_iff_less[of "-y" x] by simp | |
| 563 |   have "- (-y) \<in> uminus ` {x<..}"
 | |
| 564 | by (rule imageI) (simp add: *) | |
| 565 |   thus "y \<in> uminus ` {x<..}" by simp
 | |
| 566 | next | |
| 567 | fix y assume "y \<le> -x" | |
| 568 |   have "- (-y) \<in> uminus ` {x..}"
 | |
| 569 | by (rule imageI) (insert `y \<le> -x`[THEN le_imp_neg_le], simp) | |
| 570 |   thus "y \<in> uminus ` {x..}" by simp
 | |
| 571 | qed simp_all | |
| 572 | ||
| 573 | lemma | |
| 574 | fixes x :: 'a | |
| 575 |   shows image_uminus_lessThan[simp]: "uminus ` {..<x} = {-x<..}"
 | |
| 576 |   and image_uminus_atMost[simp]: "uminus ` {..x} = {-x..}"
 | |
| 577 | proof - | |
| 578 |   have "uminus ` {..<x} = uminus ` uminus ` {-x<..}"
 | |
| 579 |     and "uminus ` {..x} = uminus ` uminus ` {-x..}" by simp_all
 | |
| 580 |   thus "uminus ` {..<x} = {-x<..}" and "uminus ` {..x} = {-x..}"
 | |
| 581 | by (simp_all add: image_image | |
| 582 | del: image_uminus_greaterThan image_uminus_atLeast) | |
| 583 | qed | |
| 584 | ||
| 585 | lemma | |
| 586 | fixes x :: 'a | |
| 587 |   shows image_uminus_atLeastAtMost[simp]: "uminus ` {x..y} = {-y..-x}"
 | |
| 588 |   and image_uminus_greaterThanAtMost[simp]: "uminus ` {x<..y} = {-y..<-x}"
 | |
| 589 |   and image_uminus_atLeastLessThan[simp]: "uminus ` {x..<y} = {-y<..-x}"
 | |
| 590 |   and image_uminus_greaterThanLessThan[simp]: "uminus ` {x<..<y} = {-y<..<-x}"
 | |
| 591 | by (simp_all add: atLeastAtMost_def greaterThanAtMost_def atLeastLessThan_def | |
| 592 | greaterThanLessThan_def image_Int[OF inj_uminus] Int_commute) | |
| 593 | end | |
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 594 | |
| 14485 | 595 | subsubsection {* Finiteness *}
 | 
| 596 | ||
| 15045 | 597 | lemma finite_lessThan [iff]: fixes k :: nat shows "finite {..<k}"
 | 
| 14485 | 598 | by (induct k) (simp_all add: lessThan_Suc) | 
| 599 | ||
| 600 | lemma finite_atMost [iff]: fixes k :: nat shows "finite {..k}"
 | |
| 601 | by (induct k) (simp_all add: atMost_Suc) | |
| 602 | ||
| 603 | lemma finite_greaterThanLessThan [iff]: | |
| 15045 | 604 |   fixes l :: nat shows "finite {l<..<u}"
 | 
| 14485 | 605 | by (simp add: greaterThanLessThan_def) | 
| 606 | ||
| 607 | lemma finite_atLeastLessThan [iff]: | |
| 15045 | 608 |   fixes l :: nat shows "finite {l..<u}"
 | 
| 14485 | 609 | by (simp add: atLeastLessThan_def) | 
| 610 | ||
| 611 | lemma finite_greaterThanAtMost [iff]: | |
| 15045 | 612 |   fixes l :: nat shows "finite {l<..u}"
 | 
| 14485 | 613 | by (simp add: greaterThanAtMost_def) | 
| 614 | ||
| 615 | lemma finite_atLeastAtMost [iff]: | |
| 616 |   fixes l :: nat shows "finite {l..u}"
 | |
| 617 | by (simp add: atLeastAtMost_def) | |
| 618 | ||
| 28068 | 619 | text {* A bounded set of natural numbers is finite. *}
 | 
| 14485 | 620 | lemma bounded_nat_set_is_finite: | 
| 24853 | 621 | "(ALL i:N. i < (n::nat)) ==> finite N" | 
| 28068 | 622 | apply (rule finite_subset) | 
| 623 | apply (rule_tac [2] finite_lessThan, auto) | |
| 624 | done | |
| 625 | ||
| 31044 | 626 | text {* A set of natural numbers is finite iff it is bounded. *}
 | 
| 627 | lemma finite_nat_set_iff_bounded: | |
| 628 | "finite(N::nat set) = (EX m. ALL n:N. n<m)" (is "?F = ?B") | |
| 629 | proof | |
| 630 | assume f:?F show ?B | |
| 631 | using Max_ge[OF `?F`, simplified less_Suc_eq_le[symmetric]] by blast | |
| 632 | next | |
| 633 | assume ?B show ?F using `?B` by(blast intro:bounded_nat_set_is_finite) | |
| 634 | qed | |
| 635 | ||
| 636 | lemma finite_nat_set_iff_bounded_le: | |
| 637 | "finite(N::nat set) = (EX m. ALL n:N. n<=m)" | |
| 638 | apply(simp add:finite_nat_set_iff_bounded) | |
| 639 | apply(blast dest:less_imp_le_nat le_imp_less_Suc) | |
| 640 | done | |
| 641 | ||
| 28068 | 642 | lemma finite_less_ub: | 
| 643 |      "!!f::nat=>nat. (!!n. n \<le> f n) ==> finite {n. f n \<le> u}"
 | |
| 644 | by (rule_tac B="{..u}" in finite_subset, auto intro: order_trans)
 | |
| 14485 | 645 | |
| 24853 | 646 | text{* Any subset of an interval of natural numbers the size of the
 | 
| 647 | subset is exactly that interval. *} | |
| 648 | ||
| 649 | lemma subset_card_intvl_is_intvl: | |
| 650 |   "A <= {k..<k+card A} \<Longrightarrow> A = {k..<k+card A}" (is "PROP ?P")
 | |
| 651 | proof cases | |
| 652 | assume "finite A" | |
| 653 | thus "PROP ?P" | |
| 32006 | 654 | proof(induct A rule:finite_linorder_max_induct) | 
| 24853 | 655 | case empty thus ?case by auto | 
| 656 | next | |
| 33434 | 657 | case (insert b A) | 
| 24853 | 658 | moreover hence "b ~: A" by auto | 
| 659 |     moreover have "A <= {k..<k+card A}" and "b = k+card A"
 | |
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44008diff
changeset | 660 | using `b ~: A` insert by fastforce+ | 
| 24853 | 661 | ultimately show ?case by auto | 
| 662 | qed | |
| 663 | next | |
| 664 | assume "~finite A" thus "PROP ?P" by simp | |
| 665 | qed | |
| 666 | ||
| 667 | ||
| 32596 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 668 | subsubsection {* Proving Inclusions and Equalities between Unions *}
 | 
| 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 669 | |
| 36755 | 670 | lemma UN_le_eq_Un0: | 
| 671 |   "(\<Union>i\<le>n::nat. M i) = (\<Union>i\<in>{1..n}. M i) \<union> M 0" (is "?A = ?B")
 | |
| 672 | proof | |
| 673 | show "?A <= ?B" | |
| 674 | proof | |
| 675 | fix x assume "x : ?A" | |
| 676 | then obtain i where i: "i\<le>n" "x : M i" by auto | |
| 677 | show "x : ?B" | |
| 678 | proof(cases i) | |
| 679 | case 0 with i show ?thesis by simp | |
| 680 | next | |
| 681 | case (Suc j) with i show ?thesis by auto | |
| 682 | qed | |
| 683 | qed | |
| 684 | next | |
| 685 | show "?B <= ?A" by auto | |
| 686 | qed | |
| 687 | ||
| 688 | lemma UN_le_add_shift: | |
| 689 |   "(\<Union>i\<le>n::nat. M(i+k)) = (\<Union>i\<in>{k..n+k}. M i)" (is "?A = ?B")
 | |
| 690 | proof | |
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44008diff
changeset | 691 | show "?A <= ?B" by fastforce | 
| 36755 | 692 | next | 
| 693 | show "?B <= ?A" | |
| 694 | proof | |
| 695 | fix x assume "x : ?B" | |
| 696 |     then obtain i where i: "i : {k..n+k}" "x : M(i)" by auto
 | |
| 697 | hence "i-k\<le>n & x : M((i-k)+k)" by auto | |
| 698 | thus "x : ?A" by blast | |
| 699 | qed | |
| 700 | qed | |
| 701 | ||
| 32596 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 702 | lemma UN_UN_finite_eq: "(\<Union>n::nat. \<Union>i\<in>{0..<n}. A i) = (\<Union>n. A n)"
 | 
| 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 703 | by (auto simp add: atLeast0LessThan) | 
| 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 704 | |
| 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 705 | lemma UN_finite_subset: "(!!n::nat. (\<Union>i\<in>{0..<n}. A i) \<subseteq> C) \<Longrightarrow> (\<Union>n. A n) \<subseteq> C"
 | 
| 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 706 | by (subst UN_UN_finite_eq [symmetric]) blast | 
| 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 707 | |
| 33044 | 708 | lemma UN_finite2_subset: | 
| 709 |      "(!!n::nat. (\<Union>i\<in>{0..<n}. A i) \<subseteq> (\<Union>i\<in>{0..<n+k}. B i)) \<Longrightarrow> (\<Union>n. A n) \<subseteq> (\<Union>n. B n)"
 | |
| 710 | apply (rule UN_finite_subset) | |
| 711 | apply (subst UN_UN_finite_eq [symmetric, of B]) | |
| 712 | apply blast | |
| 713 | done | |
| 32596 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 714 | |
| 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 715 | lemma UN_finite2_eq: | 
| 33044 | 716 |   "(!!n::nat. (\<Union>i\<in>{0..<n}. A i) = (\<Union>i\<in>{0..<n+k}. B i)) \<Longrightarrow> (\<Union>n. A n) = (\<Union>n. B n)"
 | 
| 717 | apply (rule subset_antisym) | |
| 718 | apply (rule UN_finite2_subset, blast) | |
| 719 | apply (rule UN_finite2_subset [where k=k]) | |
| 35216 | 720 | apply (force simp add: atLeastLessThan_add_Un [of 0]) | 
