| 
18537
 | 
     1  | 
  | 
| 
 | 
     2  | 
(* $Id$ *)
  | 
| 
 | 
     3  | 
  | 
| 
 | 
     4  | 
theory logic imports base begin
  | 
| 
 | 
     5  | 
  | 
| 
20470
 | 
     6  | 
chapter {* Primitive logic \label{ch:logic} *}
 | 
| 
18537
 | 
     7  | 
  | 
| 
20480
 | 
     8  | 
text {*
 | 
| 
 | 
     9  | 
  The logical foundations of Isabelle/Isar are that of the Pure logic,
  | 
| 
 | 
    10  | 
  which has been introduced as a natural-deduction framework in
  | 
| 
 | 
    11  | 
  \cite{paulson700}.  This is essentially the same logic as ``@{text
 | 
| 
20493
 | 
    12  | 
  "\<lambda>HOL"}'' in the more abstract setting of Pure Type Systems (PTS)
  | 
| 
20480
 | 
    13  | 
  \cite{Barendregt-Geuvers:2001}, although there are some key
 | 
| 
20491
 | 
    14  | 
  differences in the specific treatment of simple types in
  | 
| 
 | 
    15  | 
  Isabelle/Pure.
  | 
| 
20480
 | 
    16  | 
  | 
| 
 | 
    17  | 
  Following type-theoretic parlance, the Pure logic consists of three
  | 
| 
20543
 | 
    18  | 
  levels of @{text "\<lambda>"}-calculus with corresponding arrows, @{text
 | 
| 
20480
 | 
    19  | 
  "\<Rightarrow>"} for syntactic function space (terms depending on terms), @{text
 | 
| 
 | 
    20  | 
  "\<And>"} for universal quantification (proofs depending on terms), and
  | 
| 
 | 
    21  | 
  @{text "\<Longrightarrow>"} for implication (proofs depending on proofs).
 | 
| 
 | 
    22  | 
  | 
| 
20537
 | 
    23  | 
  Derivations are relative to a logical theory, which declares type
  | 
| 
 | 
    24  | 
  constructors, constants, and axioms.  Theory declarations support
  | 
| 
 | 
    25  | 
  schematic polymorphism, which is strictly speaking outside the
  | 
| 
 | 
    26  | 
  logic.\footnote{This is the deeper logical reason, why the theory
 | 
| 
 | 
    27  | 
  context @{text "\<Theta>"} is separate from the proof context @{text "\<Gamma>"}
 | 
| 
 | 
    28  | 
  of the core calculus.}
  | 
| 
20480
 | 
    29  | 
*}
  | 
| 
 | 
    30  | 
  | 
| 
 | 
    31  | 
  | 
| 
20451
 | 
    32  | 
section {* Types \label{sec:types} *}
 | 
| 
20437
 | 
    33  | 
  | 
| 
 | 
    34  | 
text {*
 | 
| 
20480
 | 
    35  | 
  The language of types is an uninterpreted order-sorted first-order
  | 
| 
 | 
    36  | 
  algebra; types are qualified by ordered type classes.
  | 
| 
 | 
    37  | 
  | 
| 
 | 
    38  | 
  \medskip A \emph{type class} is an abstract syntactic entity
 | 
| 
 | 
    39  | 
  declared in the theory context.  The \emph{subclass relation} @{text
 | 
| 
 | 
    40  | 
  "c\<^isub>1 \<subseteq> c\<^isub>2"} is specified by stating an acyclic
  | 
| 
20491
 | 
    41  | 
  generating relation; the transitive closure is maintained
  | 
| 
 | 
    42  | 
  internally.  The resulting relation is an ordering: reflexive,
  | 
| 
 | 
    43  | 
  transitive, and antisymmetric.
  | 
| 
20451
 | 
    44  | 
  | 
| 
20537
 | 
    45  | 
  A \emph{sort} is a list of type classes written as @{text "s =
 | 
| 
 | 
    46  | 
  {c\<^isub>1, \<dots>, c\<^isub>m}"}, which represents symbolic
 | 
| 
20480
 | 
    47  | 
  intersection.  Notationally, the curly braces are omitted for
  | 
| 
 | 
    48  | 
  singleton intersections, i.e.\ any class @{text "c"} may be read as
 | 
| 
 | 
    49  | 
  a sort @{text "{c}"}.  The ordering on type classes is extended to
 | 
| 
20491
 | 
    50  | 
  sorts according to the meaning of intersections: @{text
 | 
| 
 | 
    51  | 
  "{c\<^isub>1, \<dots> c\<^isub>m} \<subseteq> {d\<^isub>1, \<dots>, d\<^isub>n}"} iff
 | 
| 
 | 
    52  | 
  @{text "\<forall>j. \<exists>i. c\<^isub>i \<subseteq> d\<^isub>j"}.  The empty intersection
 | 
| 
 | 
    53  | 
  @{text "{}"} refers to the universal sort, which is the largest
 | 
| 
 | 
    54  | 
  element wrt.\ the sort order.  The intersections of all (finitely
  | 
| 
 | 
    55  | 
  many) classes declared in the current theory are the minimal
  | 
| 
 | 
    56  | 
  elements wrt.\ the sort order.
  | 
| 
20480
 | 
    57  | 
  | 
| 
20491
 | 
    58  | 
  \medskip A \emph{fixed type variable} is a pair of a basic name
 | 
| 
20537
 | 
    59  | 
  (starting with a @{text "'"} character) and a sort constraint, e.g.\
 | 
| 
 | 
    60  | 
  @{text "('a, s)"} which is usually printed as @{text "\<alpha>\<^isub>s"}.
 | 
| 
 | 
    61  | 
  A \emph{schematic type variable} is a pair of an indexname and a
 | 
| 
 | 
    62  | 
  sort constraint, e.g.\ @{text "(('a, 0), s)"} which is usually
 | 
| 
 | 
    63  | 
  printed as @{text "?\<alpha>\<^isub>s"}.
 | 
| 
20451
 | 
    64  | 
  | 
| 
20480
 | 
    65  | 
  Note that \emph{all} syntactic components contribute to the identity
 | 
| 
20493
 | 
    66  | 
  of type variables, including the sort constraint.  The core logic
  | 
| 
 | 
    67  | 
  handles type variables with the same name but different sorts as
  | 
| 
 | 
    68  | 
  different, although some outer layers of the system make it hard to
  | 
| 
 | 
    69  | 
  produce anything like this.
  | 
| 
20451
 | 
    70  | 
  | 
| 
20493
 | 
    71  | 
  A \emph{type constructor} @{text "\<kappa>"} is a @{text "k"}-ary operator
 | 
| 
 | 
    72  | 
  on types declared in the theory.  Type constructor application is
  | 
| 
20537
 | 
    73  | 
  written postfix as @{text "(\<alpha>\<^isub>1, \<dots>, \<alpha>\<^isub>k)\<kappa>"}.  For
 | 
| 
 | 
    74  | 
  @{text "k = 0"} the argument tuple is omitted, e.g.\ @{text "prop"}
 | 
| 
 | 
    75  | 
  instead of @{text "()prop"}.  For @{text "k = 1"} the parentheses
 | 
| 
 | 
    76  | 
  are omitted, e.g.\ @{text "\<alpha> list"} instead of @{text "(\<alpha>)list"}.
