| author | berghofe | 
| Mon, 23 Oct 2006 00:52:15 +0200 | |
| changeset 21088 | 13348ab97f5a | 
| parent 20633 | e98f59806244 | 
| child 21312 | 1d39091a3208 | 
| permissions | -rw-r--r-- | 
| 14593 | 1 | (* Title: HOL/Matrix/Matrix.thy | 
| 2 | ID: $Id$ | |
| 3 | Author: Steven Obua | |
| 4 | *) | |
| 5 | ||
| 17915 | 6 | theory Matrix | 
| 7 | imports MatrixGeneral | |
| 8 | begin | |
| 14940 | 9 | |
| 17915 | 10 | instance matrix :: (minus) minus .. | 
| 14593 | 11 | |
| 17915 | 12 | instance matrix :: (plus) plus .. | 
| 13 | ||
| 14 | instance matrix :: ("{plus,times}") times ..
 | |
| 14940 | 15 | |
| 16 | defs (overloaded) | |
| 17 | plus_matrix_def: "A + B == combine_matrix (op +) A B" | |
| 18 | diff_matrix_def: "A - B == combine_matrix (op -) A B" | |
| 19 | minus_matrix_def: "- A == apply_matrix uminus A" | |
| 20 | times_matrix_def: "A * B == mult_matrix (op *) (op +) A B" | |
| 21 | ||
| 22 | lemma is_meet_combine_matrix_meet: "is_meet (combine_matrix meet)" | |
| 15178 | 23 | by (simp_all add: is_meet_def le_matrix_def meet_left_le meet_right_le meet_imp_le) | 
| 24 | ||
| 25 | lemma is_join_combine_matrix_join: "is_join (combine_matrix join)" | |
| 26 | by (simp_all add: is_join_def le_matrix_def join_left_le join_right_le join_imp_le) | |
| 14593 | 27 | |
| 14940 | 28 | instance matrix :: (lordered_ab_group) lordered_ab_group_meet | 
| 29 | proof | |
| 30 |   fix A B C :: "('a::lordered_ab_group) matrix"
 | |
| 31 | show "A + B + C = A + (B + C)" | |
| 32 | apply (simp add: plus_matrix_def) | |
| 33 | apply (rule combine_matrix_assoc[simplified associative_def, THEN spec, THEN spec, THEN spec]) | |
| 34 | apply (simp_all add: add_assoc) | |
| 35 | done | |
| 36 | show "A + B = B + A" | |
| 37 | apply (simp add: plus_matrix_def) | |
| 38 | apply (rule combine_matrix_commute[simplified commutative_def, THEN spec, THEN spec]) | |
| 39 | apply (simp_all add: add_commute) | |
| 40 | done | |
| 41 | show "0 + A = A" | |
| 42 | apply (simp add: plus_matrix_def) | |
| 43 | apply (rule combine_matrix_zero_l_neutral[simplified zero_l_neutral_def, THEN spec]) | |
| 44 | apply (simp) | |
| 45 | done | |
| 46 | show "- A + A = 0" | |
| 47 | by (simp add: plus_matrix_def minus_matrix_def Rep_matrix_inject[symmetric] ext) | |
| 48 | show "A - B = A + - B" | |
| 49 | by (simp add: plus_matrix_def diff_matrix_def minus_matrix_def Rep_matrix_inject[symmetric] ext) | |
| 50 | show "\<exists>m\<Colon>'a matrix \<Rightarrow> 'a matrix \<Rightarrow> 'a matrix. is_meet m" | |
| 51 | by (auto intro: is_meet_combine_matrix_meet) | |
| 52 | assume "A <= B" | |
| 53 | then show "C + A <= C + B" | |
| 54 | apply (simp add: plus_matrix_def) | |
| 55 | apply (rule le_left_combine_matrix) | |
| 56 | apply (simp_all) | |
| 57 | done | |
| 58 | qed | |
| 14593 | 59 | |
| 60 | defs (overloaded) | |
| 14940 | 61 |   abs_matrix_def: "abs (A::('a::lordered_ab_group) matrix) == join A (- A)"
 | 
| 14593 | 62 | |
| 14940 | 63 | instance matrix :: (lordered_ring) lordered_ring | 
| 64 | proof | |
| 65 |   fix A B C :: "('a :: lordered_ring) matrix"
 | |
| 66 | show "A * B * C = A * (B * C)" | |
| 67 | apply (simp add: times_matrix_def) | |
| 68 | apply (rule mult_matrix_assoc) | |