| 33044 | 721 | done | 
| 32596 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 722 | |
| 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 723 | |
| 14485 | 724 | subsubsection {* Cardinality *}
 | 
| 725 | ||
| 15045 | 726 | lemma card_lessThan [simp]: "card {..<u} = u"
 | 
| 15251 | 727 | by (induct u, simp_all add: lessThan_Suc) | 
| 14485 | 728 | |
| 729 | lemma card_atMost [simp]: "card {..u} = Suc u"
 | |
| 730 | by (simp add: lessThan_Suc_atMost [THEN sym]) | |
| 731 | ||
| 15045 | 732 | lemma card_atLeastLessThan [simp]: "card {l..<u} = u - l"
 | 
| 733 |   apply (subgoal_tac "card {l..<u} = card {..<u-l}")
 | |
| 14485 | 734 | apply (erule ssubst, rule card_lessThan) | 
| 15045 | 735 |   apply (subgoal_tac "(%x. x + l) ` {..<u-l} = {l..<u}")
 | 
| 14485 | 736 | apply (erule subst) | 
| 737 | apply (rule card_image) | |
| 738 | apply (simp add: inj_on_def) | |
| 739 | apply (auto simp add: image_def atLeastLessThan_def lessThan_def) | |
| 740 | apply (rule_tac x = "x - l" in exI) | |
| 741 | apply arith | |
| 742 | done | |
| 743 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 744 | lemma card_atLeastAtMost [simp]: "card {l..u} = Suc u - l"
 | 
| 14485 | 745 | by (subst atLeastLessThanSuc_atLeastAtMost [THEN sym], simp) | 
| 746 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 747 | lemma card_greaterThanAtMost [simp]: "card {l<..u} = u - l"
 | 
| 14485 | 748 | by (subst atLeastSucAtMost_greaterThanAtMost [THEN sym], simp) | 
| 749 | ||
| 15045 | 750 | lemma card_greaterThanLessThan [simp]: "card {l<..<u} = u - Suc l"
 | 
| 14485 | 751 | by (subst atLeastSucLessThan_greaterThanLessThan [THEN sym], simp) | 
| 752 | ||
| 26105 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 753 | lemma ex_bij_betw_nat_finite: | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 754 |   "finite M \<Longrightarrow> \<exists>h. bij_betw h {0..<card M} M"
 | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 755 | apply(drule finite_imp_nat_seg_image_inj_on) | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 756 | apply(auto simp:atLeast0LessThan[symmetric] lessThan_def[symmetric] card_image bij_betw_def) | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 757 | done | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 758 | |
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 759 | lemma ex_bij_betw_finite_nat: | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 760 |   "finite M \<Longrightarrow> \<exists>h. bij_betw h M {0..<card M}"
 | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 761 | by (blast dest: ex_bij_betw_nat_finite bij_betw_inv) | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 762 | |
| 31438 | 763 | lemma finite_same_card_bij: | 
| 764 | "finite A \<Longrightarrow> finite B \<Longrightarrow> card A = card B \<Longrightarrow> EX h. bij_betw h A B" | |
| 765 | apply(drule ex_bij_betw_finite_nat) | |
| 766 | apply(drule ex_bij_betw_nat_finite) | |
| 767 | apply(auto intro!:bij_betw_trans) | |
| 768 | done | |
| 769 | ||
| 770 | lemma ex_bij_betw_nat_finite_1: | |
| 771 |   "finite M \<Longrightarrow> \<exists>h. bij_betw h {1 .. card M} M"
 | |
| 772 | by (rule finite_same_card_bij) auto | |
| 773 | ||
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 774 | lemma bij_betw_iff_card: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 775 | assumes FIN: "finite A" and FIN': "finite B" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 776 | shows BIJ: "(\<exists>f. bij_betw f A B) \<longleftrightarrow> (card A = card B)" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 777 | using assms | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 778 | proof(auto simp add: bij_betw_same_card) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 779 | assume *: "card A = card B" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 780 |   obtain f where "bij_betw f A {0 ..< card A}"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 781 | using FIN ex_bij_betw_finite_nat by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 782 |   moreover obtain g where "bij_betw g {0 ..< card B} B"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 783 | using FIN' ex_bij_betw_nat_finite by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 784 | ultimately have "bij_betw (g o f) A B" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 785 | using * by (auto simp add: bij_betw_trans) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 786 | thus "(\<exists>f. bij_betw f A B)" by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 787 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 788 | |
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 789 | lemma inj_on_iff_card_le: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 790 | assumes FIN: "finite A" and FIN': "finite B" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 791 | shows "(\<exists>f. inj_on f A \<and> f ` A \<le> B) = (card A \<le> card B)" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 792 | proof (safe intro!: card_inj_on_le) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 793 | assume *: "card A \<le> card B" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 794 |   obtain f where 1: "inj_on f A" and 2: "f ` A = {0 ..< card A}"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 795 | using FIN ex_bij_betw_finite_nat unfolding bij_betw_def by force | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 796 |   moreover obtain g where "inj_on g {0 ..< card B}" and 3: "g ` {0 ..< card B} = B"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 797 | using FIN' ex_bij_betw_nat_finite unfolding bij_betw_def by force | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 798 | ultimately have "inj_on g (f ` A)" using subset_inj_on[of g _ "f ` A"] * by force | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 799 | hence "inj_on (g o f) A" using 1 comp_inj_on by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 800 | moreover | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 801 |   {have "{0 ..< card A} \<le> {0 ..< card B}" using * by force
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 802 |    with 2 have "f ` A  \<le> {0 ..< card B}" by blast
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 803 | hence "(g o f) ` A \<le> B" unfolding comp_def using 3 by force | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 804 | } | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 805 | ultimately show "(\<exists>f. inj_on f A \<and> f ` A \<le> B)" by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39302diff
changeset | 806 | qed (insert assms, auto) | 
| 26105 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 807 | |
| 14485 | 808 | subsection {* Intervals of integers *}
 | 
| 809 | ||
| 15045 | 810 | lemma atLeastLessThanPlusOne_atLeastAtMost_int: "{l..<u+1} = {l..(u::int)}"
 | 
| 14485 | 811 | by (auto simp add: atLeastAtMost_def atLeastLessThan_def) | 
| 812 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 813 | lemma atLeastPlusOneAtMost_greaterThanAtMost_int: "{l+1..u} = {l<..(u::int)}"
 | 
| 14485 | 814 | by (auto simp add: atLeastAtMost_def greaterThanAtMost_def) | 
| 815 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 816 | lemma atLeastPlusOneLessThan_greaterThanLessThan_int: | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 817 |     "{l+1..<u} = {l<..<u::int}"
 | 
| 14485 | 818 | by (auto simp add: atLeastLessThan_def greaterThanLessThan_def) | 
| 819 | ||
| 820 | subsubsection {* Finiteness *}
 | |
| 821 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 822 | lemma image_atLeastZeroLessThan_int: "0 \<le> u ==> | 
| 15045 | 823 |     {(0::int)..<u} = int ` {..<nat u}"
 | 
| 14485 | 824 | apply (unfold image_def lessThan_def) | 
| 825 | apply auto | |