 | 
| 
 | 
    77  | 
  Further notation is provided for specific constructors, notably the
  | 
| 
 | 
    78  | 
  right-associative infix @{text "\<alpha> \<Rightarrow> \<beta>"} instead of @{text "(\<alpha>,
 | 
| 
 | 
    79  | 
  \<beta>)fun"}.
  | 
| 
20480
 | 
    80  | 
  
  | 
| 
20537
 | 
    81  | 
  A \emph{type} is defined inductively over type variables and type
 | 
| 
 | 
    82  | 
  constructors as follows: @{text "\<tau> = \<alpha>\<^isub>s | ?\<alpha>\<^isub>s |
 | 
| 
20543
 | 
    83  | 
  (\<tau>\<^sub>1, \<dots>, \<tau>\<^sub>k)\<kappa>"}.
  | 
| 
20451
 | 
    84  | 
  | 
| 
20514
 | 
    85  | 
  A \emph{type abbreviation} is a syntactic definition @{text
 | 
| 
20494
 | 
    86  | 
  "(\<^vec>\<alpha>)\<kappa> = \<tau>"} of an arbitrary type expression @{text "\<tau>"} over
 | 
| 
20537
 | 
    87  | 
  variables @{text "\<^vec>\<alpha>"}.  Type abbreviations appear as type
 | 
| 
 | 
    88  | 
  constructors in the syntax, but are expanded before entering the
  | 
| 
 | 
    89  | 
  logical core.
  | 
| 
20480
 | 
    90  | 
  | 
| 
 | 
    91  | 
  A \emph{type arity} declares the image behavior of a type
 | 
| 
20494
 | 
    92  | 
  constructor wrt.\ the algebra of sorts: @{text "\<kappa> :: (s\<^isub>1, \<dots>,
 | 
| 
 | 
    93  | 
  s\<^isub>k)s"} means that @{text "(\<tau>\<^isub>1, \<dots>, \<tau>\<^isub>k)\<kappa>"} is
 | 
| 
 | 
    94  | 
  of sort @{text "s"} if every argument type @{text "\<tau>\<^isub>i"} is
 | 
| 
 | 
    95  | 
  of sort @{text "s\<^isub>i"}.  Arity declarations are implicitly
 | 
| 
 | 
    96  | 
  completed, i.e.\ @{text "\<kappa> :: (\<^vec>s)c"} entails @{text "\<kappa> ::
 | 
| 
20491
 | 
    97  | 
  (\<^vec>s)c'"} for any @{text "c' \<supseteq> c"}.
 | 
| 
 | 
    98  | 
  | 
| 
 | 
    99  | 
  \medskip The sort algebra is always maintained as \emph{coregular},
 | 
| 
 | 
   100  | 
  which means that type arities are consistent with the subclass
  | 
| 
20537
 | 
   101  | 
  relation: for any type constructor @{text "\<kappa>"}, and classes @{text
 | 
| 
 | 
   102  | 
  "c\<^isub>1 \<subseteq> c\<^isub>2"}, and arities @{text "\<kappa> ::
 | 
| 
 | 
   103  | 
  (\<^vec>s\<^isub>1)c\<^isub>1"} and @{text "\<kappa> ::
 | 
| 
 | 
   104  | 
  (\<^vec>s\<^isub>2)c\<^isub>2"} holds @{text "\<^vec>s\<^isub>1 \<subseteq>
 | 
| 
 | 
   105  | 
  \<^vec>s\<^isub>2"} component-wise.
  | 
| 
20451
 | 
   106  | 
  | 
| 
20491
 | 
   107  | 
  The key property of a coregular order-sorted algebra is that sort
  | 
| 
20537
 | 
   108  | 
  constraints can be solved in a most general fashion: for each type
  | 
| 
 | 
   109  | 
  constructor @{text "\<kappa>"} and sort @{text "s"} there is a most general
 | 
| 
 | 
   110  | 
  vector of argument sorts @{text "(s\<^isub>1, \<dots>, s\<^isub>k)"} such
 | 
| 
 | 
   111  | 
  that a type scheme @{text "(\<alpha>\<^bsub>s\<^isub>1\<^esub>, \<dots>,
 | 
| 
 | 
   112  | 
  \<alpha>\<^bsub>s\<^isub>k\<^esub>)\<kappa>"} is of sort @{text "s"}.
 | 
| 
20543
 | 
   113  | 
  Consequently, type unification has most general solutions (modulo
  | 
| 
 | 
   114  | 
  equivalence of sorts), so type-inference produces primary types as
  | 
| 
 | 
   115  | 
  expected \cite{nipkow-prehofer}.
 | 
| 
20480
 | 
   116  | 
*}
  | 
| 
20451
 | 
   117  | 
  | 
| 
20480
 | 
   118  | 
text %mlref {*
 | 
| 
 | 
   119  | 
  \begin{mldecls}
 | 
| 
 | 
   120  | 
  @{index_ML_type class} \\
 | 
| 
 | 
   121  | 
  @{index_ML_type sort} \\
 | 
| 
20494
 | 
   122  | 
  @{index_ML_type arity} \\
 | 
| 
20480
 | 
   123  | 
  @{index_ML_type typ} \\
 | 
| 
20519
 | 
   124  | 
  @{index_ML map_atyps: "(typ -> typ) -> typ -> typ"} \\
 | 
| 
20494
 | 
   125  | 
  @{index_ML fold_atyps: "(typ -> 'a -> 'a) -> typ -> 'a -> 'a"} \\
 | 
| 
20547
 | 
   126  | 
  \end{mldecls}
 | 
| 
 | 
   127  | 
  \begin{mldecls}
 | 
| 
20480
 | 
   128  | 
  @{index_ML Sign.subsort: "theory -> sort * sort -> bool"} \\
 | 
| 
 | 
   129  | 
  @{index_ML Sign.of_sort: "theory -> typ * sort -> bool"} \\
 | 
| 
20520
 | 
   130  | 
  @{index_ML Sign.add_types: "(string * int * mixfix) list -> theory -> theory"} \\
 | 
| 
20480
 | 
   131  | 
  @{index_ML Sign.add_tyabbrs_i: "
 | 
| 
20520
 | 
   132  | 
  (string * string list * typ * mixfix) list -> theory -> theory"} \\
  | 
| 
20480
 | 
   133  | 
  @{index_ML Sign.primitive_class: "string * class list -> theory -> theory"} \\
 | 
| 
 | 
   134  | 
  @{index_ML Sign.primitive_classrel: "class * class -> theory -> theory"} \\
 | 
| 
 | 
   135  | 
  @{index_ML Sign.primitive_arity: "arity -> theory -> theory"} \\
 | 
| 
 | 
   136  | 
  \end{mldecls}
 | 
| 
 | 
   137  | 
  | 
| 
 | 
   138  | 
  \begin{description}
 | 
| 
 | 
   139  | 
  | 
| 
 | 
   140  | 
  \item @{ML_type class} represents type classes; this is an alias for
 | 
| 
 | 
   141  | 
  @{ML_type string}.