| 69 | apply (simp_all add: associative_def ring_eq_simps) | |
| 70 | done | |
| 71 | show "(A + B) * C = A * C + B * C" | |
| 72 | apply (simp add: times_matrix_def plus_matrix_def) | |
| 73 | apply (rule l_distributive_matrix[simplified l_distributive_def, THEN spec, THEN spec, THEN spec]) | |
| 74 | apply (simp_all add: associative_def commutative_def ring_eq_simps) | |
| 75 | done | |
| 76 | show "A * (B + C) = A * B + A * C" | |
| 77 | apply (simp add: times_matrix_def plus_matrix_def) | |
| 78 | apply (rule r_distributive_matrix[simplified r_distributive_def, THEN spec, THEN spec, THEN spec]) | |
| 79 | apply (simp_all add: associative_def commutative_def ring_eq_simps) | |
| 80 | done | |
| 81 | show "abs A = join A (-A)" | |
| 82 | by (simp add: abs_matrix_def) | |
| 83 | assume a: "A \<le> B" | |
| 84 | assume b: "0 \<le> C" | |
| 85 | from a b show "C * A \<le> C * B" | |
| 86 | apply (simp add: times_matrix_def) | |
| 87 | apply (rule le_left_mult) | |
| 88 | apply (simp_all add: add_mono mult_left_mono) | |
| 89 | done | |
| 90 | from a b show "A * C \<le> B * C" | |
| 91 | apply (simp add: times_matrix_def) | |
| 92 | apply (rule le_right_mult) | |
| 93 | apply (simp_all add: add_mono mult_right_mono) | |
| 94 | done | |
| 14593 | 95 | qed | 
| 96 | ||
| 14940 | 97 | lemma Rep_matrix_add[simp]: "Rep_matrix ((a::('a::lordered_ab_group)matrix)+b) j i  = (Rep_matrix a j i) + (Rep_matrix b j i)"
 | 
| 98 | by (simp add: plus_matrix_def) | |
| 14593 | 99 | |
| 14940 | 100 | lemma Rep_matrix_mult: "Rep_matrix ((a::('a::lordered_ring) matrix) * b) j i = 
 | 
| 101 | foldseq (op +) (% k. (Rep_matrix a j k) * (Rep_matrix b k i)) (max (ncols a) (nrows b))" | |
| 102 | apply (simp add: times_matrix_def) | |
| 103 | apply (simp add: Rep_mult_matrix) | |
| 104 | done | |
| 105 | ||
| 14593 | 106 | |
| 14940 | 107 | lemma apply_matrix_add: "! x y. f (x+y) = (f x) + (f y) \<Longrightarrow> f 0 = (0::'a) \<Longrightarrow> apply_matrix f ((a::('a::lordered_ab_group) matrix) + b) = (apply_matrix f a) + (apply_matrix f b)"
 | 
| 108 | apply (subst Rep_matrix_inject[symmetric]) | |
| 14593 | 109 | apply (rule ext)+ | 
| 14940 | 110 | apply (simp) | 
| 111 | done | |
| 14593 | 112 | |
| 14940 | 113 | lemma singleton_matrix_add: "singleton_matrix j i ((a::_::lordered_ab_group)+b) = (singleton_matrix j i a) + (singleton_matrix j i b)" | 
| 114 | apply (subst Rep_matrix_inject[symmetric]) | |
| 115 | apply (rule ext)+ | |
| 116 | apply (simp) | |
| 117 | done | |
| 14593 | 118 | |
| 14940 | 119 | lemma nrows_mult: "nrows ((A::('a::lordered_ring) matrix) * B) <= nrows A"
 | 
| 14593 | 120 | by (simp add: times_matrix_def mult_nrows) | 
| 121 | ||
| 14940 | 122 | lemma ncols_mult: "ncols ((A::('a::lordered_ring) matrix) * B) <= ncols B"
 | 
| 14593 | 123 | by (simp add: times_matrix_def mult_ncols) | 
| 124 | ||
| 125 | constdefs | |
| 14940 | 126 |   one_matrix :: "nat \<Rightarrow> ('a::{zero,one}) matrix"
 | 
| 14593 | 127 | "one_matrix n == Abs_matrix (% j i. if j = i & j < n then 1 else 0)" | 
| 128 | ||
| 129 | lemma Rep_one_matrix[simp]: "Rep_matrix (one_matrix n) j i = (if (j = i & j < n) then 1 else 0)" | |
| 130 | apply (simp add: one_matrix_def) | |
| 15481 | 131 | apply (simplesubst RepAbs_matrix) | 