| 826 | apply (rule_tac x = "nat x" in exI) | |
| 35216 | 827 | apply (auto simp add: zless_nat_eq_int_zless [THEN sym]) | 
| 14485 | 828 | done | 
| 829 | ||
| 15045 | 830 | lemma finite_atLeastZeroLessThan_int: "finite {(0::int)..<u}"
 | 
| 14485 | 831 | apply (case_tac "0 \<le> u") | 
| 832 | apply (subst image_atLeastZeroLessThan_int, assumption) | |
| 833 | apply (rule finite_imageI) | |
| 834 | apply auto | |
| 835 | done | |
| 836 | ||
| 15045 | 837 | lemma finite_atLeastLessThan_int [iff]: "finite {l..<u::int}"
 | 
| 838 |   apply (subgoal_tac "(%x. x + l) ` {0..<u-l} = {l..<u}")
 | |
| 14485 | 839 | apply (erule subst) | 
| 840 | apply (rule finite_imageI) | |
| 841 | apply (rule finite_atLeastZeroLessThan_int) | |
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 842 | apply (rule image_add_int_atLeastLessThan) | 
| 14485 | 843 | done | 
| 844 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 845 | lemma finite_atLeastAtMost_int [iff]: "finite {l..(u::int)}"
 | 
| 14485 | 846 | by (subst atLeastLessThanPlusOne_atLeastAtMost_int [THEN sym], simp) | 
| 847 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 848 | lemma finite_greaterThanAtMost_int [iff]: "finite {l<..(u::int)}"
 | 
| 14485 | 849 | by (subst atLeastPlusOneAtMost_greaterThanAtMost_int [THEN sym], simp) | 
| 850 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 851 | lemma finite_greaterThanLessThan_int [iff]: "finite {l<..<u::int}"
 | 
| 14485 | 852 | by (subst atLeastPlusOneLessThan_greaterThanLessThan_int [THEN sym], simp) | 
| 853 | ||
| 24853 | 854 | |
| 14485 | 855 | subsubsection {* Cardinality *}
 | 
| 856 | ||
| 15045 | 857 | lemma card_atLeastZeroLessThan_int: "card {(0::int)..<u} = nat u"
 | 
| 14485 | 858 | apply (case_tac "0 \<le> u") | 
| 859 | apply (subst image_atLeastZeroLessThan_int, assumption) | |
| 860 | apply (subst card_image) | |
| 861 | apply (auto simp add: inj_on_def) | |
| 862 | done | |
| 863 | ||
| 15045 | 864 | lemma card_atLeastLessThan_int [simp]: "card {l..<u} = nat (u - l)"
 | 
| 865 |   apply (subgoal_tac "card {l..<u} = card {0..<u-l}")
 | |
| 14485 | 866 | apply (erule ssubst, rule card_atLeastZeroLessThan_int) | 
| 15045 | 867 |   apply (subgoal_tac "(%x. x + l) ` {0..<u-l} = {l..<u}")
 | 
| 14485 | 868 | apply (erule subst) | 
| 869 | apply (rule card_image) | |
| 870 | apply (simp add: inj_on_def) | |
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 871 | apply (rule image_add_int_atLeastLessThan) | 
| 14485 | 872 | done | 
| 873 | ||
| 874 | lemma card_atLeastAtMost_int [simp]: "card {l..u} = nat (u - l + 1)"
 | |
| 29667 | 875 | apply (subst atLeastLessThanPlusOne_atLeastAtMost_int [THEN sym]) | 
| 876 | apply (auto simp add: algebra_simps) | |
| 877 | done | |
| 14485 | 878 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 879 | lemma card_greaterThanAtMost_int [simp]: "card {l<..u} = nat (u - l)"
 | 
| 29667 | 880 | by (subst atLeastPlusOneAtMost_greaterThanAtMost_int [THEN sym], simp) | 
| 14485 | 881 | |
| 15045 | 882 | lemma card_greaterThanLessThan_int [simp]: "card {l<..<u} = nat (u - (l + 1))"
 | 
| 29667 | 883 | by (subst atLeastPlusOneLessThan_greaterThanLessThan_int [THEN sym], simp) | 
| 14485 | 884 | |
| 27656 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 885 | lemma finite_M_bounded_by_nat: "finite {k. P k \<and> k < (i::nat)}"
 | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 886 | proof - | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 887 |   have "{k. P k \<and> k < i} \<subseteq> {..<i}" by auto
 | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 888 | with finite_lessThan[of "i"] show ?thesis by (simp add: finite_subset) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 889 | qed | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 890 | |
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 891 | lemma card_less: | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 892 | assumes zero_in_M: "0 \<in> M" | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 893 | shows "card {k \<in> M. k < Suc i} \<noteq> 0"
 | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 894 | proof - | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 895 |   from zero_in_M have "{k \<in> M. k < Suc i} \<noteq> {}" by auto
 | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 896 | with finite_M_bounded_by_nat show ?thesis by (auto simp add: card_eq_0_iff) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 897 | qed | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 898 | |
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 899 | lemma card_less_Suc2: "0 \<notin> M \<Longrightarrow> card {k. Suc k \<in> M \<and> k < i} = card {k \<in> M. k < Suc i}"
 | 
| 37388 | 900 | apply (rule card_bij_eq [of Suc _ _ "\<lambda>x. x - Suc 0"]) | 
| 27656 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 901 | apply simp | 
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44008diff
changeset | 902 | apply fastforce | 
| 27656 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 903 | apply auto | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 904 | apply (rule inj_on_diff_nat) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 905 | apply auto | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 906 | apply (case_tac x) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 907 | apply auto | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 908 | apply (case_tac xa) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 909 | apply auto | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 910 | apply (case_tac xa) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 911 | apply auto | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 912 | done | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 913 | |
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 914 | lemma card_less_Suc: | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 915 | assumes zero_in_M: "0 \<in> M" | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 916 |     shows "Suc (card {k. Suc k \<in> M \<and> k < i}) = card {k \<in> M. k < Suc i}"
 | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 917 | proof - | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 918 |   from assms have a: "0 \<in> {k \<in> M. k < Suc i}" by simp
 | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 919 |   hence c: "{k \<in> M. k < Suc i} = insert 0 ({k \<in> M. k < Suc i} - {0})"
 | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 920 | by (auto simp only: insert_Diff) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 921 |   have b: "{k \<in> M. k < Suc i} - {0} = {k \<in> M - {0}. k < Suc i}"  by auto
 | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 922 |   from finite_M_bounded_by_nat[of "\<lambda>x. x \<in> M" "Suc i"] have "Suc (card {k. Suc k \<in> M \<and> k < i}) = card (insert 0 ({k \<in> M. k < Suc i} - {0}))"
 | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 923 | apply (subst card_insert) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 924 | apply simp_all | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 925 | apply (subst b) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 926 | apply (subst card_less_Suc2[symmetric]) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 927 | apply simp_all | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 928 | done | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 929 | with c show ?thesis by simp | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 930 | qed | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 931 | |
| 14485 | 932 | |
| 13850 | 933 | subsection {*Lemmas useful with the summation operator setsum*}
 | 
| 934 | ||
| 16102 
c5f6726d9bb1
Locale expressions: rename with optional mixfix syntax.
