| author | wenzelm | 
| Fri, 08 Apr 2016 20:15:20 +0200 | |
| changeset 62913 | 13252110a6fe | 
| parent 62149 | a02b79ef2339 | 
| child 63901 | 4ce989e962e0 | 
| permissions | -rw-r--r-- | 
| 615 | 1 | (* Title: ZF/ZF.thy | 
| 0 | 2 | Author: Lawrence C Paulson and Martin D Coen, CU Computer Laboratory | 
| 3 | Copyright 1993 University of Cambridge | |
| 14076 | 4 | *) | 
| 0 | 5 | |
| 62149 | 6 | section \<open>Zermelo-Fraenkel Set Theory\<close> | 
| 0 | 7 | |
| 37781 
2fbbf0a48cef
moved misc legacy stuff from OldGoals to Misc_Legacy;
 wenzelm parents: 
37405diff
changeset | 8 | theory ZF | 
| 48462 
424fd5364f15
clarified "this_name" vs. former "reset" feature -- imitate the latter by loading other session sources directly;
 wenzelm parents: 
46972diff
changeset | 9 | imports "~~/src/FOL/FOL" | 
| 37781 
2fbbf0a48cef
moved misc legacy stuff from OldGoals to Misc_Legacy;
 wenzelm parents: 
37405diff
changeset | 10 | begin | 
| 0 | 11 | |
| 62149 | 12 | subsection \<open>Signature\<close> | 
| 13 | ||
| 39128 
93a7365fb4ee
turned eta_contract into proper configuration option;
 wenzelm parents: 
38798diff
changeset | 14 | declare [[eta_contract = false]] | 
| 23168 | 15 | |
| 14076 | 16 | typedecl i | 
| 55380 
4de48353034e
prefer vacuous definitional type classes over axiomatic ones;
 wenzelm parents: 
48733diff
changeset | 17 | instance i :: "term" .. | 
| 0 | 18 | |
| 62149 | 19 | axiomatization mem :: "[i, i] \<Rightarrow> o" (infixl "\<in>" 50) \<comment> \<open>membership relation\<close> | 
| 20 |   and zero :: "i"  ("0")  \<comment> \<open>the empty set\<close>
 | |
| 21 | and Pow :: "i \<Rightarrow> i" \<comment> \<open>power sets\<close> | |
| 22 | and Inf :: "i" \<comment> \<open>infinite set\<close> | |
| 23 |   and Union :: "i \<Rightarrow> i"  ("\<Union>_" [90] 90)
 | |
| 24 | and PrimReplace :: "[i, [i, i] \<Rightarrow> o] \<Rightarrow> i" | |
| 25 | ||
| 26 | abbreviation not_mem :: "[i, i] \<Rightarrow> o" (infixl "\<notin>" 50) \<comment> \<open>negated membership relation\<close> | |
| 27 | where "x \<notin> y \<equiv> \<not> (x \<in> y)" | |
| 28 | ||
| 29 | ||
| 30 | subsection \<open>Bounded Quantifiers\<close> | |
| 31 | ||
| 32 | definition Ball :: "[i, i \<Rightarrow> o] \<Rightarrow> o" | |
| 33 | where "Ball(A, P) \<equiv> \<forall>x. x\<in>A \<longrightarrow> P(x)" | |
| 0 | 34 | |
| 62149 | 35 | definition Bex :: "[i, i \<Rightarrow> o] \<Rightarrow> o" | 
| 36 | where "Bex(A, P) \<equiv> \<exists>x. x\<in>A \<and> P(x)" | |
| 0 | 37 | |
| 62149 | 38 | syntax | 
| 39 |   "_Ball" :: "[pttrn, i, o] \<Rightarrow> o"  ("(3\<forall>_\<in>_./ _)" 10)
 | |
| 40 |   "_Bex" :: "[pttrn, i, o] \<Rightarrow> o"  ("(3\<exists>_\<in>_./ _)" 10)
 | |
| 41 | translations | |
| 42 | "\<forall>x\<in>A. P" \<rightleftharpoons> "CONST Ball(A, \<lambda>x. P)" | |
| 43 | "\<exists>x\<in>A. P" \<rightleftharpoons> "CONST Bex(A, \<lambda>x. P)" | |
| 44 | ||
| 45 | ||
| 46 | subsection \<open>Variations on Replacement\<close> | |
| 47 | ||
| 48 | (* Derived form of replacement, restricting P to its functional part. | |
| 49 | The resulting set (for functional P) is the same as with | |
| 50 | PrimReplace, but the rules are simpler. *) | |
| 51 | definition Replace :: "[i, [i, i] \<Rightarrow> o] \<Rightarrow> i" | |
| 52 | where "Replace(A,P) == PrimReplace(A, %x y. (EX!z. P(x,z)) & P(x,y))" | |
| 0 | 53 | |
| 62149 | 54 | syntax | 
| 55 |   "_Replace"  :: "[pttrn, pttrn, i, o] => i"  ("(1{_ ./ _ \<in> _, _})")
 | |
| 56 | translations | |
| 57 |   "{y. x\<in>A, Q}" \<rightleftharpoons> "CONST Replace(A, \<lambda>x y. Q)"
 | |
| 58 | ||
| 59 | ||
| 60 | (* Functional form of replacement -- analgous to ML's map functional *) | |
| 61 | ||
| 62 | definition RepFun :: "[i, i \<Rightarrow> i] \<Rightarrow> i" | |
| 63 |   where "RepFun(A,f) == {y . x\<in>A, y=f(x)}"
 | |
| 64 | ||
| 65 | syntax | |
| 66 |   "_RepFun" :: "[i, pttrn, i] => i"  ("(1{_ ./ _ \<in> _})" [51,0,51])
 | |
| 67 | translations | |
| 68 |   "{b. x\<in>A}" \<rightleftharpoons> "CONST RepFun(A, \<lambda>x. b)"
 | |
| 69 | ||
| 0 | 70 | |
| 62149 | 71 | (* Separation and Pairing can be derived from the Replacement | 
| 72 | and Powerset Axioms using the following definitions. *) | |
| 73 | definition Collect :: "[i, i \<Rightarrow> o] \<Rightarrow> i" | |
| 74 |   where "Collect(A,P) == {y . x\<in>A, x=y & P(x)}"
 | |
| 75 | ||
| 76 | syntax | |