| 14593 | 132 | apply (rule exI[of _ n], simp add: split_if)+ | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
15481diff
changeset | 133 | by (simp add: split_if) | 
| 14593 | 134 | |
| 20633 | 135 | lemma nrows_one_matrix[simp]: "nrows ((one_matrix n) :: ('a::zero_neq_one)matrix) = n" (is "?r = _")
 | 
| 14593 | 136 | proof - | 
| 137 | have "?r <= n" by (simp add: nrows_le) | |
| 14940 | 138 | moreover have "n <= ?r" by (simp add:le_nrows, arith) | 
| 14593 | 139 | ultimately show "?r = n" by simp | 
| 140 | qed | |
| 141 | ||
| 20633 | 142 | lemma ncols_one_matrix[simp]: "ncols ((one_matrix n) :: ('a::zero_neq_one)matrix) = n" (is "?r = _")
 | 
| 14593 | 143 | proof - | 
| 144 | have "?r <= n" by (simp add: ncols_le) | |
| 145 | moreover have "n <= ?r" by (simp add: le_ncols, arith) | |
| 146 | ultimately show "?r = n" by simp | |
| 147 | qed | |
| 148 | ||
| 14940 | 149 | lemma one_matrix_mult_right[simp]: "ncols A <= n \<Longrightarrow> (A::('a::{lordered_ring,ring_1}) matrix) * (one_matrix n) = A"
 | 
| 14593 | 150 | apply (subst Rep_matrix_inject[THEN sym]) | 
| 151 | apply (rule ext)+ | |
| 152 | apply (simp add: times_matrix_def Rep_mult_matrix) | |
| 153 | apply (rule_tac j1="xa" in ssubst[OF foldseq_almostzero]) | |
| 154 | apply (simp_all) | |
| 155 | by (simp add: max_def ncols) | |
| 156 | ||
| 14940 | 157 | lemma one_matrix_mult_left[simp]: "nrows A <= n \<Longrightarrow> (one_matrix n) * A = (A::('a::{lordered_ring, ring_1}) matrix)"
 | 
| 14593 | 158 | apply (subst Rep_matrix_inject[THEN sym]) | 
| 159 | apply (rule ext)+ | |
| 160 | apply (simp add: times_matrix_def Rep_mult_matrix) | |
| 161 | apply (rule_tac j1="x" in ssubst[OF foldseq_almostzero]) | |
| 162 | apply (simp_all) | |
| 163 | by (simp add: max_def nrows) | |
| 164 | ||
| 14940 | 165 | lemma transpose_matrix_mult: "transpose_matrix ((A::('a::{lordered_ring,comm_ring}) matrix)*B) = (transpose_matrix B) * (transpose_matrix A)"
 | 
| 166 | apply (simp add: times_matrix_def) | |
| 167 | apply (subst transpose_mult_matrix) | |
| 168 | apply (simp_all add: mult_commute) | |
| 169 | done | |
| 170 | ||
| 171 | lemma transpose_matrix_add: "transpose_matrix ((A::('a::lordered_ab_group) matrix)+B) = transpose_matrix A + transpose_matrix B"
 | |
| 172 | by (simp add: plus_matrix_def transpose_combine_matrix) | |
| 173 | ||
| 174 | lemma transpose_matrix_diff: "transpose_matrix ((A::('a::lordered_ab_group) matrix)-B) = transpose_matrix A - transpose_matrix B"
 | |
| 175 | by (simp add: diff_matrix_def transpose_combine_matrix) | |
| 176 | ||
| 177 | lemma transpose_matrix_minus: "transpose_matrix (-(A::('a::lordered_ring) matrix)) = - transpose_matrix (A::('a::lordered_ring) matrix)"
 | |
| 178 | by (simp add: minus_matrix_def transpose_apply_matrix) | |
| 179 | ||
| 180 | constdefs | |
| 181 |   right_inverse_matrix :: "('a::{lordered_ring, ring_1}) matrix \<Rightarrow> 'a matrix \<Rightarrow> bool"
 | |
| 182 | "right_inverse_matrix A X == (A * X = one_matrix (max (nrows A) (ncols X))) \<and> nrows X \<le> ncols A" | |
| 183 |   left_inverse_matrix :: "('a::{lordered_ring, ring_1}) matrix \<Rightarrow> 'a matrix \<Rightarrow> bool"
 | |