 ballarin parents: 
16052diff
changeset | 935 | text {* For examples, see Algebra/poly/UnivPoly2.thy *}
 | 
| 13735 | 936 | |
| 14577 | 937 | subsubsection {* Disjoint Unions *}
 | 
| 13735 | 938 | |
| 14577 | 939 | text {* Singletons and open intervals *}
 | 
| 13735 | 940 | |
| 941 | lemma ivl_disj_un_singleton: | |
| 15045 | 942 |   "{l::'a::linorder} Un {l<..} = {l..}"
 | 
| 943 |   "{..<u} Un {u::'a::linorder} = {..u}"
 | |
| 944 |   "(l::'a::linorder) < u ==> {l} Un {l<..<u} = {l..<u}"
 | |
| 945 |   "(l::'a::linorder) < u ==> {l<..<u} Un {u} = {l<..u}"
 | |
| 946 |   "(l::'a::linorder) <= u ==> {l} Un {l<..u} = {l..u}"
 | |
| 947 |   "(l::'a::linorder) <= u ==> {l..<u} Un {u} = {l..u}"
 | |
| 14398 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 ballarin parents: 
13850diff
changeset | 948 | by auto | 
| 13735 | 949 | |
| 14577 | 950 | text {* One- and two-sided intervals *}
 | 
| 13735 | 951 | |
| 952 | lemma ivl_disj_un_one: | |
| 15045 | 953 |   "(l::'a::linorder) < u ==> {..l} Un {l<..<u} = {..<u}"
 | 
| 954 |   "(l::'a::linorder) <= u ==> {..<l} Un {l..<u} = {..<u}"
 | |
| 955 |   "(l::'a::linorder) <= u ==> {..l} Un {l<..u} = {..u}"
 | |
| 956 |   "(l::'a::linorder) <= u ==> {..<l} Un {l..u} = {..u}"
 | |
| 957 |   "(l::'a::linorder) <= u ==> {l<..u} Un {u<..} = {l<..}"
 | |
| 958 |   "(l::'a::linorder) < u ==> {l<..<u} Un {u..} = {l<..}"
 | |
| 959 |   "(l::'a::linorder) <= u ==> {l..u} Un {u<..} = {l..}"
 | |
| 960 |   "(l::'a::linorder) <= u ==> {l..<u} Un {u..} = {l..}"
 | |
| 14398 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 ballarin parents: 
13850diff
changeset | 961 | by auto | 
| 13735 | 962 | |
| 14577 | 963 | text {* Two- and two-sided intervals *}
 | 
| 13735 | 964 | |
| 965 | lemma ivl_disj_un_two: | |
| 15045 | 966 |   "[| (l::'a::linorder) < m; m <= u |] ==> {l<..<m} Un {m..<u} = {l<..<u}"
 | 
| 967 |   "[| (l::'a::linorder) <= m; m < u |] ==> {l<..m} Un {m<..<u} = {l<..<u}"
 | |
| 968 |   "[| (l::'a::linorder) <= m; m <= u |] ==> {l..<m} Un {m..<u} = {l..<u}"
 | |
| 969 |   "[| (l::'a::linorder) <= m; m < u |] ==> {l..m} Un {m<..<u} = {l..<u}"
 | |
| 970 |   "[| (l::'a::linorder) < m; m <= u |] ==> {l<..<m} Un {m..u} = {l<..u}"
 | |
| 971 |   "[| (l::'a::linorder) <= m; m <= u |] ==> {l<..m} Un {m<..u} = {l<..u}"
 | |
| 972 |   "[| (l::'a::linorder) <= m; m <= u |] ==> {l..<m} Un {m..u} = {l..u}"
 | |
| 973 |   "[| (l::'a::linorder) <= m; m <= u |] ==> {l..m} Un {m<..u} = {l..u}"
 | |
| 14398 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 ballarin parents: 
13850diff
changeset | 974 | by auto | 
| 13735 | 975 | |
| 976 | lemmas ivl_disj_un = ivl_disj_un_singleton ivl_disj_un_one ivl_disj_un_two | |
| 977 | ||
| 14577 | 978 | subsubsection {* Disjoint Intersections *}
 | 
| 13735 | 979 | |
| 14577 | 980 | text {* One- and two-sided intervals *}
 | 
| 13735 | 981 | |
| 982 | lemma ivl_disj_int_one: | |
| 15045 | 983 |   "{..l::'a::order} Int {l<..<u} = {}"
 | 
| 984 |   "{..<l} Int {l..<u} = {}"
 | |
| 985 |   "{..l} Int {l<..u} = {}"
 | |
| 986 |   "{..<l} Int {l..u} = {}"
 | |
| 987 |   "{l<..u} Int {u<..} = {}"
 | |
| 988 |   "{l<..<u} Int {u..} = {}"
 | |
| 989 |   "{l..u} Int {u<..} = {}"
 | |
| 990 |   "{l..<u} Int {u..} = {}"
 | |
| 14398 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 ballarin parents: 
13850diff
changeset | 991 | by auto | 
| 13735 | 992 | |
| 14577 | 993 | text {* Two- and two-sided intervals *}
 | 
| 13735 | 994 | |
| 995 | lemma ivl_disj_int_two: | |
| 15045 | 996 |   "{l::'a::order<..<m} Int {m..<u} = {}"
 | 
| 997 |   "{l<..m} Int {m<..<u} = {}"
 | |
| 998 |   "{l..<m} Int {m..<u} = {}"
 | |
| 999 |   "{l..m} Int {m<..<u} = {}"
 | |
| 1000 |   "{l<..<m} Int {m..u} = {}"
 | |
| 1001 |   "{l<..m} Int {m<..u} = {}"
 | |
| 1002 |   "{l..<m} Int {m..u} = {}"
 | |
| 1003 |   "{l..m} Int {m<..u} = {}"
 | |
| 14398 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 ballarin parents: 
13850diff
changeset | 1004 | by auto | 
| 13735 | 1005 | |
| 32456 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 1006 | lemmas ivl_disj_int = ivl_disj_int_one ivl_disj_int_two | 
| 13735 | 1007 | |
| 15542 | 1008 | subsubsection {* Some Differences *}
 | 
| 1009 | ||
| 1010 | lemma ivl_diff[simp]: | |
| 1011 |  "i \<le> n \<Longrightarrow> {i..<m} - {i..<n} = {n..<(m::'a::linorder)}"
 | |
| 1012 | by(auto) | |
| 1013 | ||
| 1014 | ||
| 1015 | subsubsection {* Some Subset Conditions *}
 | |
| 1016 | ||
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35644diff
changeset | 1017 | lemma ivl_subset [simp,no_atp]: | 
| 15542 | 1018 |  "({i..<j} \<subseteq> {m..<n}) = (j \<le> i | m \<le> i & j \<le> (n::'a::linorder))"
 | 
| 1019 | apply(auto simp:linorder_not_le) | |
| 1020 | apply(rule ccontr) | |
| 1021 | apply(insert linorder_le_less_linear[of i n]) | |
| 1022 | apply(clarsimp simp:linorder_not_le) | |
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44008diff
changeset | 1023 | apply(fastforce) | 
| 15542 | 1024 | done | 
| 1025 | ||
| 15041 
a6b1f0cef7b3
Got rid of Summation and made it a translation into setsum instead.