| 77 |   "_Collect" :: "[pttrn, i, o] \<Rightarrow> i"  ("(1{_ \<in> _ ./ _})")
 | |
| 78 | translations | |
| 79 |   "{x\<in>A. P}" \<rightleftharpoons> "CONST Collect(A, \<lambda>x. P)"
 | |
| 80 | ||
| 6068 | 81 | |
| 62149 | 82 | subsection \<open>General union and intersection\<close> | 
| 83 | ||
| 84 | definition Inter :: "i => i"  ("\<Inter>_" [90] 90)
 | |
| 85 |   where "\<Inter>(A) == { x\<in>\<Union>(A) . \<forall>y\<in>A. x\<in>y}"
 | |
| 86 | ||
| 87 | syntax | |
| 88 |   "_UNION" :: "[pttrn, i, i] => i"  ("(3\<Union>_\<in>_./ _)" 10)
 | |
| 89 |   "_INTER" :: "[pttrn, i, i] => i"  ("(3\<Inter>_\<in>_./ _)" 10)
 | |
| 90 | translations | |
| 91 |   "\<Union>x\<in>A. B" == "CONST Union({B. x\<in>A})"
 | |
| 92 |   "\<Inter>x\<in>A. B" == "CONST Inter({B. x\<in>A})"
 | |
| 6068 | 93 | |
| 94 | ||
| 62149 | 95 | subsection \<open>Finite sets and binary operations\<close> | 
| 96 | ||
| 97 | (*Unordered pairs (Upair) express binary union/intersection and cons; | |
| 98 |   set enumerations translate as {a,...,z} = cons(a,...,cons(z,0)...)*)
 | |
| 99 | ||
| 100 | definition Upair :: "[i, i] => i" | |
| 101 |   where "Upair(a,b) == {y. x\<in>Pow(Pow(0)), (x=0 & y=a) | (x=Pow(0) & y=b)}"
 | |
| 0 | 102 | |
| 62149 | 103 | definition Subset :: "[i, i] \<Rightarrow> o" (infixl "\<subseteq>" 50) \<comment> \<open>subset relation\<close> | 
| 104 | where subset_def: "A \<subseteq> B \<equiv> \<forall>x\<in>A. x\<in>B" | |
| 105 | ||
| 106 | definition Diff :: "[i, i] \<Rightarrow> i" (infixl "-" 65) \<comment> \<open>set difference\<close> | |
| 107 |   where "A - B == { x\<in>A . ~(x\<in>B) }"
 | |
| 0 | 108 | |
| 62149 | 109 | definition Un :: "[i, i] \<Rightarrow> i" (infixl "\<union>" 65) \<comment> \<open>binary union\<close> | 
| 110 | where "A \<union> B == \<Union>(Upair(A,B))" | |
| 111 | ||
| 112 | definition Int :: "[i, i] \<Rightarrow> i" (infixl "\<inter>" 70) \<comment> \<open>binary intersection\<close> | |
| 113 | where "A \<inter> B == \<Inter>(Upair(A,B))" | |
| 0 | 114 | |
| 62149 | 115 | definition cons :: "[i, i] => i" | 
| 116 | where "cons(a,A) == Upair(a,a) \<union> A" | |
| 117 | ||
| 118 | definition succ :: "i => i" | |
| 119 | where "succ(i) == cons(i, i)" | |
| 0 | 120 | |
| 62149 | 121 | nonterminal "is" | 
| 122 | syntax | |
| 123 |   "" :: "i \<Rightarrow> is"  ("_")
 | |
| 124 |   "_Enum" :: "[i, is] \<Rightarrow> is"  ("_,/ _")
 | |
| 125 |   "_Finset" :: "is \<Rightarrow> i"  ("{(_)}")
 | |
| 126 | translations | |
| 127 |   "{x, xs}" == "CONST cons(x, {xs})"
 | |
| 128 |   "{x}" == "CONST cons(x, 0)"
 | |
| 129 | ||
| 130 | ||
| 131 | subsection \<open>Axioms\<close> | |
| 132 | ||
| 133 | (* ZF axioms -- see Suppes p.238 | |
| 134 | Axioms for Union, Pow and Replace state existence only, | |
| 135 | uniqueness is derivable using extensionality. *) | |
| 48733 
18e76e2db6d4
proper axiomatization of "mem" -- do not leave it formally unspecified;
 wenzelm parents: 
48462diff
changeset | 136 | |
| 
18e76e2db6d4
proper axiomatization of "mem" -- do not leave it formally unspecified;
 wenzelm parents: 
48462diff
changeset | 137 | axiomatization | 
| 62149 | 138 | where | 
| 139 | extension: "A = B \<longleftrightarrow> A \<subseteq> B \<and> B \<subseteq> A" and | |
| 140 | Union_iff: "A \<in> \<Union>(C) \<longleftrightarrow> (\<exists>B\<in>C. A\<in>B)" and | |
| 141 | Pow_iff: "A \<in> Pow(B) \<longleftrightarrow> A \<subseteq> B" and | |
| 24826 | 142 | |
| 62149 | 143 | (*We may name this set, though it is not uniquely defined.*) | 
| 144 | infinity: "0 \<in> Inf \<and> (\<forall>y\<in>Inf. succ(y) \<in> Inf)" and | |
| 24826 | 145 | |
| 62149 | 146 | (*This formulation facilitates case analysis on A.*) | 
| 147 | foundation: "A = 0 \<or> (\<exists>x\<in>A. \<forall>y\<in>x. y\<notin>A)" and | |
| 148 | ||
| 149 | (*Schema axiom since predicate P is a higher-order variable*) | |
| 150 | replacement: "(\<forall>x\<in>A. \<forall>y z. P(x,y) \<and> P(x,z) \<longrightarrow> y = z) \<Longrightarrow> | |
| 151 | b \<in> PrimReplace(A,P) \<longleftrightarrow> (\<exists>x\<in>A. P(x,b))" | |
| 0 | 152 | |
| 153 | ||
| 62149 | 154 | subsection \<open>Definite descriptions -- via Replace over the set "1"\<close> | 
| 155 | ||
| 156 | definition The :: "(i \<Rightarrow> o) \<Rightarrow> i" (binder "THE " 10) | |
| 157 |   where the_def: "The(P)    == \<Union>({y . x \<in> {0}, P(y)})"
 | |
| 615 | 158 | |