| 184 | "left_inverse_matrix A X == (X * A = one_matrix (max(nrows X) (ncols A))) \<and> ncols X \<le> nrows A" | |
| 185 |   inverse_matrix :: "('a::{lordered_ring, ring_1}) matrix \<Rightarrow> 'a matrix \<Rightarrow> bool"
 | |
| 186 | "inverse_matrix A X == (right_inverse_matrix A X) \<and> (left_inverse_matrix A X)" | |
| 14593 | 187 | |
| 188 | lemma right_inverse_matrix_dim: "right_inverse_matrix A X \<Longrightarrow> nrows A = ncols X" | |
| 189 | apply (insert ncols_mult[of A X], insert nrows_mult[of A X]) | |
| 190 | by (simp add: right_inverse_matrix_def) | |
| 191 | ||
| 14940 | 192 | lemma left_inverse_matrix_dim: "left_inverse_matrix A Y \<Longrightarrow> ncols A = nrows Y" | 
| 193 | apply (insert ncols_mult[of Y A], insert nrows_mult[of Y A]) | |
| 194 | by (simp add: left_inverse_matrix_def) | |
| 195 | ||
| 196 | lemma left_right_inverse_matrix_unique: | |
| 197 | assumes "left_inverse_matrix A Y" "right_inverse_matrix A X" | |
| 198 | shows "X = Y" | |
| 199 | proof - | |
| 200 | have "Y = Y * one_matrix (nrows A)" | |
| 201 | apply (subst one_matrix_mult_right) | |
| 202 | apply (insert prems) | |
| 203 | by (simp_all add: left_inverse_matrix_def) | |
| 204 | also have "\<dots> = Y * (A * X)" | |
| 205 | apply (insert prems) | |
| 206 | apply (frule right_inverse_matrix_dim) | |
| 207 | by (simp add: right_inverse_matrix_def) | |
| 208 | also have "\<dots> = (Y * A) * X" by (simp add: mult_assoc) | |
| 209 | also have "\<dots> = X" | |
| 210 | apply (insert prems) | |
| 211 | apply (frule left_inverse_matrix_dim) | |
| 212 | apply (simp_all add: left_inverse_matrix_def right_inverse_matrix_def one_matrix_mult_left) | |
| 213 | done | |
| 214 | ultimately show "X = Y" by (simp) | |
| 215 | qed | |
| 216 | ||
| 217 | lemma inverse_matrix_inject: "\<lbrakk> inverse_matrix A X; inverse_matrix A Y \<rbrakk> \<Longrightarrow> X = Y" | |
| 218 | by (auto simp add: inverse_matrix_def left_right_inverse_matrix_unique) | |
| 219 | ||
| 220 | lemma one_matrix_inverse: "inverse_matrix (one_matrix n) (one_matrix n)" | |
| 221 | by (simp add: inverse_matrix_def left_inverse_matrix_def right_inverse_matrix_def) | |
| 222 | ||
| 223 | lemma zero_imp_mult_zero: "(a::'a::ring) = 0 | b = 0 \<Longrightarrow> a * b = 0" | |
| 224 | by auto | |
| 225 | ||
| 226 | lemma Rep_matrix_zero_imp_mult_zero: | |
| 227 |   "! j i k. (Rep_matrix A j k = 0) | (Rep_matrix B k i) = 0  \<Longrightarrow> A * B = (0::('a::lordered_ring) matrix)"
 | |
| 228 | apply (subst Rep_matrix_inject[symmetric]) | |
| 229 | apply (rule ext)+ | |
| 230 | apply (auto simp add: Rep_matrix_mult foldseq_zero zero_imp_mult_zero) | |
| 231 | done | |
| 232 | ||
| 233 | lemma add_nrows: "nrows (A::('a::comm_monoid_add) matrix) <= u \<Longrightarrow> nrows B <= u \<Longrightarrow> nrows (A + B) <= u"
 | |
| 234 | apply (simp add: plus_matrix_def) | |
| 235 | apply (rule combine_nrows) | |
| 236 | apply (simp_all) | |
| 237 | done | |
| 238 | ||
| 239 | lemma move_matrix_row_mult: "move_matrix ((A::('a::lordered_ring) matrix) * B) j 0 = (move_matrix A j 0) * B"
 | |
| 240 | apply (subst Rep_matrix_inject[symmetric]) | |
| 241 | apply (rule ext)+ | |
| 242 | apply (auto simp add: Rep_matrix_mult foldseq_zero) | |
| 243 | apply (rule_tac foldseq_zerotail[symmetric]) | |