 nipkow parents: 
14846diff
changeset | 1026 | |
| 15042 | 1027 | subsection {* Summation indexed over intervals *}
 | 
| 1028 | ||
| 1029 | syntax | |
| 1030 |   "_from_to_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(SUM _ = _.._./ _)" [0,0,0,10] 10)
 | |
| 15048 | 1031 |   "_from_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(SUM _ = _..<_./ _)" [0,0,0,10] 10)
 | 
| 16052 | 1032 |   "_upt_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(SUM _<_./ _)" [0,0,10] 10)
 | 
| 1033 |   "_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(SUM _<=_./ _)" [0,0,10] 10)
 | |
| 15042 | 1034 | syntax (xsymbols) | 
| 1035 |   "_from_to_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_ = _.._./ _)" [0,0,0,10] 10)
 | |
| 15048 | 1036 |   "_from_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_ = _..<_./ _)" [0,0,0,10] 10)
 | 
| 16052 | 1037 |   "_upt_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_<_./ _)" [0,0,10] 10)
 | 
| 1038 |   "_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_\<le>_./ _)" [0,0,10] 10)
 | |
| 15042 | 1039 | syntax (HTML output) | 
| 1040 |   "_from_to_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_ = _.._./ _)" [0,0,0,10] 10)
 | |
| 15048 | 1041 |   "_from_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_ = _..<_./ _)" [0,0,0,10] 10)
 | 
| 16052 | 1042 |   "_upt_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_<_./ _)" [0,0,10] 10)
 | 
| 1043 |   "_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_\<le>_./ _)" [0,0,10] 10)
 | |
| 15056 | 1044 | syntax (latex_sum output) | 
| 15052 | 1045 | "_from_to_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 1046 |  ("(3\<^raw:$\sum_{>_ = _\<^raw:}^{>_\<^raw:}$> _)" [0,0,0,10] 10)
 | |
| 1047 | "_from_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | |
| 1048 |  ("(3\<^raw:$\sum_{>_ = _\<^raw:}^{<>_\<^raw:}$> _)" [0,0,0,10] 10)
 | |
| 16052 | 1049 | "_upt_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 1050 |  ("(3\<^raw:$\sum_{>_ < _\<^raw:}$> _)" [0,0,10] 10)
 | |
| 15052 | 1051 | "_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 16052 | 1052 |  ("(3\<^raw:$\sum_{>_ \<le> _\<^raw:}$> _)" [0,0,10] 10)
 | 
| 15041 
a6b1f0cef7b3
Got rid of Summation and made it a translation into setsum instead.
 nipkow parents: 
14846diff
changeset | 1053 | |
| 15048 | 1054 | translations | 
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28068diff
changeset | 1055 |   "\<Sum>x=a..b. t" == "CONST setsum (%x. t) {a..b}"
 | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28068diff
changeset | 1056 |   "\<Sum>x=a..<b. t" == "CONST setsum (%x. t) {a..<b}"
 | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28068diff
changeset | 1057 |   "\<Sum>i\<le>n. t" == "CONST setsum (\<lambda>i. t) {..n}"
 | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28068diff
changeset | 1058 |   "\<Sum>i<n. t" == "CONST setsum (\<lambda>i. t) {..<n}"
 | 
| 15041 
a6b1f0cef7b3
Got rid of Summation and made it a translation into setsum instead.
 nipkow parents: 
14846diff
changeset | 1059 | |
| 15052 | 1060 | text{* The above introduces some pretty alternative syntaxes for
 | 
| 15056 | 1061 | summation over intervals: | 
| 15052 | 1062 | \begin{center}
 | 
| 1063 | \begin{tabular}{lll}
 | |
| 15056 | 1064 | Old & New & \LaTeX\\ | 
| 1065 | @{term[source]"\<Sum>x\<in>{a..b}. e"} & @{term"\<Sum>x=a..b. e"} & @{term[mode=latex_sum]"\<Sum>x=a..b. e"}\\
 | |
| 1066 | @{term[source]"\<Sum>x\<in>{a..<b}. e"} & @{term"\<Sum>x=a..<b. e"} & @{term[mode=latex_sum]"\<Sum>x=a..<b. e"}\\
 | |
| 16052 | 1067 | @{term[source]"\<Sum>x\<in>{..b}. e"} & @{term"\<Sum>x\<le>b. e"} & @{term[mode=latex_sum]"\<Sum>x\<le>b. e"}\\
 | 
| 15056 | 1068 | @{term[source]"\<Sum>x\<in>{..<b}. e"} & @{term"\<Sum>x<b. e"} & @{term[mode=latex_sum]"\<Sum>x<b. e"}
 | 
| 15052 | 1069 | \end{tabular}
 | 
| 1070 | \end{center}
 | |
| 15056 | 1071 | The left column shows the term before introduction of the new syntax, | 
| 1072 | the middle column shows the new (default) syntax, and the right column | |
| 1073 | shows a special syntax. The latter is only meaningful for latex output | |
| 1074 | and has to be activated explicitly by setting the print mode to | |
| 21502 | 1075 | @{text latex_sum} (e.g.\ via @{text "mode = latex_sum"} in
 | 
| 15056 | 1076 | antiquotations). It is not the default \LaTeX\ output because it only | 
| 1077 | works well with italic-style formulae, not tt-style. | |
| 15052 | 1078 | |
| 1079 | Note that for uniformity on @{typ nat} it is better to use
 | |
| 1080 | @{term"\<Sum>x::nat=0..<n. e"} rather than @{text"\<Sum>x<n. e"}: @{text setsum} may
 | |
| 1081 | not provide all lemmas available for @{term"{m..<n}"} also in the
 | |
| 1082 | special form for @{term"{..<n}"}. *}
 | |
| 1083 | ||
| 15542 | 1084 | text{* This congruence rule should be used for sums over intervals as
 | 
| 1085 | the standard theorem @{text[source]setsum_cong} does not work well
 | |
| 1086 | with the simplifier who adds the unsimplified premise @{term"x:B"} to
 | |
| 1087 | the context. *} | |
| 1088 | ||
| 1089 | lemma setsum_ivl_cong: | |
| 1090 | "\<lbrakk>a = c; b = d; !!x. \<lbrakk> c \<le> x; x < d \<rbrakk> \<Longrightarrow> f x = g x \<rbrakk> \<Longrightarrow> | |
| 1091 |  setsum f {a..<b} = setsum g {c..<d}"
 | |
| 1092 | by(rule setsum_cong, simp_all) | |
| 15041 
a6b1f0cef7b3
Got rid of Summation and made it a translation into setsum instead.
 nipkow parents: 
14846diff
changeset | 1093 | |
| 16041 | 1094 | (* FIXME why are the following simp rules but the corresponding eqns | 
| 1095 | on intervals are not? *) | |
| 1096 | ||
| 16052 | 1097 | lemma setsum_atMost_Suc[simp]: "(\<Sum>i \<le> Suc n. f i) = (\<Sum>i \<le> n. f i) + f(Suc n)" | 
| 1098 | by (simp add:atMost_Suc add_ac) | |
| 1099 | ||
| 16041 | 1100 | lemma setsum_lessThan_Suc[simp]: "(\<Sum>i < Suc n. f i) = (\<Sum>i < n. f i) + f n" | 
| 1101 | by (simp add:lessThan_Suc add_ac) | |
| 15041 
a6b1f0cef7b3
Got rid of Summation and made it a translation into setsum instead.