| 62149 | 159 | definition If :: "[o, i, i] \<Rightarrow> i"  ("(if (_)/ then (_)/ else (_))" [10] 10)
 | 
| 160 | where if_def: "if P then a else b == THE z. P & z=a | ~P & z=b" | |
| 161 | ||
| 162 | abbreviation (input) | |
| 163 |   old_if :: "[o, i, i] => i"  ("if '(_,_,_')")
 | |
| 164 | where "if(P,a,b) == If(P,a,b)" | |
| 165 | ||
| 166 | ||
| 167 | subsection \<open>Ordered Pairing\<close> | |
| 24826 | 168 | |
| 62149 | 169 | (* this "symmetric" definition works better than {{a}, {a,b}} *)
 | 
| 170 | definition Pair :: "[i, i] => i" | |
| 171 |   where "Pair(a,b) == {{a,a}, {a,b}}"
 | |
| 172 | ||
| 173 | definition fst :: "i \<Rightarrow> i" | |
| 174 | where "fst(p) == THE a. \<exists>b. p = Pair(a, b)" | |
| 1106 
62bdb9e5722b
Added pattern-matching code from CHOL/Prod.thy.  Changed
 lcp parents: 
690diff
changeset | 175 | |
| 62149 | 176 | definition snd :: "i \<Rightarrow> i" | 
| 177 | where "snd(p) == THE b. \<exists>a. p = Pair(a, b)" | |
| 1106 
62bdb9e5722b
Added pattern-matching code from CHOL/Prod.thy.  Changed
 lcp parents: 
690diff
changeset | 178 | |
| 62149 | 179 | definition split :: "[[i, i] \<Rightarrow> 'a, i] \<Rightarrow> 'a::{}"  \<comment> \<open>for pattern-matching\<close>
 | 
| 180 | where "split(c) == \<lambda>p. c(fst(p), snd(p))" | |
| 181 | ||
| 182 | (* Patterns -- extends pre-defined type "pttrn" used in abstractions *) | |
| 183 | nonterminal patterns | |
| 184 | syntax | |
| 61979 | 185 |   "_pattern"  :: "patterns => pttrn"         ("\<langle>_\<rangle>")
 | 
| 13144 | 186 |   ""          :: "pttrn => patterns"         ("_")
 | 
| 35112 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 wenzelm parents: 
35068diff
changeset | 187 |   "_patterns" :: "[pttrn, patterns] => patterns"  ("_,/_")
 | 
| 62149 | 188 |   "_Tuple"    :: "[i, is] => i"              ("\<langle>(_,/ _)\<rangle>")
 | 
| 0 | 189 | translations | 
| 61979 | 190 | "\<langle>x, y, z\<rangle>" == "\<langle>x, \<langle>y, z\<rangle>\<rangle>" | 
| 191 | "\<langle>x, y\<rangle>" == "CONST Pair(x, y)" | |
| 192 | "\<lambda>\<langle>x,y,zs\<rangle>.b" == "CONST split(\<lambda>x \<langle>y,zs\<rangle>.b)" | |
| 193 | "\<lambda>\<langle>x,y\<rangle>.b" == "CONST split(\<lambda>x y. b)" | |
| 2286 | 194 | |
| 62149 | 195 | definition Sigma :: "[i, i \<Rightarrow> i] \<Rightarrow> i" | 
| 196 |   where "Sigma(A,B) == \<Union>x\<in>A. \<Union>y\<in>B(x). {\<langle>x,y\<rangle>}"
 | |
| 197 | ||
| 198 | abbreviation cart_prod :: "[i, i] => i" (infixr "\<times>" 80) \<comment> \<open>Cartesian product\<close> | |
| 199 | where "A \<times> B \<equiv> Sigma(A, \<lambda>_. B)" | |
| 200 | ||
| 201 | ||
| 202 | subsection \<open>Relations and Functions\<close> | |
| 203 | ||
| 204 | (*converse of relation r, inverse of function*) | |
| 205 | definition converse :: "i \<Rightarrow> i" | |
| 206 |   where "converse(r) == {z. w\<in>r, \<exists>x y. w=\<langle>x,y\<rangle> \<and> z=\<langle>y,x\<rangle>}"
 | |
| 207 | ||
| 208 | definition domain :: "i \<Rightarrow> i" | |
| 209 |   where "domain(r) == {x. w\<in>r, \<exists>y. w=\<langle>x,y\<rangle>}"
 | |
| 210 | ||
| 211 | definition range :: "i \<Rightarrow> i" | |
| 212 | where "range(r) == domain(converse(r))" | |
| 213 | ||
| 214 | definition field :: "i \<Rightarrow> i" | |
| 215 | where "field(r) == domain(r) \<union> range(r)" | |
| 216 | ||
| 217 | definition relation :: "i \<Rightarrow> o" \<comment> \<open>recognizes sets of pairs\<close> | |
| 218 | where "relation(r) == \<forall>z\<in>r. \<exists>x y. z = \<langle>x,y\<rangle>" | |
| 219 | ||
| 220 | definition function :: "i \<Rightarrow> o" \<comment> \<open>recognizes functions; can have non-pairs\<close> | |
| 221 | where "function(r) == \<forall>x y. \<langle>x,y\<rangle> \<in> r \<longrightarrow> (\<forall>y'. \<langle>x,y'\<rangle> \<in> r \<longrightarrow> y = y')" | |
| 222 | ||
| 223 | definition Image :: "[i, i] \<Rightarrow> i" (infixl "``" 90) \<comment> \<open>image\<close> | |
| 224 |   where image_def: "r `` A  == {y \<in> range(r). \<exists>x\<in>A. \<langle>x,y\<rangle> \<in> r}"
 | |
| 225 | ||
| 226 | definition vimage :: "[i, i] \<Rightarrow> i" (infixl "-``" 90) \<comment> \<open>inverse image\<close> | |
| 227 | where vimage_def: "r -`` A == converse(r)``A" | |
| 228 | ||
| 229 | (* Restrict the relation r to the domain A *) | |
| 230 | definition restrict :: "[i, i] \<Rightarrow> i" | |
| 231 |   where "restrict(r,A) == {z \<in> r. \<exists>x\<in>A. \<exists>y. z = \<langle>x,y\<rangle>}"