 | 
| 
 | 
   142  | 
  | 
| 
 | 
   143  | 
  \item @{ML_type sort} represents sorts; this is an alias for
 | 
| 
 | 
   144  | 
  @{ML_type "class list"}.
 | 
| 
20451
 | 
   145  | 
  | 
| 
20480
 | 
   146  | 
  \item @{ML_type arity} represents type arities; this is an alias for
 | 
| 
20494
 | 
   147  | 
  triples of the form @{text "(\<kappa>, \<^vec>s, s)"} for @{text "\<kappa> ::
 | 
| 
20480
 | 
   148  | 
  (\<^vec>s)s"} described above.
  | 
| 
 | 
   149  | 
  | 
| 
 | 
   150  | 
  \item @{ML_type typ} represents types; this is a datatype with
 | 
| 
 | 
   151  | 
  constructors @{ML TFree}, @{ML TVar}, @{ML Type}.
 | 
| 
 | 
   152  | 
  | 
| 
20537
 | 
   153  | 
  \item @{ML map_atyps}~@{text "f \<tau>"} applies the mapping @{text "f"}
 | 
| 
 | 
   154  | 
  to all atomic types (@{ML TFree}, @{ML TVar}) occurring in @{text
 | 
| 
 | 
   155  | 
  "\<tau>"}.
  | 
| 
20519
 | 
   156  | 
  | 
| 
20537
 | 
   157  | 
  \item @{ML fold_atyps}~@{text "f \<tau>"} iterates the operation @{text
 | 
| 
 | 
   158  | 
  "f"} over all occurrences of atomic types (@{ML TFree}, @{ML TVar})
 | 
| 
 | 
   159  | 
  in @{text "\<tau>"}; the type structure is traversed from left to right.
 | 
| 
20494
 | 
   160  | 
  | 
| 
20480
 | 
   161  | 
  \item @{ML Sign.subsort}~@{text "thy (s\<^isub>1, s\<^isub>2)"}
 | 
| 
 | 
   162  | 
  tests the subsort relation @{text "s\<^isub>1 \<subseteq> s\<^isub>2"}.
 | 
| 
 | 
   163  | 
  | 
| 
20537
 | 
   164  | 
  \item @{ML Sign.of_sort}~@{text "thy (\<tau>, s)"} tests whether type
 | 
| 
 | 
   165  | 
  @{text "\<tau>"} is of sort @{text "s"}.
 | 
| 
20480
 | 
   166  | 
  | 
| 
20537
 | 
   167  | 
  \item @{ML Sign.add_types}~@{text "[(\<kappa>, k, mx), \<dots>]"} declares a new
 | 
| 
20494
 | 
   168  | 
  type constructors @{text "\<kappa>"} with @{text "k"} arguments and
 | 
| 
20480
 | 
   169  | 
  optional mixfix syntax.
  | 
| 
20451
 | 
   170  | 
  | 
| 
20494
 | 
   171  | 
  \item @{ML Sign.add_tyabbrs_i}~@{text "[(\<kappa>, \<^vec>\<alpha>, \<tau>, mx), \<dots>]"}
 | 
| 
 | 
   172  | 
  defines a new type abbreviation @{text "(\<^vec>\<alpha>)\<kappa> = \<tau>"} with
 | 
| 
20491
 | 
   173  | 
  optional mixfix syntax.
  | 
| 
20480
 | 
   174  | 
  | 
| 
 | 
   175  | 
  \item @{ML Sign.primitive_class}~@{text "(c, [c\<^isub>1, \<dots>,
 | 
| 
20537
 | 
   176  | 
  c\<^isub>n])"} declares a new class @{text "c"}, together with class
 | 
| 
20494
 | 
   177  | 
  relations @{text "c \<subseteq> c\<^isub>i"}, for @{text "i = 1, \<dots>, n"}.
 | 
| 
20480
 | 
   178  | 
  | 
| 
 | 
   179  | 
  \item @{ML Sign.primitive_classrel}~@{text "(c\<^isub>1,
 | 
| 
20543
 | 
   180  | 
  c\<^isub>2)"} declares the class relation @{text "c\<^isub>1 \<subseteq>
 | 
| 
20480
 | 
   181  | 
  c\<^isub>2"}.
  | 
| 
 | 
   182  | 
  | 
| 
20494
 | 
   183  | 
  \item @{ML Sign.primitive_arity}~@{text "(\<kappa>, \<^vec>s, s)"} declares
 | 
| 
20537
 | 
   184  | 
  the arity @{text "\<kappa> :: (\<^vec>s)s"}.
 | 
| 
20480
 | 
   185  | 
  | 
| 
 | 
   186  | 
  \end{description}
 | 
| 
20437
 | 
   187  | 
*}
  | 
| 
 | 
   188  | 
  | 
| 
 | 
   189  | 
  | 
| 
20480
 | 
   190  | 
  | 
| 
20451
 | 
   191  | 
section {* Terms \label{sec:terms} *}
 | 
| 
18537
 | 
   192  | 
  | 
| 
 | 
   193  | 
text {*
 | 
| 
20451
 | 
   194  | 
  \glossary{Term}{FIXME}
 | 
| 
18537
 | 
   195  | 
  | 
| 
20491
 | 
   196  | 
  The language of terms is that of simply-typed @{text "\<lambda>"}-calculus
 | 
| 
20520
 | 
   197  | 
  with de-Bruijn indices for bound variables (cf.\ \cite{debruijn72}
 | 
| 
20537
 | 
   198  | 
  or \cite{paulson-ml2}), with the types being determined determined
 | 
| 
 | 
   199  | 
  by the corresponding binders.  In contrast, free variables and
  | 
| 
 | 
   200  | 
  constants are have an explicit name and type in each occurrence.
  | 
| 
20514
 | 
   201  | 
  | 
| 
 | 
   202  | 
  \medskip A \emph{bound variable} is a natural number @{text "b"},
 | 
| 
20537
 | 
   203  | 
  which accounts for the number of intermediate binders between the
  | 
| 
 | 
   204  | 
  variable occurrence in the body and its binding position.  For
  | 
| 
20543
 | 
   205  | 
  example, the de-Bruijn term @{text
 | 
| 
 | 
   206  | 
  "\<lambda>\<^bsub>nat\<^esub>. \<lambda>\<^bsub>nat\<^esub>. 1 + 0"} would
  | 
| 
 | 
   207  | 
  correspond to @{text
 | 
| 
 | 
   208  | 
  "\<lambda>x\<^bsub>nat\<^esub>. \<lambda>y\<^bsub>nat\<^esub>. x + y"} in a named
  | 
| 
 | 
   209  | 
  representation.  Note that a bound variable may be represented by
  | 
| 
 | 
   210  | 
  different de-Bruijn indices at different occurrences, depending on
  | 
| 
 | 
   211  | 
  the nesting of abstractions.
  | 
| 
20537
 | 
   212  | 
  | 
| 
20543
 | 
   213  | 
  A \emph{loose variable} is a bound variable that is outside the
 | 
| 
20537
 | 
   214  | 
  scope of local binders.  The types (and names) for loose variables
  | 
| 
20543
 | 
   215  | 
  can be managed as a separate context, that is maintained as a stack
  | 
| 
 | 
   216  | 
  of hypothetical binders.  The core logic operates on closed terms,
  | 
| 
 | 
   217  | 
  without any loose variables.