 nipkow parents: 
14846diff
changeset | 1102 | |
| 15911 | 1103 | lemma setsum_cl_ivl_Suc[simp]: | 
| 15561 | 1104 |   "setsum f {m..Suc n} = (if Suc n < m then 0 else setsum f {m..n} + f(Suc n))"
 | 
| 1105 | by (auto simp:add_ac atLeastAtMostSuc_conv) | |
| 1106 | ||
| 15911 | 1107 | lemma setsum_op_ivl_Suc[simp]: | 
| 15561 | 1108 |   "setsum f {m..<Suc n} = (if n < m then 0 else setsum f {m..<n} + f(n))"
 | 
| 1109 | by (auto simp:add_ac atLeastLessThanSuc) | |
| 16041 | 1110 | (* | 
| 15561 | 1111 | lemma setsum_cl_ivl_add_one_nat: "(n::nat) <= m + 1 ==> | 
| 1112 | (\<Sum>i=n..m+1. f i) = (\<Sum>i=n..m. f i) + f(m + 1)" | |
| 1113 | by (auto simp:add_ac atLeastAtMostSuc_conv) | |
| 16041 | 1114 | *) | 
| 28068 | 1115 | |
| 1116 | lemma setsum_head: | |
| 1117 | fixes n :: nat | |
| 1118 | assumes mn: "m <= n" | |
| 1119 |   shows "(\<Sum>x\<in>{m..n}. P x) = P m + (\<Sum>x\<in>{m<..n}. P x)" (is "?lhs = ?rhs")
 | |
| 1120 | proof - | |
| 1121 | from mn | |
| 1122 |   have "{m..n} = {m} \<union> {m<..n}"
 | |
| 1123 | by (auto intro: ivl_disj_un_singleton) | |
| 1124 |   hence "?lhs = (\<Sum>x\<in>{m} \<union> {m<..n}. P x)"
 | |
| 1125 | by (simp add: atLeast0LessThan) | |
| 1126 | also have "\<dots> = ?rhs" by simp | |
| 1127 | finally show ?thesis . | |
| 1128 | qed | |
| 1129 | ||
| 1130 | lemma setsum_head_Suc: | |
| 1131 |   "m \<le> n \<Longrightarrow> setsum f {m..n} = f m + setsum f {Suc m..n}"
 | |
| 1132 | by (simp add: setsum_head atLeastSucAtMost_greaterThanAtMost) | |
| 1133 | ||
| 1134 | lemma setsum_head_upt_Suc: | |
| 1135 |   "m < n \<Longrightarrow> setsum f {m..<n} = f m + setsum f {Suc m..<n}"
 | |
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
29960diff
changeset | 1136 | apply(insert setsum_head_Suc[of m "n - Suc 0" f]) | 
| 29667 | 1137 | apply (simp add: atLeastLessThanSuc_atLeastAtMost[symmetric] algebra_simps) | 
| 28068 | 1138 | done | 
| 1139 | ||
| 31501 | 1140 | lemma setsum_ub_add_nat: assumes "(m::nat) \<le> n + 1" | 
| 1141 |   shows "setsum f {m..n + p} = setsum f {m..n} + setsum f {n + 1..n + p}"
 | |
| 1142 | proof- | |
| 1143 |   have "{m .. n+p} = {m..n} \<union> {n+1..n+p}" using `m \<le> n+1` by auto
 | |
| 1144 | thus ?thesis by (auto simp: ivl_disj_int setsum_Un_disjoint | |
| 1145 | atLeastSucAtMost_greaterThanAtMost) | |
| 1146 | qed | |
| 28068 | 1147 | |
| 15539 | 1148 | lemma setsum_add_nat_ivl: "\<lbrakk> m \<le> n; n \<le> p \<rbrakk> \<Longrightarrow> | 
| 1149 |   setsum f {m..<n} + setsum f {n..<p} = setsum f {m..<p::nat}"
 | |
| 1150 | by (simp add:setsum_Un_disjoint[symmetric] ivl_disj_int ivl_disj_un) | |
| 1151 | ||
| 1152 | lemma setsum_diff_nat_ivl: | |
| 1153 | fixes f :: "nat \<Rightarrow> 'a::ab_group_add" | |
| 1154 | shows "\<lbrakk> m \<le> n; n \<le> p \<rbrakk> \<Longrightarrow> | |
| 1155 |   setsum f {m..<p} - setsum f {m..<n} = setsum f {n..<p}"
 | |
| 1156 | using setsum_add_nat_ivl [of m n p f,symmetric] | |
| 1157 | apply (simp add: add_ac) | |
| 1158 | done | |
| 1159 | ||
| 31505 | 1160 | lemma setsum_natinterval_difff: | 
| 1161 |   fixes f:: "nat \<Rightarrow> ('a::ab_group_add)"
 | |
| 1162 |   shows  "setsum (\<lambda>k. f k - f(k + 1)) {(m::nat) .. n} =
 | |
| 1163 | (if m <= n then f m - f(n + 1) else 0)" | |
| 1164 | by (induct n, auto simp add: algebra_simps not_le le_Suc_eq) | |
| 1165 | ||
| 44008 | 1166 | lemma setsum_restrict_set': | 
| 1167 |   "finite A \<Longrightarrow> setsum f {x \<in> A. x \<in> B} = (\<Sum>x\<in>A. if x \<in> B then f x else 0)"
 | |
| 1168 | by (simp add: setsum_restrict_set [symmetric] Int_def) | |
| 1169 | ||
| 1170 | lemma setsum_restrict_set'': | |
| 1171 |   "finite A \<Longrightarrow> setsum f {x \<in> A. P x} = (\<Sum>x\<in>A. if P x  then f x else 0)"
 | |
| 1172 |   by (simp add: setsum_restrict_set' [of A f "{x. P x}", simplified mem_Collect_eq])
 | |
| 31509 | 1173 | |
| 1174 | lemma setsum_setsum_restrict: | |
| 44008 | 1175 | "finite S \<Longrightarrow> finite T \<Longrightarrow> | 
| 1176 |     setsum (\<lambda>x. setsum (\<lambda>y. f x y) {y. y \<in> T \<and> R x y}) S = setsum (\<lambda>y. setsum (\<lambda>x. f x y) {x. x \<in> S \<and> R x y}) T"
 | |
| 1177 | by (simp add: setsum_restrict_set'') (rule setsum_commute) | |
| 31509 | 1178 | |
| 1179 | lemma setsum_image_gen: assumes fS: "finite S" | |
| 1180 |   shows "setsum g S = setsum (\<lambda>y. setsum g {x. x \<in> S \<and> f x = y}) (f ` S)"
 | |
| 1181 | proof- | |
| 1182 |   { fix x assume "x \<in> S" then have "{y. y\<in> f`S \<and> f x = y} = {f x}" by auto }
 | |
| 1183 |   hence "setsum g S = setsum (\<lambda>x. setsum (\<lambda>y. g x) {y. y\<in> f`S \<and> f x = y}) S"
 | |
| 1184 | by simp | |
| 1185 |   also have "\<dots> = setsum (\<lambda>y. setsum g {x. x \<in> S \<and> f x = y}) (f ` S)"
 | |
| 1186 | by (rule setsum_setsum_restrict[OF fS finite_imageI[OF fS]]) | |
| 1187 | finally show ?thesis . | |
| 1188 | qed | |
| 1189 | ||
| 35171 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1190 | lemma setsum_le_included: | 
| 36307 
1732232f9b27
sharpened constraint (c.f. 4e7f5b22dd7d); explicit is better than implicit
 haftmann parents: 
35828diff
changeset | 1191 | fixes f :: "'a \<Rightarrow> 'b::ordered_comm_monoid_add" | 
| 35171 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1192 | assumes "finite s" "finite t" | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1193 | and "\<forall>y\<in>t. 0 \<le> g y" "(\<forall>x\<in>s. \<exists>y\<in>t. i y = x \<and> f x \<le> g y)" | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1194 | shows "setsum f s \<le> setsum g t" | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1195 | proof - | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1196 |   have "setsum f s \<le> setsum (\<lambda>y. setsum g {x. x\<in>t \<and> i x = y}) s"
 | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1197 | proof (rule setsum_mono) | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1198 | fix y assume "y \<in> s" | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1199 | with assms obtain z where z: "z \<in> t" "y = i z" "f y \<le> g z" by auto | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1200 |     with assms show "f y \<le> setsum g {x \<in> t. i x = y}" (is "?A y \<le> ?B y")
 | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1201 |       using order_trans[of "?A (i z)" "setsum g {z}" "?B (i z)", intro]
 | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1202 | by (auto intro!: setsum_mono2) | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1203 | qed | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1204 |   also have "... \<le> setsum (\<lambda>y. setsum g {x. x\<in>t \<and> i x = y}) (i ` t)"
 | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1205 | using assms(2-4) by (auto intro!: setsum_mono2 setsum_nonneg) | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1206 | also have "... \<le> setsum g t" | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1207 | using assms by (auto simp: setsum_image_gen[symmetric]) | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1208 | finally show ?thesis . | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1209 | qed | 
| 
28f824c7addc
Moved setprod_mono, abs_setprod and setsum_le_included to the Main image. Is used in Multivariate_Analysis.