 | |
| 232 | ||
| 233 | ||
| 234 | (* Abstraction, application and Cartesian product of a family of sets *) | |
| 235 | ||
| 236 | definition Lambda :: "[i, i \<Rightarrow> i] \<Rightarrow> i" | |
| 237 |   where lam_def: "Lambda(A,b) == {\<langle>x,b(x)\<rangle>. x\<in>A}"
 | |
| 238 | ||
| 239 | definition "apply" :: "[i, i] \<Rightarrow> i" (infixl "`" 90) \<comment> \<open>function application\<close> | |
| 240 |   where "f`a == \<Union>(f``{a})"
 | |
| 241 | ||
| 242 | definition Pi :: "[i, i \<Rightarrow> i] \<Rightarrow> i" | |
| 243 |   where "Pi(A,B) == {f\<in>Pow(Sigma(A,B)). A\<subseteq>domain(f) & function(f)}"
 | |
| 244 | ||
| 245 | abbreviation function_space :: "[i, i] \<Rightarrow> i" (infixr "->" 60) \<comment> \<open>function space\<close> | |
| 246 | where "A -> B \<equiv> Pi(A, \<lambda>_. B)" | |
| 247 | ||
| 248 | ||
| 249 | (* binder syntax *) | |
| 250 | ||
| 251 | syntax | |
| 252 |   "_PROD"     :: "[pttrn, i, i] => i"        ("(3\<Prod>_\<in>_./ _)" 10)
 | |
| 253 |   "_SUM"      :: "[pttrn, i, i] => i"        ("(3\<Sum>_\<in>_./ _)" 10)
 | |
| 254 |   "_lam"      :: "[pttrn, i, i] => i"        ("(3\<lambda>_\<in>_./ _)" 10)
 | |
| 255 | translations | |
| 256 | "\<Prod>x\<in>A. B" == "CONST Pi(A, \<lambda>x. B)" | |
| 257 | "\<Sum>x\<in>A. B" == "CONST Sigma(A, \<lambda>x. B)" | |
| 258 | "\<lambda>x\<in>A. f" == "CONST Lambda(A, \<lambda>x. f)" | |
| 259 | ||
| 260 | ||
| 261 | subsection \<open>ASCII syntax\<close> | |
| 0 | 262 | |
| 61979 | 263 | notation (ASCII) | 
| 264 | cart_prod (infixr "*" 80) and | |
| 265 | Int (infixl "Int" 70) and | |
| 266 | Un (infixl "Un" 65) and | |
| 24826 | 267 | function_space (infixr "\<rightarrow>" 60) and | 
| 61979 | 268 | Subset (infixl "<=" 50) and | 
| 269 | mem (infixl ":" 50) and | |
| 270 | not_mem (infixl "~:" 50) | |
| 24826 | 271 | |
| 61979 | 272 | syntax (ASCII) | 
| 62149 | 273 |   "_Ball"     :: "[pttrn, i, o] => o"        ("(3ALL _:_./ _)" 10)
 | 
| 274 |   "_Bex"      :: "[pttrn, i, o] => o"        ("(3EX _:_./ _)" 10)
 | |
| 61979 | 275 |   "_Collect"  :: "[pttrn, i, o] => i"        ("(1{_: _ ./ _})")
 | 
| 276 |   "_Replace"  :: "[pttrn, pttrn, i, o] => i" ("(1{_ ./ _: _, _})")
 | |
| 277 |   "_RepFun"   :: "[i, pttrn, i] => i"        ("(1{_ ./ _: _})" [51,0,51])
 | |
| 278 |   "_UNION"    :: "[pttrn, i, i] => i"        ("(3UN _:_./ _)" 10)
 | |
| 279 |   "_INTER"    :: "[pttrn, i, i] => i"        ("(3INT _:_./ _)" 10)
 | |
| 280 |   "_PROD"     :: "[pttrn, i, i] => i"        ("(3PROD _:_./ _)" 10)
 | |
| 281 |   "_SUM"      :: "[pttrn, i, i] => i"        ("(3SUM _:_./ _)" 10)
 | |
| 282 |   "_lam"      :: "[pttrn, i, i] => i"        ("(3lam _:_./ _)" 10)
 | |
| 283 |   "_Tuple"    :: "[i, is] => i"              ("<(_,/ _)>")
 | |
| 284 |   "_pattern"  :: "patterns => pttrn"         ("<_>")
 | |
| 2540 | 285 | |
| 13780 | 286 | |
| 60770 | 287 | subsection \<open>Substitution\<close> | 
| 13780 | 288 | |
| 289 | (*Useful examples: singletonI RS subst_elem, subst_elem RSN (2,IntI) *) | |
| 14227 | 290 | lemma subst_elem: "[| b\<in>A; a=b |] ==> a\<in>A" | 
| 13780 | 291 | by (erule ssubst, assumption) | 
| 292 | ||
| 293 | ||
| 60770 | 294 | subsection\<open>Bounded universal quantifier\<close> | 
| 13780 | 295 | |
| 14227 | 296 | lemma ballI [intro!]: "[| !!x. x\<in>A ==> P(x) |] ==> \<forall>x\<in>A. P(x)" | 
| 13780 | 297 | by (simp add: Ball_def) | 
| 298 | ||
| 15481 | 299 | lemmas strip = impI allI ballI | 
| 300 | ||
| 14227 | 301 | lemma bspec [dest?]: "[| \<forall>x\<in>A. P(x); x: A |] ==> P(x)" | 
| 13780 | 302 | by (simp add: Ball_def) | 
| 303 | ||
| 304 | (*Instantiates x first: better for automatic theorem proving?*) | |
| 46820 | 305 | lemma rev_ballE [elim]: | 
| 306 | "[| \<forall>x\<in>A. P(x); x\<notin>A ==> Q; P(x) ==> Q |] ==> Q" | |
| 307 | by (simp add: Ball_def, blast) | |
| 13780 | 308 | |
| 46820 | 309 | lemma ballE: "[| \<forall>x\<in>A. P(x); P(x) ==> Q; x\<notin>A ==> Q |] ==> Q" | 
| 13780 | 310 | by blast | 
| 311 | ||
| 312 | (*Used in the datatype package*) | |
| 14227 | 313 | lemma rev_bspec: "[| x: A; \<forall>x\<in>A. P(x) |] ==> P(x)" | 
| 13780 | 314 | by (simp add: Ball_def) | 
| 315 | ||
| 46820 | 316 | (*Trival rewrite rule;   @{term"(\<forall>x\<in>A.P)<->P"} holds only if A is nonempty!*)
 | 
| 317 | lemma ball_triv [simp]: "(\<forall>x\<in>A. P) <-> ((\<exists>x. x\<in>A) \<longrightarrow> P)" | |