  | 
| 
20514
 | 
   218  | 
  | 
| 
20537
 | 
   219  | 
  A \emph{fixed variable} is a pair of a basic name and a type, e.g.\
 | 
| 
 | 
   220  | 
  @{text "(x, \<tau>)"} which is usually printed @{text "x\<^isub>\<tau>"}.  A
 | 
| 
 | 
   221  | 
  \emph{schematic variable} is a pair of an indexname and a type,
 | 
| 
 | 
   222  | 
  e.g.\ @{text "((x, 0), \<tau>)"} which is usually printed as @{text
 | 
| 
 | 
   223  | 
  "?x\<^isub>\<tau>"}.
  | 
| 
20491
 | 
   224  | 
  | 
| 
20537
 | 
   225  | 
  \medskip A \emph{constant} is a pair of a basic name and a type,
 | 
| 
 | 
   226  | 
  e.g.\ @{text "(c, \<tau>)"} which is usually printed as @{text
 | 
| 
 | 
   227  | 
  "c\<^isub>\<tau>"}.  Constants are declared in the context as polymorphic
  | 
| 
20543
 | 
   228  | 
  families @{text "c :: \<sigma>"}, meaning that all substitution instances
 | 
| 
 | 
   229  | 
  @{text "c\<^isub>\<tau>"} for @{text "\<tau> = \<sigma>\<vartheta>"} are valid.
 | 
| 
20514
 | 
   230  | 
  | 
| 
20537
 | 
   231  | 
  The vector of \emph{type arguments} of constant @{text "c\<^isub>\<tau>"}
 | 
| 
 | 
   232  | 
  wrt.\ the declaration @{text "c :: \<sigma>"} is defined as the codomain of
 | 
| 
 | 
   233  | 
  the matcher @{text "\<vartheta> = {?\<alpha>\<^isub>1 \<mapsto> \<tau>\<^isub>1, \<dots>,
 | 
| 
 | 
   234  | 
  ?\<alpha>\<^isub>n \<mapsto> \<tau>\<^isub>n}"} presented in canonical order @{text
 | 
| 
 | 
   235  | 
  "(\<tau>\<^isub>1, \<dots>, \<tau>\<^isub>n)"}.  Within a given theory context,
  | 
| 
 | 
   236  | 
  there is a one-to-one correspondence between any constant @{text
 | 
| 
 | 
   237  | 
  "c\<^isub>\<tau>"} and the application @{text "c(\<tau>\<^isub>1, \<dots>,
 | 
| 
 | 
   238  | 
  \<tau>\<^isub>n)"} of its type arguments.  For example, with @{text "plus
 | 
| 
 | 
   239  | 
  :: \<alpha> \<Rightarrow> \<alpha> \<Rightarrow> \<alpha>"}, the instance @{text "plus\<^bsub>nat \<Rightarrow> nat \<Rightarrow>
 | 
| 
 | 
   240  | 
  nat\<^esub>"} corresponds to @{text "plus(nat)"}.
 | 
| 
20480
 | 
   241  | 
  | 
| 
20514
 | 
   242  | 
  Constant declarations @{text "c :: \<sigma>"} may contain sort constraints
 | 
| 
 | 
   243  | 
  for type variables in @{text "\<sigma>"}.  These are observed by
 | 
| 
 | 
   244  | 
  type-inference as expected, but \emph{ignored} by the core logic.
 | 
| 
 | 
   245  | 
  This means the primitive logic is able to reason with instances of
  | 
| 
20537
 | 
   246  | 
  polymorphic constants that the user-level type-checker would reject
  | 
| 
 | 
   247  | 
  due to violation of type class restrictions.
  | 
| 
20480
 | 
   248  | 
  | 
| 
20543
 | 
   249  | 
  \medskip An \emph{atomic} term is either a variable or constant.  A
 | 
| 
 | 
   250  | 
  \emph{term} is defined inductively over atomic terms, with
 | 
| 
 | 
   251  | 
  abstraction and application as follows: @{text "t = b | x\<^isub>\<tau> |
 | 
| 
 | 
   252  | 
  ?x\<^isub>\<tau> | c\<^isub>\<tau> | \<lambda>\<^isub>\<tau>. t | t\<^isub>1 t\<^isub>2"}.
  | 
| 
 | 
   253  | 
  Parsing and printing takes care of converting between an external
  | 
| 
 | 
   254  | 
  representation with named bound variables.  Subsequently, we shall
  | 
| 
 | 
   255  | 
  use the latter notation instead of internal de-Bruijn
  | 
| 
 | 
   256  | 
  representation.
  | 
| 
20498
 | 
   257  | 
  | 
| 
20537
 | 
   258  | 
  The inductive relation @{text "t :: \<tau>"} assigns a (unique) type to a
 | 
| 
 | 
   259  | 
  term according to the structure of atomic terms, abstractions, and
  | 
| 
 | 
   260  | 
  applicatins:
  | 
| 
20498
 | 
   261  | 
  \[
  | 
| 
20501
 | 
   262  | 
  \infer{@{text "a\<^isub>\<tau> :: \<tau>"}}{}
 | 
| 
20498
 | 
   263  | 
  \qquad
  | 
| 
20501
 | 
   264  | 
  \infer{@{text "(\<lambda>x\<^sub>\<tau>. t) :: \<tau> \<Rightarrow> \<sigma>"}}{@{text "t :: \<sigma>"}}
 | 
| 
 | 
   265  | 
  \qquad
  | 
| 
 | 
   266  | 
  \infer{@{text "t u :: \<sigma>"}}{@{text "t :: \<tau> \<Rightarrow> \<sigma>"} & @{text "u :: \<tau>"}}
 | 
| 
20498
 | 
   267  | 
  \]
  | 
| 
20514
 | 
   268  | 
  A \emph{well-typed term} is a term that can be typed according to these rules.
 | 
| 
20498
 | 
   269  | 
  | 
| 
20514
 | 
   270  | 
  Typing information can be omitted: type-inference is able to
  | 
| 
 | 
   271  | 
  reconstruct the most general type of a raw term, while assigning
  | 
| 
 | 
   272  | 
  most general types to all of its variables and constants.
  | 
| 
 | 
   273  | 
  Type-inference depends on a context of type constraints for fixed
  | 
| 
 | 
   274  | 
  variables, and declarations for polymorphic constants.
  | 
| 
 | 
   275  | 
  | 
| 
20537
 | 
   276  | 
  The identity of atomic terms consists both of the name and the type
  | 
| 
 | 
   277  | 
  component.  This means that different variables @{text
 | 
| 
 | 
   278  | 
  "x\<^bsub>\<tau>\<^isub>1\<^esub>"} and @{text
 | 
| 
 | 
   279  | 
  "x\<^bsub>\<tau>\<^isub>2\<^esub>"} may become the same after type
  | 
| 
 | 
   280  | 
  instantiation.  Some outer layers of the system make it hard to
  | 
| 
 | 
   281  | 
  produce variables of the same name, but different types.  In
  | 
| 
20543
 | 
   282  | 
  contrast, mixed instances of polymorphic constants occur frequently.