 hoelzl parents: 
35115diff
changeset | 1210 | |
| 31509 | 1211 | lemma setsum_multicount_gen: | 
| 1212 |   assumes "finite s" "finite t" "\<forall>j\<in>t. (card {i\<in>s. R i j} = k j)"
 | |
| 1213 |   shows "setsum (\<lambda>i. (card {j\<in>t. R i j})) s = setsum k t" (is "?l = ?r")
 | |
| 1214 | proof- | |
| 1215 |   have "?l = setsum (\<lambda>i. setsum (\<lambda>x.1) {j\<in>t. R i j}) s" by auto
 | |
| 1216 | also have "\<dots> = ?r" unfolding setsum_setsum_restrict[OF assms(1-2)] | |
| 1217 | using assms(3) by auto | |
| 1218 | finally show ?thesis . | |
| 1219 | qed | |
| 1220 | ||
| 1221 | lemma setsum_multicount: | |
| 1222 |   assumes "finite S" "finite T" "\<forall>j\<in>T. (card {i\<in>S. R i j} = k)"
 | |
| 1223 |   shows "setsum (\<lambda>i. card {j\<in>T. R i j}) S = k * card T" (is "?l = ?r")
 | |
| 1224 | proof- | |
| 1225 | have "?l = setsum (\<lambda>i. k) T" by(rule setsum_multicount_gen)(auto simp:assms) | |
| 35216 | 1226 | also have "\<dots> = ?r" by(simp add: mult_commute) | 
| 31509 | 1227 | finally show ?thesis by auto | 
| 1228 | qed | |
| 1229 | ||
| 28068 | 1230 | |
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1231 | subsection{* Shifting bounds *}
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1232 | |
| 15539 | 1233 | lemma setsum_shift_bounds_nat_ivl: | 
| 1234 |   "setsum f {m+k..<n+k} = setsum (%i. f(i + k)){m..<n::nat}"
 | |
| 1235 | by (induct "n", auto simp:atLeastLessThanSuc) | |
| 1236 | ||
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1237 | lemma setsum_shift_bounds_cl_nat_ivl: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1238 |   "setsum f {m+k..n+k} = setsum (%i. f(i + k)){m..n::nat}"
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1239 | apply (insert setsum_reindex[OF inj_on_add_nat, where h=f and B = "{m..n}"])
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1240 | apply (simp add:image_add_atLeastAtMost o_def) | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1241 | done | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1242 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1243 | corollary setsum_shift_bounds_cl_Suc_ivl: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1244 |   "setsum f {Suc m..Suc n} = setsum (%i. f(Suc i)){m..n}"
 | 
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
29960diff
changeset | 1245 | by (simp add:setsum_shift_bounds_cl_nat_ivl[where k="Suc 0", simplified]) | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1246 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1247 | corollary setsum_shift_bounds_Suc_ivl: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1248 |   "setsum f {Suc m..<Suc n} = setsum (%i. f(Suc i)){m..<n}"
 | 
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
29960diff
changeset | 1249 | by (simp add:setsum_shift_bounds_nat_ivl[where k="Suc 0", simplified]) | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1250 | |
| 28068 | 1251 | lemma setsum_shift_lb_Suc0_0: | 
| 1252 |   "f(0::nat) = (0::nat) \<Longrightarrow> setsum f {Suc 0..k} = setsum f {0..k}"
 | |
| 1253 | by(simp add:setsum_head_Suc) | |
| 19106 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 1254 | |
| 28068 | 1255 | lemma setsum_shift_lb_Suc0_0_upt: | 
| 1256 |   "f(0::nat) = 0 \<Longrightarrow> setsum f {Suc 0..<k} = setsum f {0..<k}"
 | |
| 1257 | apply(cases k)apply simp | |
| 1258 | apply(simp add:setsum_head_upt_Suc) | |
| 1259 | done | |
| 19022 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1260 | |
| 17149 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 1261 | subsection {* The formula for geometric sums *}
 | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 1262 | |
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 1263 | lemma geometric_sum: | 
| 36307 
1732232f9b27
sharpened constraint (c.f. 4e7f5b22dd7d); explicit is better than implicit
 haftmann parents: 
35828diff
changeset | 1264 | assumes "x \<noteq> 1" | 
| 
1732232f9b27
sharpened constraint (c.f. 4e7f5b22dd7d); explicit is better than implicit
 haftmann parents: 
35828diff
changeset | 1265 | shows "(\<Sum>i=0..<n. x ^ i) = (x ^ n - 1) / (x - 1::'a::field)" | 
| 
1732232f9b27
sharpened constraint (c.f. 4e7f5b22dd7d); explicit is better than implicit
 haftmann parents: 
35828diff
changeset | 1266 | proof - | 
| 
1732232f9b27
sharpened constraint (c.f. 4e7f5b22dd7d); explicit is better than implicit
 haftmann parents: 
35828diff
changeset | 1267 | from assms obtain y where "y = x - 1" and "y \<noteq> 0" by simp_all | 
| 
1732232f9b27
sharpened constraint (c.f. 4e7f5b22dd7d); explicit is better than implicit
 haftmann parents: 
35828diff
changeset | 1268 | moreover have "(\<Sum>i=0..<n. (y + 1) ^ i) = ((y + 1) ^ n - 1) / y" | 
| 
1732232f9b27
sharpened constraint (c.f. 4e7f5b22dd7d); explicit is better than implicit
 haftmann parents: 
35828diff
changeset | 1269 | proof (induct n) | 
| 
1732232f9b27
sharpened constraint (c.f. 4e7f5b22dd7d); explicit is better than implicit
 haftmann parents: 
35828diff
changeset | 1270 | case 0 then show ?case by simp | 
| 
1732232f9b27
sharpened constraint (c.f. 4e7f5b22dd7d); explicit is better than implicit
 haftmann parents: 
35828diff
changeset | 1271 | next | 
| 
1732232f9b27
sharpened constraint (c.f. 4e7f5b22dd7d); explicit is better than implicit
 haftmann parents: 
35828diff
changeset | 1272 | case (Suc n) | 
| 
1732232f9b27
sharpened constraint (c.f. 4e7f5b22dd7d); explicit is better than implicit
 haftmann parents: 
35828diff
changeset | 1273 | moreover with `y \<noteq> 0` have "(1 + y) ^ n = (y * inverse y) * (1 + y) ^ n" by simp | 
| 36350 | 1274 | ultimately show ?case by (simp add: field_simps divide_inverse) | 
| 36307 
1732232f9b27
sharpened constraint (c.f. 4e7f5b22dd7d); explicit is better than implicit
 haftmann parents: 
35828diff
changeset | 1275 | qed | 
| 
1732232f9b27
sharpened constraint (c.f. 4e7f5b22dd7d); explicit is better than implicit
 haftmann parents: 
35828diff
changeset | 1276 | ultimately show ?thesis by simp | 
| 
1732232f9b27
sharpened constraint (c.f. 4e7f5b22dd7d); explicit is better than implicit
 haftmann parents: 
35828diff
changeset | 1277 | qed | 
| 
1732232f9b27
sharpened constraint (c.f. 4e7f5b22dd7d); explicit is better than implicit
 haftmann parents: 
35828diff
changeset | 1278 | |
| 17149 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 1279 | |
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1280 | subsection {* The formula for arithmetic sums *}
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1281 | |
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1282 | lemma gauss_sum: | 
| 23277 | 1283 |   "((1::'a::comm_semiring_1) + 1)*(\<Sum>i\<in>{1..n}. of_nat i) =
 | 
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1284 | of_nat n*((of_nat n)+1)" | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1285 | proof (induct n) | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1286 | case 0 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1287 | show ?case by simp | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1288 | next | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1289 | case (Suc n) | 
| 29667 | 1290 | then show ?case by (simp add: algebra_simps) | 
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1291 | qed | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1292 | |
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1293 | theorem arith_series_general: | 
| 23277 | 1294 |   "((1::'a::comm_semiring_1) + 1) * (\<Sum>i\<in>{..<n}. a + of_nat i * d) =
 | 
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1295 | of_nat n * (a + (a + of_nat(n - 1)*d))" | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1296 | proof cases | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1297 | assume ngt1: "n > 1" | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1298 | let ?I = "\<lambda>i. of_nat i" and ?n = "of_nat n" | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1299 | have | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1300 |     "(\<Sum>i\<in>{..<n}. a+?I i*d) =
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1301 |      ((\<Sum>i\<in>{..<n}. a) + (\<Sum>i\<in>{..<n}. ?I i*d))"
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1302 | by (rule setsum_addf) | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1303 |   also from ngt1 have "\<dots> = ?n*a + (\<Sum>i\<in>{..<n}. ?I i*d)" by simp
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1304 |   also from ngt1 have "\<dots> = (?n*a + d*(\<Sum>i\<in>{1..<n}. ?I i))"
 | 
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
29960diff
changeset | 1305 | unfolding One_nat_def | 
| 28068 | 1306 | by (simp add: setsum_right_distrib atLeast0LessThan[symmetric] setsum_shift_lb_Suc0_0_upt mult_ac) | 
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1307 |   also have "(1+1)*\<dots> = (1+1)*?n*a + d*(1+1)*(\<Sum>i\<in>{1..<n}. ?I i)"
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1308 | by (simp add: left_distrib right_distrib) | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1309 |   also from ngt1 have "{1..<n} = {1..n - 1}"
 | 
| 28068 | 1310 | by (cases n) (auto simp: atLeastLessThanSuc_atLeastAtMost) | 
| 1311 | also from ngt1 | |
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1312 |   have "(1+1)*?n*a + d*(1+1)*(\<Sum>i\<in>{1..n - 1}. ?I i) = ((1+1)*?n*a + d*?I (n - 1)*?I n)"
 | 
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
29960diff
changeset | 1313 | by (simp only: mult_ac gauss_sum [of "n - 1"], unfold One_nat_def) | 
| 23431 
25ca91279a9b
change simp rules for of_nat to work like int did previously (reorient of_nat_Suc, remove of_nat_mult [simp]); preserve original variable names in legacy int theorems
 huffman parents: 
23413diff
changeset | 1314 | (simp add: mult_ac trans [OF add_commute of_nat_Suc [symmetric]]) | 
| 29667 | 1315 | finally show ?thesis by (simp add: algebra_simps) | 
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1316 | next | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1317 | assume "\<not>(n > 1)" | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1318 | hence "n = 1 \<or> n = 0" by auto | 
| 29667 | 1319 | thus ?thesis by (auto simp: algebra_simps) | 
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1320 | qed | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1321 | |
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1322 | lemma arith_series_nat: | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1323 |   "Suc (Suc 0) * (\<Sum>i\<in>{..<n}. a+i*d) = n * (a + (a+(n - 1)*d))"
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1324 | proof - | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1325 | have | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1326 |     "((1::nat) + 1) * (\<Sum>i\<in>{..<n::nat}. a + of_nat(i)*d) =