| 13780 | 318 | by (simp add: Ball_def) | 
| 319 | ||
| 320 | (*Congruence rule for rewriting*) | |
| 321 | lemma ball_cong [cong]: | |
| 14227 | 322 | "[| A=A'; !!x. x\<in>A' ==> P(x) <-> P'(x) |] ==> (\<forall>x\<in>A. P(x)) <-> (\<forall>x\<in>A'. P'(x))" | 
| 13780 | 323 | by (simp add: Ball_def) | 
| 324 | ||
| 18845 | 325 | lemma atomize_ball: | 
| 326 | "(!!x. x \<in> A ==> P(x)) == Trueprop (\<forall>x\<in>A. P(x))" | |
| 327 | by (simp only: Ball_def atomize_all atomize_imp) | |
| 328 | ||
| 329 | lemmas [symmetric, rulify] = atomize_ball | |
| 330 | and [symmetric, defn] = atomize_ball | |
| 331 | ||
| 13780 | 332 | |
| 60770 | 333 | subsection\<open>Bounded existential quantifier\<close> | 
| 13780 | 334 | |
| 14227 | 335 | lemma bexI [intro]: "[| P(x); x: A |] ==> \<exists>x\<in>A. P(x)" | 
| 13780 | 336 | by (simp add: Bex_def, blast) | 
| 337 | ||
| 46820 | 338 | (*The best argument order when there is only one @{term"x\<in>A"}*)
 | 
| 14227 | 339 | lemma rev_bexI: "[| x\<in>A; P(x) |] ==> \<exists>x\<in>A. P(x)" | 
| 13780 | 340 | by blast | 
| 341 | ||
| 46820 | 342 | (*Not of the general form for such rules. The existential quanitifer becomes universal. *) | 
| 14227 | 343 | lemma bexCI: "[| \<forall>x\<in>A. ~P(x) ==> P(a); a: A |] ==> \<exists>x\<in>A. P(x)" | 
| 13780 | 344 | by blast | 
| 345 | ||
| 14227 | 346 | lemma bexE [elim!]: "[| \<exists>x\<in>A. P(x); !!x. [| x\<in>A; P(x) |] ==> Q |] ==> Q" | 
| 13780 | 347 | by (simp add: Bex_def, blast) | 
| 348 | ||
| 46820 | 349 | (*We do not even have @{term"(\<exists>x\<in>A. True) <-> True"} unless @{term"A" is nonempty!!*)
 | 
| 14227 | 350 | lemma bex_triv [simp]: "(\<exists>x\<in>A. P) <-> ((\<exists>x. x\<in>A) & P)" | 
| 13780 | 351 | by (simp add: Bex_def) | 
| 352 | ||
| 353 | lemma bex_cong [cong]: | |
| 46820 | 354 | "[| A=A'; !!x. x\<in>A' ==> P(x) <-> P'(x) |] | 
| 14227 | 355 | ==> (\<exists>x\<in>A. P(x)) <-> (\<exists>x\<in>A'. P'(x))" | 
| 13780 | 356 | by (simp add: Bex_def cong: conj_cong) | 
| 357 | ||
| 358 | ||
| 359 | ||
| 60770 | 360 | subsection\<open>Rules for subsets\<close> | 
| 13780 | 361 | |
| 362 | lemma subsetI [intro!]: | |
| 46820 | 363 | "(!!x. x\<in>A ==> x\<in>B) ==> A \<subseteq> B" | 
| 364 | by (simp add: subset_def) | |
| 13780 | 365 | |
| 366 | (*Rule in Modus Ponens style [was called subsetE] *) | |
| 46820 | 367 | lemma subsetD [elim]: "[| A \<subseteq> B; c\<in>A |] ==> c\<in>B" | 
| 13780 | 368 | apply (unfold subset_def) | 
| 369 | apply (erule bspec, assumption) | |
| 370 | done | |
| 371 | ||
| 372 | (*Classical elimination rule*) | |
| 373 | lemma subsetCE [elim]: | |
| 46820 | 374 | "[| A \<subseteq> B; c\<notin>A ==> P; c\<in>B ==> P |] ==> P" | 
| 375 | by (simp add: subset_def, blast) | |
| 13780 | 376 | |
| 377 | (*Sometimes useful with premises in this order*) | |
| 14227 | 378 | lemma rev_subsetD: "[| c\<in>A; A<=B |] ==> c\<in>B" | 
| 13780 | 379 | by blast | 
| 380 | ||
| 46820 | 381 | lemma contra_subsetD: "[| A \<subseteq> B; c \<notin> B |] ==> c \<notin> A" | 
| 13780 | 382 | by blast | 
| 383 | ||
| 46820 | 384 | lemma rev_contra_subsetD: "[| c \<notin> B; A \<subseteq> B |] ==> c \<notin> A" | 
| 13780 | 385 | by blast | 
| 386 | ||
| 46820 | 387 | lemma subset_refl [simp]: "A \<subseteq> A" | 
| 13780 | 388 | by blast | 
| 389 | ||
| 390 | lemma subset_trans: "[| A<=B; B<=C |] ==> A<=C" | |
| 391 | by blast | |
| 392 | ||
| 393 | (*Useful for proving A<=B by rewriting in some cases*) | |
| 46820 | 394 | lemma subset_iff: | 
| 395 | "A<=B <-> (\<forall>x. x\<in>A \<longrightarrow> x\<in>B)" | |
| 13780 | 396 | apply (unfold subset_def Ball_def) | 
| 397 | apply (rule iff_refl) | |
| 398 | done | |
| 399 | ||
| 60770 | 400 | text\<open>For calculations\<close> | 
| 46907 
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
 paulson parents: 
46820diff
changeset | 401 | declare subsetD [trans] rev_subsetD [trans] subset_trans [trans] | 
| 
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
 paulson parents: 
46820diff
changeset | 402 | |
| 13780 | 403 | |
| 60770 | 404 | subsection\<open>Rules for equality\<close> | 
| 13780 | 405 | |
| 406 | (*Anti-symmetry of the subset relation*) | |
| 46820 | 407 | lemma equalityI [intro]: "[| A \<subseteq> B; B \<subseteq> A |] ==> A = B" | 
| 408 | by (rule extension [THEN iffD2], rule conjI) | |
| 13780 | 409 | |
| 410 | ||
| 14227 | 411 | lemma equality_iffI: "(!!x. x\<in>A <-> x\<in>B) ==> A = B" | 