  | 
| 
20514
 | 
   283  | 
  | 
| 
 | 
   284  | 
  \medskip The \emph{hidden polymorphism} of a term @{text "t :: \<sigma>"}
 | 
| 
 | 
   285  | 
  is the set of type variables occurring in @{text "t"}, but not in
 | 
| 
20537
 | 
   286  | 
  @{text "\<sigma>"}.  This means that the term implicitly depends on type
 | 
| 
20543
 | 
   287  | 
  arguments that are not accounted in the result type, i.e.\ there are
  | 
| 
20537
 | 
   288  | 
  different type instances @{text "t\<vartheta> :: \<sigma>"} and @{text
 | 
| 
 | 
   289  | 
  "t\<vartheta>' :: \<sigma>"} with the same type.  This slightly
  | 
| 
20543
 | 
   290  | 
  pathological situation notoriously demands additional care.
  | 
| 
20514
 | 
   291  | 
  | 
| 
 | 
   292  | 
  \medskip A \emph{term abbreviation} is a syntactic definition @{text
 | 
| 
20537
 | 
   293  | 
  "c\<^isub>\<sigma> \<equiv> t"} of a closed term @{text "t"} of type @{text "\<sigma>"},
 | 
| 
 | 
   294  | 
  without any hidden polymorphism.  A term abbreviation looks like a
  | 
| 
20543
 | 
   295  | 
  constant in the syntax, but is expanded before entering the logical
  | 
| 
 | 
   296  | 
  core.  Abbreviations are usually reverted when printing terms, using
  | 
| 
 | 
   297  | 
  @{text "t \<rightarrow> c\<^isub>\<sigma>"} as rules for higher-order rewriting.
 | 
| 
20519
 | 
   298  | 
  | 
| 
 | 
   299  | 
  \medskip Canonical operations on @{text "\<lambda>"}-terms include @{text
 | 
| 
20537
 | 
   300  | 
  "\<alpha>\<beta>\<eta>"}-conversion: @{text "\<alpha>"}-conversion refers to capture-free
 | 
| 
20519
 | 
   301  | 
  renaming of bound variables; @{text "\<beta>"}-conversion contracts an
 | 
| 
20537
 | 
   302  | 
  abstraction applied to an argument term, substituting the argument
  | 
| 
20519
 | 
   303  | 
  in the body: @{text "(\<lambda>x. b)a"} becomes @{text "b[a/x]"}; @{text
 | 
| 
 | 
   304  | 
  "\<eta>"}-conversion contracts vacuous application-abstraction: @{text
 | 
| 
 | 
   305  | 
  "\<lambda>x. f x"} becomes @{text "f"}, provided that the bound variable
 | 
| 
20537
 | 
   306  | 
  does not occur in @{text "f"}.
 | 
| 
20519
 | 
   307  | 
  | 
| 
20537
 | 
   308  | 
  Terms are normally treated modulo @{text "\<alpha>"}-conversion, which is
 | 
| 
 | 
   309  | 
  implicit in the de-Bruijn representation.  Names for bound variables
  | 
| 
 | 
   310  | 
  in abstractions are maintained separately as (meaningless) comments,
  | 
| 
 | 
   311  | 
  mostly for parsing and printing.  Full @{text "\<alpha>\<beta>\<eta>"}-conversion is
 | 
| 
20543
 | 
   312  | 
  commonplace in various standard operations (\secref{sec:rules}) that
 | 
| 
20537
 | 
   313  | 
  are based on higher-order unification and matching.
  | 
| 
18537
 | 
   314  | 
*}
  | 
| 
 | 
   315  | 
  | 
| 
20514
 | 
   316  | 
text %mlref {*
 | 
| 
 | 
   317  | 
  \begin{mldecls}
 | 
| 
 | 
   318  | 
  @{index_ML_type term} \\
 | 
| 
20519
 | 
   319  | 
  @{index_ML "op aconv": "term * term -> bool"} \\
 | 
| 
20547
 | 
   320  | 
  @{index_ML map_types: "(typ -> typ) -> term -> term"} \\
 | 
| 
20519
 | 
   321  | 
  @{index_ML fold_types: "(typ -> 'a -> 'a) -> term -> 'a -> 'a"} \\
 | 
| 
20514
 | 
   322  | 
  @{index_ML map_aterms: "(term -> term) -> term -> term"} \\
 | 
| 
 | 
   323  | 
  @{index_ML fold_aterms: "(term -> 'a -> 'a) -> term -> 'a -> 'a"} \\
 | 
| 
20547
 | 
   324  | 
  \end{mldecls}
 | 
| 
 | 
   325  | 
  \begin{mldecls}
 | 
| 
20514
 | 
   326  | 
  @{index_ML fastype_of: "term -> typ"} \\
 | 
| 
20519
 | 
   327  | 
  @{index_ML lambda: "term -> term -> term"} \\
 | 
| 
 | 
   328  | 
  @{index_ML betapply: "term * term -> term"} \\
 | 
| 
20520
 | 
   329  | 
  @{index_ML Sign.add_consts_i: "(string * typ * mixfix) list -> theory -> theory"} \\
 | 
| 
24828
 | 
   330  | 
  @{index_ML Sign.add_abbrev: "string -> Markup.property list -> bstring * term -> theory -> (term * term) * theory"} \\
 | 
| 
20519
 | 
   331  | 
  @{index_ML Sign.const_typargs: "theory -> string * typ -> typ list"} \\
 | 
| 
 | 
   332  | 
  @{index_ML Sign.const_instance: "theory -> string * typ list -> typ"} \\
 | 
| 
20514
 | 
   333  | 
  \end{mldecls}
 | 
| 
18537
 | 
   334  | 
  | 
| 
20514
 | 
   335  | 
  \begin{description}
 | 
| 
18537
 | 
   336  | 
  | 
| 
20537
 | 
   337  | 
  \item @{ML_type term} represents de-Bruijn terms, with comments in
 | 
| 
 | 
   338  | 
  abstractions, and explicitly named free variables and constants;
  | 
| 
 | 
   339  | 
  this is a datatype with constructors @{ML Bound}, @{ML Free}, @{ML
 | 
| 
 | 
   340  | 
  Var}, @{ML Const}, @{ML Abs}, @{ML "op $"}.
 | 
| 
20519
 | 
   341  | 
  | 
| 
 | 
   342  | 
  \item @{text "t"}~@{ML aconv}~@{text "u"} checks @{text
 | 
| 
 | 
   343  | 
  "\<alpha>"}-equivalence of two terms.  This is the basic equality relation
  | 
| 
 | 
   344  | 
  on type @{ML_type term}; raw datatype equality should only be used
 | 
| 
 | 
   345  | 
  for operations related to parsing or printing!
  | 
| 
 | 
   346  | 
  | 
| 
20547
 | 
   347  | 
  \item @{ML map_types}~@{text "f t"} applies the mapping @{text
 | 
| 
20537
 | 
   348  | 
  "f"} to all types occurring in @{text "t"}.