| 244 | apply (auto simp add: nrows zero_imp_mult_zero max2) | |
| 245 | apply (rule order_trans) | |
| 246 | apply (rule ncols_move_matrix_le) | |
| 247 | apply (simp add: max1) | |
| 248 | done | |
| 249 | ||
| 250 | lemma move_matrix_col_mult: "move_matrix ((A::('a::lordered_ring) matrix) * B) 0 i = A * (move_matrix B 0 i)"
 | |
| 251 | apply (subst Rep_matrix_inject[symmetric]) | |
| 252 | apply (rule ext)+ | |
| 253 | apply (auto simp add: Rep_matrix_mult foldseq_zero) | |
| 254 | apply (rule_tac foldseq_zerotail[symmetric]) | |
| 255 | apply (auto simp add: ncols zero_imp_mult_zero max1) | |
| 256 | apply (rule order_trans) | |
| 257 | apply (rule nrows_move_matrix_le) | |
| 258 | apply (simp add: max2) | |
| 259 | done | |
| 260 | ||
| 261 | lemma move_matrix_add: "((move_matrix (A + B) j i)::(('a::lordered_ab_group) matrix)) = (move_matrix A j i) + (move_matrix B j i)" 
 | |
| 262 | apply (subst Rep_matrix_inject[symmetric]) | |
| 263 | apply (rule ext)+ | |
| 264 | apply (simp) | |
| 265 | done | |
| 266 | ||
| 267 | lemma move_matrix_mult: "move_matrix ((A::('a::lordered_ring) matrix)*B) j i = (move_matrix A j 0) * (move_matrix B 0 i)"
 | |
| 268 | by (simp add: move_matrix_ortho[of "A*B"] move_matrix_col_mult move_matrix_row_mult) | |
| 269 | ||
| 270 | constdefs | |
| 271 |   scalar_mult :: "('a::lordered_ring) \<Rightarrow> 'a matrix \<Rightarrow> 'a matrix"
 | |
| 272 | "scalar_mult a m == apply_matrix (op * a) m" | |
| 273 | ||
| 274 | lemma scalar_mult_zero[simp]: "scalar_mult y 0 = 0" | |
| 275 | by (simp add: scalar_mult_def) | |
| 276 | ||
| 277 | lemma scalar_mult_add: "scalar_mult y (a+b) = (scalar_mult y a) + (scalar_mult y b)" | |
| 278 | by (simp add: scalar_mult_def apply_matrix_add ring_eq_simps) | |
| 279 | ||
| 280 | lemma Rep_scalar_mult[simp]: "Rep_matrix (scalar_mult y a) j i = y * (Rep_matrix a j i)" | |
| 281 | by (simp add: scalar_mult_def) | |
| 282 | ||
| 283 | lemma scalar_mult_singleton[simp]: "scalar_mult y (singleton_matrix j i x) = singleton_matrix j i (y * x)" | |
| 284 | apply (subst Rep_matrix_inject[symmetric]) | |
| 285 | apply (rule ext)+ | |
| 286 | apply (auto) | |
| 287 | done | |
| 288 | ||
| 15178 | 289 | lemma Rep_minus[simp]: "Rep_matrix (-(A::_::lordered_ab_group)) x y = - (Rep_matrix A x y)" | 
| 290 | by (simp add: minus_matrix_def) | |
| 14940 | 291 | |
| 15178 | 292 | lemma join_matrix: "join (A::('a::lordered_ring) matrix) B = combine_matrix join A B"  
 | 
| 293 |   apply (insert join_unique[of "(combine_matrix join)::('a matrix \<Rightarrow> 'a matrix \<Rightarrow> 'a matrix)", simplified is_join_combine_matrix_join])
 | |
| 294 | apply (simp) | |
| 295 | done | |
| 14940 | 296 | |
| 15178 | 297 | lemma meet_matrix: "meet (A::('a::lordered_ring) matrix) B = combine_matrix meet A B"
 | 
| 298 |   apply (insert meet_unique[of "(combine_matrix meet)::('a matrix \<Rightarrow> 'a matrix \<Rightarrow> 'a matrix)", simplified is_meet_combine_matrix_meet])
 | |
| 299 | apply (simp) | |
| 300 | done | |
| 301 | ||
| 302 | lemma Rep_abs[simp]: "Rep_matrix (abs (A::_::lordered_ring)) x y = abs (Rep_matrix A x y)" | |
| 303 | by (simp add: abs_lattice join_matrix) | |
| 14940 | 304 | |
| 14593 | 305 | end |