| 13780 | 412 | by (rule equalityI, blast+) | 
| 413 | ||
| 45602 | 414 | lemmas equalityD1 = extension [THEN iffD1, THEN conjunct1] | 
| 415 | lemmas equalityD2 = extension [THEN iffD1, THEN conjunct2] | |
| 13780 | 416 | |
| 417 | lemma equalityE: "[| A = B; [| A<=B; B<=A |] ==> P |] ==> P" | |
| 46820 | 418 | by (blast dest: equalityD1 equalityD2) | 
| 13780 | 419 | |
| 420 | lemma equalityCE: | |
| 46820 | 421 | "[| A = B; [| c\<in>A; c\<in>B |] ==> P; [| c\<notin>A; c\<notin>B |] ==> P |] ==> P" | 
| 422 | by (erule equalityE, blast) | |
| 13780 | 423 | |
| 27702 | 424 | lemma equality_iffD: | 
| 46820 | 425 | "A = B ==> (!!x. x \<in> A <-> x \<in> B)" | 
| 27702 | 426 | by auto | 
| 427 | ||
| 13780 | 428 | |
| 60770 | 429 | subsection\<open>Rules for Replace -- the derived form of replacement\<close> | 
| 13780 | 430 | |
| 46820 | 431 | lemma Replace_iff: | 
| 432 |     "b \<in> {y. x\<in>A, P(x,y)}  <->  (\<exists>x\<in>A. P(x,b) & (\<forall>y. P(x,y) \<longrightarrow> y=b))"
 | |
| 13780 | 433 | apply (unfold Replace_def) | 
| 434 | apply (rule replacement [THEN iff_trans], blast+) | |
| 435 | done | |
| 436 | ||
| 437 | (*Introduction; there must be a unique y such that P(x,y), namely y=b. *) | |
| 46820 | 438 | lemma ReplaceI [intro]: | 
| 439 | "[| P(x,b); x: A; !!y. P(x,y) ==> y=b |] ==> | |
| 440 |      b \<in> {y. x\<in>A, P(x,y)}"
 | |
| 441 | by (rule Replace_iff [THEN iffD2], blast) | |
| 13780 | 442 | |
| 443 | (*Elimination; may asssume there is a unique y such that P(x,y), namely y=b. *) | |
| 46820 | 444 | lemma ReplaceE: | 
| 445 |     "[| b \<in> {y. x\<in>A, P(x,y)};
 | |
| 446 | !!x. [| x: A; P(x,b); \<forall>y. P(x,y)\<longrightarrow>y=b |] ==> R | |
| 13780 | 447 | |] ==> R" | 
| 448 | by (rule Replace_iff [THEN iffD1, THEN bexE], simp+) | |
| 449 | ||
| 450 | (*As above but without the (generally useless) 3rd assumption*) | |
| 46820 | 451 | lemma ReplaceE2 [elim!]: | 
| 452 |     "[| b \<in> {y. x\<in>A, P(x,y)};
 | |
| 453 | !!x. [| x: A; P(x,b) |] ==> R | |
| 13780 | 454 | |] ==> R" | 
| 46820 | 455 | by (erule ReplaceE, blast) | 
| 13780 | 456 | |
| 457 | lemma Replace_cong [cong]: | |
| 46820 | 458 | "[| A=B; !!x y. x\<in>B ==> P(x,y) <-> Q(x,y) |] ==> | 
| 13780 | 459 | Replace(A,P) = Replace(B,Q)" | 
| 46820 | 460 | apply (rule equality_iffI) | 
| 461 | apply (simp add: Replace_iff) | |
| 13780 | 462 | done | 
| 463 | ||
| 464 | ||
| 60770 | 465 | subsection\<open>Rules for RepFun\<close> | 
| 13780 | 466 | |
| 46820 | 467 | lemma RepFunI: "a \<in> A ==> f(a) \<in> {f(x). x\<in>A}"
 | 
| 13780 | 468 | by (simp add: RepFun_def Replace_iff, blast) | 
| 469 | ||
| 470 | (*Useful for coinduction proofs*) | |
| 46820 | 471 | lemma RepFun_eqI [intro]: "[| b=f(a);  a \<in> A |] ==> b \<in> {f(x). x\<in>A}"
 | 
| 13780 | 472 | apply (erule ssubst) | 
| 473 | apply (erule RepFunI) | |
| 474 | done | |
| 475 | ||
| 476 | lemma RepFunE [elim!]: | |
| 46820 | 477 |     "[| b \<in> {f(x). x\<in>A};
 | 
| 478 | !!x.[| x\<in>A; b=f(x) |] ==> P |] ==> | |
| 13780 | 479 | P" | 
| 46820 | 480 | by (simp add: RepFun_def Replace_iff, blast) | 
| 13780 | 481 | |
| 46820 | 482 | lemma RepFun_cong [cong]: | 
| 14227 | 483 | "[| A=B; !!x. x\<in>B ==> f(x)=g(x) |] ==> RepFun(A,f) = RepFun(B,g)" | 
| 13780 | 484 | by (simp add: RepFun_def) | 
| 485 | ||
| 46820 | 486 | lemma RepFun_iff [simp]: "b \<in> {f(x). x\<in>A} <-> (\<exists>x\<in>A. b=f(x))"
 | 
| 13780 | 487 | by (unfold Bex_def, blast) | 
| 488 | ||
| 14227 | 489 | lemma triv_RepFun [simp]: "{x. x\<in>A} = A"
 | 
| 13780 | 490 | by blast | 
| 491 | ||
| 492 | ||
| 60770 | 493 | subsection\<open>Rules for Collect -- forming a subset by separation\<close> | 
| 13780 | 494 | |
| 495 | (*Separation is derivable from Replacement*) | |
| 46820 | 496 | lemma separation [simp]: "a \<in> {x\<in>A. P(x)} <-> a\<in>A & P(a)"
 | 
| 13780 | 497 | by (unfold Collect_def, blast) | 
| 498 | ||
| 46820 | 499 | lemma CollectI [intro!]: "[| a\<in>A;  P(a) |] ==> a \<in> {x\<in>A. P(x)}"
 | 
| 13780 | 500 | by simp | 
| 501 | ||
| 46820 | 502 | lemma CollectE [elim!]: "[| a \<in> {x\<in>A. P(x)};  [| a\<in>A; P(a) |] ==> R |] ==> R"
 | 
| 13780 | 503 | by simp | 
| 504 | ||
| 46820 | 505 | lemma CollectD1: "a \<in> {x\<in>A. P(x)} ==> a\<in>A"
 | 
| 13780 | 506 | by (erule CollectE, assumption) | 
| 507 | ||
| 46820 | 508 | lemma CollectD2: "a \<in> {x\<in>A. P(x)} ==> P(a)"