 | 
| 
 | 
   349  | 
  | 
| 
 | 
   350  | 
  \item @{ML fold_types}~@{text "f t"} iterates the operation @{text
 | 
| 
 | 
   351  | 
  "f"} over all occurrences of types in @{text "t"}; the term
 | 
| 
 | 
   352  | 
  structure is traversed from left to right.
  | 
| 
20519
 | 
   353  | 
  | 
| 
20537
 | 
   354  | 
  \item @{ML map_aterms}~@{text "f t"} applies the mapping @{text "f"}
 | 
| 
 | 
   355  | 
  to all atomic terms (@{ML Bound}, @{ML Free}, @{ML Var}, @{ML
 | 
| 
 | 
   356  | 
  Const}) occurring in @{text "t"}.
 | 
| 
 | 
   357  | 
  | 
| 
 | 
   358  | 
  \item @{ML fold_aterms}~@{text "f t"} iterates the operation @{text
 | 
| 
 | 
   359  | 
  "f"} over all occurrences of atomic terms (@{ML Bound}, @{ML Free},
 | 
| 
 | 
   360  | 
  @{ML Var}, @{ML Const}) in @{text "t"}; the term structure is
 | 
| 
20519
 | 
   361  | 
  traversed from left to right.
  | 
| 
 | 
   362  | 
  | 
| 
20537
 | 
   363  | 
  \item @{ML fastype_of}~@{text "t"} determines the type of a
 | 
| 
 | 
   364  | 
  well-typed term.  This operation is relatively slow, despite the
  | 
| 
 | 
   365  | 
  omission of any sanity checks.
  | 
| 
20519
 | 
   366  | 
  | 
| 
 | 
   367  | 
  \item @{ML lambda}~@{text "a b"} produces an abstraction @{text
 | 
| 
20537
 | 
   368  | 
  "\<lambda>a. b"}, where occurrences of the atomic term @{text "a"} in the
 | 
| 
 | 
   369  | 
  body @{text "b"} are replaced by bound variables.
 | 
| 
20519
 | 
   370  | 
  | 
| 
20537
 | 
   371  | 
  \item @{ML betapply}~@{text "(t, u)"} produces an application @{text
 | 
| 
 | 
   372  | 
  "t u"}, with topmost @{text "\<beta>"}-conversion if @{text "t"} is an
 | 
| 
 | 
   373  | 
  abstraction.
  | 
| 
20519
 | 
   374  | 
  | 
| 
 | 
   375  | 
  \item @{ML Sign.add_consts_i}~@{text "[(c, \<sigma>, mx), \<dots>]"} declares a
 | 
| 
 | 
   376  | 
  new constant @{text "c :: \<sigma>"} with optional mixfix syntax.
 | 
| 
 | 
   377  | 
  | 
| 
24828
 | 
   378  | 
  \item @{ML Sign.add_abbrev}~@{text "print_mode properties (c, t)"}
 | 
| 
21827
 | 
   379  | 
  introduces a new term abbreviation @{text "c \<equiv> t"}.
 | 
| 
20519
 | 
   380  | 
  | 
| 
20520
 | 
   381  | 
  \item @{ML Sign.const_typargs}~@{text "thy (c, \<tau>)"} and @{ML
 | 
| 
 | 
   382  | 
  Sign.const_instance}~@{text "thy (c, [\<tau>\<^isub>1, \<dots>, \<tau>\<^isub>n])"}
 | 
| 
20543
 | 
   383  | 
  convert between two representations of polymorphic constants: full
  | 
| 
 | 
   384  | 
  type instance vs.\ compact type arguments form.
  | 
| 
18537
 | 
   385  | 
  | 
| 
20514
 | 
   386  | 
  \end{description}
 | 
| 
18537
 | 
   387  | 
*}
  | 
| 
 | 
   388  | 
  | 
| 
 | 
   389  | 
  | 
| 
20451
 | 
   390  | 
section {* Theorems \label{sec:thms} *}
 | 
| 
18537
 | 
   391  | 
  | 
| 
 | 
   392  | 
text {*
 | 
| 
20521
 | 
   393  | 
  \glossary{Proposition}{FIXME A \seeglossary{term} of
 | 
| 
 | 
   394  | 
  \seeglossary{type} @{text "prop"}.  Internally, there is nothing
 | 
| 
 | 
   395  | 
  special about propositions apart from their type, but the concrete
  | 
| 
 | 
   396  | 
  syntax enforces a clear distinction.  Propositions are structured
  | 
| 
 | 
   397  | 
  via implication @{text "A \<Longrightarrow> B"} or universal quantification @{text
 | 
| 
 | 
   398  | 
  "\<And>x. B x"} --- anything else is considered atomic.  The canonical
  | 
| 
 | 
   399  | 
  form for propositions is that of a \seeglossary{Hereditary Harrop
 | 
| 
 | 
   400  | 
  Formula}. FIXME}
  | 
| 
20480
 | 
   401  | 
  | 
| 
20501
 | 
   402  | 
  \glossary{Theorem}{A proven proposition within a certain theory and
 | 
| 
 | 
   403  | 
  proof context, formally @{text "\<Gamma> \<turnstile>\<^sub>\<Theta> \<phi>"}; both contexts are
 | 
| 
 | 
   404  | 
  rarely spelled out explicitly.  Theorems are usually normalized
  | 
| 
 | 
   405  | 
  according to the \seeglossary{HHF} format. FIXME}
 | 
| 
20480
 | 
   406  | 
  | 
| 
20519
 | 
   407  | 
  \glossary{Fact}{Sometimes used interchangeably for
 | 
| 
20501
 | 
   408  | 
  \seeglossary{theorem}.  Strictly speaking, a list of theorems,
 | 
| 
 | 
   409  | 
  essentially an extra-logical conjunction.  Facts emerge either as
  | 
| 
 | 
   410  | 
  local assumptions, or as results of local goal statements --- both
  | 
| 
 | 
   411  | 
  may be simultaneous, hence the list representation. FIXME}
  | 
| 
18537
 | 
   412  | 
  | 
| 
20501
 | 
   413  | 
  \glossary{Schematic variable}{FIXME}
 | 
| 
 | 
   414  | 
  | 
| 
 | 
   415  | 
  \glossary{Fixed variable}{A variable that is bound within a certain
 | 
| 
 | 
   416  | 
  proof context; an arbitrary-but-fixed entity within a portion of
  | 
| 
 | 
   417  | 
  proof text. FIXME}
  | 
| 
18537
 | 
   418  | 
  | 
| 
20501
 | 
   419  | 
  \glossary{Free variable}{Synonymous for \seeglossary{fixed
 | 
| 
 | 
   420  | 
  variable}. FIXME}
  | 
| 
 | 
   421  | 
  | 
| 
 | 
   422  | 
  \glossary{Bound variable}{FIXME}
 | 
| 
18537
 | 
   423  | 
  | 
| 
20501
 | 
   424  | 
  \glossary{Variable}{See \seeglossary{schematic variable},
 | 
| 
 | 
   425  | 
  \seeglossary{fixed variable}, \seeglossary{bound variable}, or
 | 
| 
 | 
   426  | 
  \seeglossary{type variable}.  The distinguishing feature of
 | 
| 
 | 
   427  | 
  different variables is their binding scope. FIXME}
  | 
| 
18537
 | 
   428  | 
  | 
| 
20543
 | 
   429  | 
  A \emph{proposition} is a well-typed term of type @{text "prop"}, a
 | 
| 
20521
 | 
   430  | 
  \emph{theorem} is a proven proposition (depending on a context of
 | 
| 
 | 
   431  | 
  hypotheses and the background theory).  Primitive inferences include
  | 
| 
 | 
   432  | 
  plain natural deduction rules for the primary connectives @{text
 | 
| 
20537
 | 
   433  | 
  "\<And>"} and @{text "\<Longrightarrow>"} of the framework.  There is also a builtin
 | 
| 
 | 
   434  | 
  notion of equality/equivalence @{text "\<equiv>"}.