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1327 | of_nat(n) * (a + (a + of_nat(n - 1)*d))" | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1328 | by (rule arith_series_general) | 
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
29960diff
changeset | 1329 | thus ?thesis | 
| 35216 | 1330 | unfolding One_nat_def by auto | 
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1331 | qed | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1332 | |
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1333 | lemma arith_series_int: | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1334 |   "(2::int) * (\<Sum>i\<in>{..<n}. a + of_nat i * d) =
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1335 | of_nat n * (a + (a + of_nat(n - 1)*d))" | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1336 | proof - | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1337 | have | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1338 |     "((1::int) + 1) * (\<Sum>i\<in>{..<n}. a + of_nat i * d) =
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1339 | of_nat(n) * (a + (a + of_nat(n - 1)*d))" | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1340 | by (rule arith_series_general) | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1341 | thus ?thesis by simp | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1342 | qed | 
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 1343 | |
| 19022 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1344 | lemma sum_diff_distrib: | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1345 | fixes P::"nat\<Rightarrow>nat" | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1346 | shows | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1347 | "\<forall>x. Q x \<le> P x \<Longrightarrow> | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1348 | (\<Sum>x<n. P x) - (\<Sum>x<n. Q x) = (\<Sum>x<n. P x - Q x)" | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1349 | proof (induct n) | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1350 | case 0 show ?case by simp | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1351 | next | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1352 | case (Suc n) | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1353 | |
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1354 | let ?lhs = "(\<Sum>x<n. P x) - (\<Sum>x<n. Q x)" | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1355 | let ?rhs = "\<Sum>x<n. P x - Q x" | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1356 | |
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1357 | from Suc have "?lhs = ?rhs" by simp | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1358 | moreover | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1359 | from Suc have "?lhs + P n - Q n = ?rhs + (P n - Q n)" by simp | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1360 | moreover | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1361 | from Suc have | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1362 | "(\<Sum>x<n. P x) + P n - ((\<Sum>x<n. Q x) + Q n) = ?rhs + (P n - Q n)" | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1363 | by (subst diff_diff_left[symmetric], | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1364 | subst diff_add_assoc2) | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1365 | (auto simp: diff_add_assoc2 intro: setsum_mono) | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1366 | ultimately | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1367 | show ?case by simp | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1368 | qed | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1369 | |
| 29960 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1370 | subsection {* Products indexed over intervals *}
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1371 | |
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1372 | syntax | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1373 |   "_from_to_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(PROD _ = _.._./ _)" [0,0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1374 |   "_from_upto_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(PROD _ = _..<_./ _)" [0,0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1375 |   "_upt_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(PROD _<_./ _)" [0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1376 |   "_upto_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(PROD _<=_./ _)" [0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1377 | syntax (xsymbols) | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1378 |   "_from_to_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Prod>_ = _.._./ _)" [0,0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1379 |   "_from_upto_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Prod>_ = _..<_./ _)" [0,0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1380 |   "_upt_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Prod>_<_./ _)" [0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1381 |   "_upto_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Prod>_\<le>_./ _)" [0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1382 | syntax (HTML output) | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1383 |   "_from_to_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Prod>_ = _.._./ _)" [0,0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1384 |   "_from_upto_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Prod>_ = _..<_./ _)" [0,0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1385 |   "_upt_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Prod>_<_./ _)" [0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1386 |   "_upto_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Prod>_\<le>_./ _)" [0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1387 | syntax (latex_prod output) | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1388 | "_from_to_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1389 |  ("(3\<^raw:$\prod_{>_ = _\<^raw:}^{>_\<^raw:}$> _)" [0,0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1390 | "_from_upto_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1391 |  ("(3\<^raw:$\prod_{>_ = _\<^raw:}^{<>_\<^raw:}$> _)" [0,0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1392 | "_upt_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1393 |  ("(3\<^raw:$\prod_{>_ < _\<^raw:}$> _)" [0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1394 | "_upto_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1395 |  ("(3\<^raw:$\prod_{>_ \<le> _\<^raw:}$> _)" [0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1396 | |
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1397 | translations | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1398 |   "\<Prod>x=a..b. t" == "CONST setprod (%x. t) {a..b}"
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1399 |   "\<Prod>x=a..<b. t" == "CONST setprod (%x. t) {a..<b}"
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1400 |   "\<Prod>i\<le>n. t" == "CONST setprod (\<lambda>i. t) {..n}"
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1401 |   "\<Prod>i<n. t" == "CONST setprod (\<lambda>i. t) {..<n}"
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1402 | |
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1403 | subsection {* Transfer setup *}
 | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1404 | |
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1405 | lemma transfer_nat_int_set_functions: | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1406 |     "{..n} = nat ` {0..int n}"
 | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1407 |     "{m..n} = nat ` {int m..int n}"  (* need all variants of these! *)
 | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1408 | apply (auto simp add: image_def) | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1409 | apply (rule_tac x = "int x" in bexI) | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1410 | apply auto | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1411 | apply (rule_tac x = "int x" in bexI) | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1412 | apply auto | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1413 | done | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1414 | |
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1415 | lemma transfer_nat_int_set_function_closures: | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1416 |     "x >= 0 \<Longrightarrow> nat_set {x..y}"
 | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1417 | by (simp add: nat_set_def) | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1418 | |
| 35644 | 1419 | declare transfer_morphism_nat_int[transfer add | 
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1420 | return: transfer_nat_int_set_functions | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1421 | transfer_nat_int_set_function_closures | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1422 | ] | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1423 | |
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1424 | lemma transfer_int_nat_set_functions: | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1425 |     "is_nat m \<Longrightarrow> is_nat n \<Longrightarrow> {m..n} = int ` {nat m..nat n}"
 | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1426 | by (simp only: is_nat_def transfer_nat_int_set_functions | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1427 | transfer_nat_int_set_function_closures | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1428 | transfer_nat_int_set_return_embed nat_0_le | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1429 | cong: transfer_nat_int_set_cong) | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1430 | |
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1431 | lemma transfer_int_nat_set_function_closures: | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1432 |     "is_nat x \<Longrightarrow> nat_set {x..y}"
 | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1433 | by (simp only: transfer_nat_int_set_function_closures is_nat_def) | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1434 | |
| 35644 | 1435 | declare transfer_morphism_int_nat[transfer add | 
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1436 | return: transfer_int_nat_set_functions | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1437 | transfer_int_nat_set_function_closures | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1438 | ] | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33044diff
changeset | 1439 | |
| 8924 | 1440 | end |