 | 
| 13780 | 509 | by (erule CollectE, assumption) | 
| 510 | ||
| 511 | lemma Collect_cong [cong]: | |
| 46820 | 512 | "[| A=B; !!x. x\<in>B ==> P(x) <-> Q(x) |] | 
| 13780 | 513 | ==> Collect(A, %x. P(x)) = Collect(B, %x. Q(x))" | 
| 514 | by (simp add: Collect_def) | |
| 515 | ||
| 516 | ||
| 60770 | 517 | subsection\<open>Rules for Unions\<close> | 
| 13780 | 518 | |
| 519 | declare Union_iff [simp] | |
| 520 | ||
| 521 | (*The order of the premises presupposes that C is rigid; A may be flexible*) | |
| 46820 | 522 | lemma UnionI [intro]: "[| B: C; A: B |] ==> A: \<Union>(C)" | 
| 13780 | 523 | by (simp, blast) | 
| 524 | ||
| 46820 | 525 | lemma UnionE [elim!]: "[| A \<in> \<Union>(C); !!B.[| A: B; B: C |] ==> R |] ==> R" | 
| 13780 | 526 | by (simp, blast) | 
| 527 | ||
| 528 | ||
| 60770 | 529 | subsection\<open>Rules for Unions of families\<close> | 
| 46820 | 530 | (* @{term"\<Union>x\<in>A. B(x)"} abbreviates @{term"\<Union>({B(x). x\<in>A})"} *)
 | 
| 13780 | 531 | |
| 46820 | 532 | lemma UN_iff [simp]: "b \<in> (\<Union>x\<in>A. B(x)) <-> (\<exists>x\<in>A. b \<in> B(x))" | 
| 13780 | 533 | by (simp add: Bex_def, blast) | 
| 534 | ||
| 535 | (*The order of the premises presupposes that A is rigid; b may be flexible*) | |
| 14227 | 536 | lemma UN_I: "[| a: A; b: B(a) |] ==> b: (\<Union>x\<in>A. B(x))" | 
| 13780 | 537 | by (simp, blast) | 
| 538 | ||
| 539 | ||
| 46820 | 540 | lemma UN_E [elim!]: | 
| 541 | "[| b \<in> (\<Union>x\<in>A. B(x)); !!x.[| x: A; b: B(x) |] ==> R |] ==> R" | |
| 542 | by blast | |
| 13780 | 543 | |
| 46820 | 544 | lemma UN_cong: | 
| 14227 | 545 | "[| A=B; !!x. x\<in>B ==> C(x)=D(x) |] ==> (\<Union>x\<in>A. C(x)) = (\<Union>x\<in>B. D(x))" | 
| 46820 | 546 | by simp | 
| 13780 | 547 | |
| 548 | ||
| 46820 | 549 | (*No "Addcongs [UN_cong]" because @{term\<Union>} is a combination of constants*)
 | 
| 13780 | 550 | |
| 551 | (* UN_E appears before UnionE so that it is tried first, to avoid expensive | |
| 552 | calls to hyp_subst_tac. Cannot include UN_I as it is unsafe: would enlarge | |
| 553 | the search space.*) | |
| 554 | ||
| 555 | ||
| 60770 | 556 | subsection\<open>Rules for the empty set\<close> | 
| 13780 | 557 | |
| 46820 | 558 | (*The set @{term"{x\<in>0. False}"} is empty; by foundation it equals 0
 | 
| 13780 | 559 | See Suppes, page 21.*) | 
| 46820 | 560 | lemma not_mem_empty [simp]: "a \<notin> 0" | 
| 13780 | 561 | apply (cut_tac foundation) | 
| 562 | apply (best dest: equalityD2) | |
| 563 | done | |
| 564 | ||
| 45602 | 565 | lemmas emptyE [elim!] = not_mem_empty [THEN notE] | 
| 13780 | 566 | |
| 567 | ||
| 46820 | 568 | lemma empty_subsetI [simp]: "0 \<subseteq> A" | 
| 569 | by blast | |
| 13780 | 570 | |
| 14227 | 571 | lemma equals0I: "[| !!y. y\<in>A ==> False |] ==> A=0" | 
| 13780 | 572 | by blast | 
| 573 | ||
| 46820 | 574 | lemma equals0D [dest]: "A=0 ==> a \<notin> A" | 
| 13780 | 575 | by blast | 
| 576 | ||
| 577 | declare sym [THEN equals0D, dest] | |
| 578 | ||
| 46820 | 579 | lemma not_emptyI: "a\<in>A ==> A \<noteq> 0" | 
| 13780 | 580 | by blast | 
| 581 | ||
| 46820 | 582 | lemma not_emptyE: "[| A \<noteq> 0; !!x. x\<in>A ==> R |] ==> R" | 
| 13780 | 583 | by blast | 
| 584 | ||
| 585 | ||
| 60770 | 586 | subsection\<open>Rules for Inter\<close> | 
| 14095 
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
 paulson parents: 
14076diff
changeset | 587 | |
| 
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
 paulson parents: 
14076diff
changeset | 588 | (*Not obviously useful for proving InterI, InterD, InterE*) | 
| 46820 | 589 | lemma Inter_iff: "A \<in> \<Inter>(C) <-> (\<forall>x\<in>C. A: x) & C\<noteq>0" | 
| 14095 
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
 paulson parents: 
14076diff
changeset | 590 | by (simp add: Inter_def Ball_def, blast) | 
| 
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
 paulson parents: 
14076diff
changeset | 591 | |
| 
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
 paulson parents: 
14076diff
changeset | 592 | (* Intersection is well-behaved only if the family is non-empty! *) | 
| 46820 | 593 | lemma InterI [intro!]: | 
| 594 | "[| !!x. x: C ==> A: x; C\<noteq>0 |] ==> A \<in> \<Inter>(C)" | |
| 14095 
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
 paulson parents: 
14076diff
changeset | 595 | by (simp add: Inter_iff) | 
| 
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
 paulson parents: 