 | 
| 
20521
 | 
   435  | 
*}
  | 
| 
 | 
   436  | 
  | 
| 
22322
 | 
   437  | 
subsection {* Primitive connectives and rules \label{sec:prim_rules} *}
 | 
| 
18537
 | 
   438  | 
  | 
| 
20521
 | 
   439  | 
text {*
 | 
| 
20543
 | 
   440  | 
  The theory @{text "Pure"} contains constant declarations for the
 | 
| 
 | 
   441  | 
  primitive connectives @{text "\<And>"}, @{text "\<Longrightarrow>"}, and @{text "\<equiv>"} of
 | 
| 
 | 
   442  | 
  the logical framework, see \figref{fig:pure-connectives}.  The
 | 
| 
 | 
   443  | 
  derivability judgment @{text "A\<^isub>1, \<dots>, A\<^isub>n \<turnstile> B"} is
 | 
| 
 | 
   444  | 
  defined inductively by the primitive inferences given in
  | 
| 
 | 
   445  | 
  \figref{fig:prim-rules}, with the global restriction that the
 | 
| 
 | 
   446  | 
  hypotheses must \emph{not} contain any schematic variables.  The
 | 
| 
 | 
   447  | 
  builtin equality is conceptually axiomatized as shown in
  | 
| 
20521
 | 
   448  | 
  \figref{fig:pure-equality}, although the implementation works
 | 
| 
20543
 | 
   449  | 
  directly with derived inferences.
  | 
| 
20521
 | 
   450  | 
  | 
| 
 | 
   451  | 
  \begin{figure}[htb]
 | 
| 
 | 
   452  | 
  \begin{center}
 | 
| 
20501
 | 
   453  | 
  \begin{tabular}{ll}
 | 
| 
 | 
   454  | 
  @{text "all :: (\<alpha> \<Rightarrow> prop) \<Rightarrow> prop"} & universal quantification (binder @{text "\<And>"}) \\
 | 
| 
 | 
   455  | 
  @{text "\<Longrightarrow> :: prop \<Rightarrow> prop \<Rightarrow> prop"} & implication (right associative infix) \\
 | 
| 
20521
 | 
   456  | 
  @{text "\<equiv> :: \<alpha> \<Rightarrow> \<alpha> \<Rightarrow> prop"} & equality relation (infix) \\
 | 
| 
20501
 | 
   457  | 
  \end{tabular}
 | 
| 
20537
 | 
   458  | 
  \caption{Primitive connectives of Pure}\label{fig:pure-connectives}
 | 
| 
20521
 | 
   459  | 
  \end{center}
 | 
| 
 | 
   460  | 
  \end{figure}
 | 
| 
18537
 | 
   461  | 
  | 
| 
20501
 | 
   462  | 
  \begin{figure}[htb]
 | 
| 
 | 
   463  | 
  \begin{center}
 | 
| 
20498
 | 
   464  | 
  \[
  | 
| 
 | 
   465  | 
  \infer[@{text "(axiom)"}]{@{text "\<turnstile> A"}}{@{text "A \<in> \<Theta>"}}
 | 
| 
 | 
   466  | 
  \qquad
  | 
| 
 | 
   467  | 
  \infer[@{text "(assume)"}]{@{text "A \<turnstile> A"}}{}
 | 
| 
 | 
   468  | 
  \]
  | 
| 
 | 
   469  | 
  \[
  | 
| 
20537
 | 
   470  | 
  \infer[@{text "(\<And>_intro)"}]{@{text "\<Gamma> \<turnstile> \<And>x. b[x]"}}{@{text "\<Gamma> \<turnstile> b[x]"} & @{text "x \<notin> \<Gamma>"}}
 | 
| 
20498
 | 
   471  | 
  \qquad
  | 
| 
20537
 | 
   472  | 
  \infer[@{text "(\<And>_elim)"}]{@{text "\<Gamma> \<turnstile> b[a]"}}{@{text "\<Gamma> \<turnstile> \<And>x. b[x]"}}
 | 
| 
20498
 | 
   473  | 
  \]
  | 
| 
 | 
   474  | 
  \[
  | 
| 
 | 
   475  | 
  \infer[@{text "(\<Longrightarrow>_intro)"}]{@{text "\<Gamma> - A \<turnstile> A \<Longrightarrow> B"}}{@{text "\<Gamma> \<turnstile> B"}}
 | 
| 
 | 
   476  | 
  \qquad
  | 
| 
 | 
   477  | 
  \infer[@{text "(\<Longrightarrow>_elim)"}]{@{text "\<Gamma>\<^sub>1 \<union> \<Gamma>\<^sub>2 \<turnstile> B"}}{@{text "\<Gamma>\<^sub>1 \<turnstile> A \<Longrightarrow> B"} & @{text "\<Gamma>\<^sub>2 \<turnstile> A"}}
 | 
| 
 | 
   478  | 
  \]
  | 
| 
20521
 | 
   479  | 
  \caption{Primitive inferences of Pure}\label{fig:prim-rules}
 | 
| 
 | 
   480  | 
  \end{center}
 | 
| 
 | 
   481  | 
  \end{figure}
 | 
| 
 | 
   482  | 
  | 
| 
 | 
   483  | 
  \begin{figure}[htb]
 | 
| 
 | 
   484  | 
  \begin{center}
 | 
| 
 | 
   485  | 
  \begin{tabular}{ll}
 | 
| 
20537
 | 
   486  | 
  @{text "\<turnstile> (\<lambda>x. b[x]) a \<equiv> b[a]"} & @{text "\<beta>"}-conversion \\
 | 
| 
20521
 | 
   487  | 
  @{text "\<turnstile> x \<equiv> x"} & reflexivity \\
 | 
| 
 | 
   488  | 
  @{text "\<turnstile> x \<equiv> y \<Longrightarrow> P x \<Longrightarrow> P y"} & substitution \\
 | 
| 
 | 
   489  | 
  @{text "\<turnstile> (\<And>x. f x \<equiv> g x) \<Longrightarrow> f \<equiv> g"} & extensionality \\
 | 
| 
20537
 | 
   490  | 
  @{text "\<turnstile> (A \<Longrightarrow> B) \<Longrightarrow> (B \<Longrightarrow> A) \<Longrightarrow> A \<equiv> B"} & logical equivalence \\
 | 
| 
20521
 | 
   491  | 
  \end{tabular}
 | 
| 
20542
 | 
   492  | 
  \caption{Conceptual axiomatization of Pure equality}\label{fig:pure-equality}
 | 
| 
20501
 | 
   493  | 
  \end{center}
 | 
| 
 | 
   494  | 
  \end{figure}
 | 
| 
18537
 | 
   495  | 
  | 
| 
20501
 | 
   496  | 
  The introduction and elimination rules for @{text "\<And>"} and @{text
 | 
| 
20537
 | 
   497  | 
  "\<Longrightarrow>"} are analogous to formation of dependently typed @{text
 | 
| 
20501
 | 
   498  | 
  "\<lambda>"}-terms representing the underlying proof objects.  Proof terms
  | 
| 
20543
 | 
   499  | 
  are irrelevant in the Pure logic, though; they cannot occur within
  | 
| 
 | 
   500  | 
  propositions.  The system provides a runtime option to record
  | 
| 
20537
 | 
   501  | 
  explicit proof terms for primitive inferences.  Thus all three
  | 
| 
 | 
   502  | 
  levels of @{text "\<lambda>"}-calculus become explicit: @{text "\<Rightarrow>"} for
 | 
| 
 | 
   503  | 
  terms, and @{text "\<And>/\<Longrightarrow>"} for proofs (cf.\
 | 
| 
 | 
   504  | 
  \cite{Berghofer-Nipkow:2000:TPHOL}).