14076diff
changeset | 596 | |
| 
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
 paulson parents: 
14076diff
changeset | 597 | (*A "destruct" rule -- every B in C contains A as an element, but | 
| 14227 | 598 | A\<in>B can hold when B\<in>C does not! This rule is analogous to "spec". *) | 
| 46820 | 599 | lemma InterD [elim, Pure.elim]: "[| A \<in> \<Inter>(C); B \<in> C |] ==> A \<in> B" | 
| 14095 
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
 paulson parents: 
14076diff
changeset | 600 | by (unfold Inter_def, blast) | 
| 
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
 paulson parents: 
14076diff
changeset | 601 | |
| 46820 | 602 | (*"Classical" elimination rule -- does not require exhibiting @{term"B\<in>C"} *)
 | 
| 603 | lemma InterE [elim]: | |
| 604 | "[| A \<in> \<Inter>(C); B\<notin>C ==> R; A\<in>B ==> R |] ==> R" | |
| 605 | by (simp add: Inter_def, blast) | |
| 606 | ||
| 14095 
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
 paulson parents: 
14076diff
changeset | 607 | |
| 60770 | 608 | subsection\<open>Rules for Intersections of families\<close> | 
| 14095 
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
 paulson parents: 
14076diff
changeset | 609 | |
| 46820 | 610 | (* @{term"\<Inter>x\<in>A. B(x)"} abbreviates @{term"\<Inter>({B(x). x\<in>A})"} *)
 | 
| 14095 
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
 paulson parents: 
14076diff
changeset | 611 | |
| 46820 | 612 | lemma INT_iff: "b \<in> (\<Inter>x\<in>A. B(x)) <-> (\<forall>x\<in>A. b \<in> B(x)) & A\<noteq>0" | 
| 14095 
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
 paulson parents: 
14076diff
changeset | 613 | by (force simp add: Inter_def) | 
| 
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
 paulson parents: 
14076diff
changeset | 614 | |
| 14227 | 615 | lemma INT_I: "[| !!x. x: A ==> b: B(x); A\<noteq>0 |] ==> b: (\<Inter>x\<in>A. B(x))" | 
| 14095 
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
 paulson parents: 
14076diff
changeset | 616 | by blast | 
| 
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
 paulson parents: 
14076diff
changeset | 617 | |
| 46820 | 618 | lemma INT_E: "[| b \<in> (\<Inter>x\<in>A. B(x)); a: A |] ==> b \<in> B(a)" | 
| 14095 
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
 paulson parents: 
14076diff
changeset | 619 | by blast | 
| 
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
 paulson parents: 
14076diff
changeset | 620 | |
| 
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
 paulson parents: 
14076diff
changeset | 621 | lemma INT_cong: | 
| 14227 | 622 | "[| A=B; !!x. x\<in>B ==> C(x)=D(x) |] ==> (\<Inter>x\<in>A. C(x)) = (\<Inter>x\<in>B. D(x))" | 
| 14095 
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
 paulson parents: 
14076diff
changeset | 623 | by simp | 
| 
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
 paulson parents: 
14076diff
changeset | 624 | |
| 46820 | 625 | (*No "Addcongs [INT_cong]" because @{term\<Inter>} is a combination of constants*)
 | 
| 14095 
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
 paulson parents: 
14076diff
changeset | 626 | |
| 
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
 paulson parents: 
14076diff
changeset | 627 | |
| 60770 | 628 | subsection\<open>Rules for Powersets\<close> | 
| 13780 | 629 | |
| 46820 | 630 | lemma PowI: "A \<subseteq> B ==> A \<in> Pow(B)" | 
| 13780 | 631 | by (erule Pow_iff [THEN iffD2]) | 
| 632 | ||
| 14227 | 633 | lemma PowD: "A \<in> Pow(B) ==> A<=B" | 
| 13780 | 634 | by (erule Pow_iff [THEN iffD1]) | 
| 635 | ||
| 636 | declare Pow_iff [iff] | |
| 637 | ||
| 61798 | 638 | lemmas Pow_bottom = empty_subsetI [THEN PowI]    \<comment>\<open>@{term"0 \<in> Pow(B)"}\<close>
 | 
| 639 | lemmas Pow_top = subset_refl [THEN PowI]         \<comment>\<open>@{term"A \<in> Pow(A)"}\<close>
 | |
| 13780 | 640 | |
| 641 | ||
| 60770 | 642 | subsection\<open>Cantor's Theorem: There is no surjection from a set to its powerset.\<close> | 
| 13780 | 643 | |
| 46820 | 644 | (*The search is undirected. Allowing redundant introduction rules may | 
| 13780 | 645 | make it diverge. Variable b represents ANY map, such as | 
| 14227 | 646 | (lam x\<in>A.b(x)): A->Pow(A). *) | 
| 46820 | 647 | lemma cantor: "\<exists>S \<in> Pow(A). \<forall>x\<in>A. b(x) \<noteq> S" | 
| 13780 | 648 | by (best elim!: equalityCE del: ReplaceI RepFun_eqI) | 
| 649 | ||
| 0 | 650 | end |