 | 
| 
20491
 | 
   505  | 
  | 
| 
20537
 | 
   506  | 
  Observe that locally fixed parameters (as in @{text "\<And>_intro"}) need
 | 
| 
 | 
   507  | 
  not be recorded in the hypotheses, because the simple syntactic
  | 
| 
20543
 | 
   508  | 
  types of Pure are always inhabitable.  ``Assumptions'' @{text "x ::
 | 
| 
 | 
   509  | 
  \<tau>"} for type-membership are only present as long as some @{text
 | 
| 
 | 
   510  | 
  "x\<^isub>\<tau>"} occurs in the statement body.\footnote{This is the key
 | 
| 
 | 
   511  | 
  difference to ``@{text "\<lambda>HOL"}'' in the PTS framework
 | 
| 
 | 
   512  | 
  \cite{Barendregt-Geuvers:2001}, where hypotheses @{text "x : A"} are
 | 
| 
 | 
   513  | 
  treated uniformly for propositions and types.}
  | 
| 
20501
 | 
   514  | 
  | 
| 
 | 
   515  | 
  \medskip The axiomatization of a theory is implicitly closed by
  | 
| 
20537
 | 
   516  | 
  forming all instances of type and term variables: @{text "\<turnstile>
 | 
| 
 | 
   517  | 
  A\<vartheta>"} holds for any substitution instance of an axiom
  | 
| 
20543
 | 
   518  | 
  @{text "\<turnstile> A"}.  By pushing substitutions through derivations
 | 
| 
 | 
   519  | 
  inductively, we also get admissible @{text "generalize"} and @{text
 | 
| 
 | 
   520  | 
  "instance"} rules as shown in \figref{fig:subst-rules}.
 | 
| 
20501
 | 
   521  | 
  | 
| 
 | 
   522  | 
  \begin{figure}[htb]
 | 
| 
 | 
   523  | 
  \begin{center}
 | 
| 
20498
 | 
   524  | 
  \[
  | 
| 
20501
 | 
   525  | 
  \infer{@{text "\<Gamma> \<turnstile> B[?\<alpha>]"}}{@{text "\<Gamma> \<turnstile> B[\<alpha>]"} & @{text "\<alpha> \<notin> \<Gamma>"}}
 | 
| 
 | 
   526  | 
  \quad
  | 
| 
 | 
   527  | 
  \infer[\quad@{text "(generalize)"}]{@{text "\<Gamma> \<turnstile> B[?x]"}}{@{text "\<Gamma> \<turnstile> B[x]"} & @{text "x \<notin> \<Gamma>"}}
 | 
| 
20498
 | 
   528  | 
  \]
  | 
| 
 | 
   529  | 
  \[
  | 
| 
20501
 | 
   530  | 
  \infer{@{text "\<Gamma> \<turnstile> B[\<tau>]"}}{@{text "\<Gamma> \<turnstile> B[?\<alpha>]"}}
 | 
| 
 | 
   531  | 
  \quad
  | 
| 
 | 
   532  | 
  \infer[\quad@{text "(instantiate)"}]{@{text "\<Gamma> \<turnstile> B[t]"}}{@{text "\<Gamma> \<turnstile> B[?x]"}}
 | 
| 
20498
 | 
   533  | 
  \]
  | 
| 
20501
 | 
   534  | 
  \caption{Admissible substitution rules}\label{fig:subst-rules}
 | 
| 
 | 
   535  | 
  \end{center}
 | 
| 
 | 
   536  | 
  \end{figure}
 | 
| 
18537
 | 
   537  | 
  | 
| 
20537
 | 
   538  | 
  Note that @{text "instantiate"} does not require an explicit
 | 
| 
 | 
   539  | 
  side-condition, because @{text "\<Gamma>"} may never contain schematic
 | 
| 
 | 
   540  | 
  variables.
  | 
| 
 | 
   541  | 
  | 
| 
 | 
   542  | 
  In principle, variables could be substituted in hypotheses as well,
  | 
| 
20543
 | 
   543  | 
  but this would disrupt the monotonicity of reasoning: deriving
  | 
| 
 | 
   544  | 
  @{text "\<Gamma>\<vartheta> \<turnstile> B\<vartheta>"} from @{text "\<Gamma> \<turnstile> B"} is
 | 
| 
 | 
   545  | 
  correct, but @{text "\<Gamma>\<vartheta> \<supseteq> \<Gamma>"} does not necessarily hold:
 | 
| 
 | 
   546  | 
  the result belongs to a different proof context.
  | 
| 
20542
 | 
   547  | 
  | 
| 
20543
 | 
   548  | 
  \medskip An \emph{oracle} is a function that produces axioms on the
 | 
| 
 | 
   549  | 
  fly.  Logically, this is an instance of the @{text "axiom"} rule
 | 
| 
 | 
   550  | 
  (\figref{fig:prim-rules}), but there is an operational difference.
 | 
| 
 | 
   551  | 
  The system always records oracle invocations within derivations of
  | 
| 
 | 
   552  | 
  theorems.  Tracing plain axioms (and named theorems) is optional.
  | 
| 
20542
 | 
   553  | 
  | 
| 
 | 
   554  | 
  Axiomatizations should be limited to the bare minimum, typically as
  | 
| 
 | 
   555  | 
  part of the initial logical basis of an object-logic formalization.
  | 
| 
20543
 | 
   556  | 
  Later on, theories are usually developed in a strictly definitional
  | 
| 
 | 
   557  | 
  fashion, by stating only certain equalities over new constants.
  | 
| 
20542
 | 
   558  | 
  | 
| 
 | 
   559  | 
  A \emph{simple definition} consists of a constant declaration @{text
 | 
| 
20543
 | 
   560  | 
  "c :: \<sigma>"} together with an axiom @{text "\<turnstile> c \<equiv> t"}, where @{text "t
 | 
| 
 | 
   561  | 
  :: \<sigma>"} is a closed term without any hidden polymorphism.  The RHS
  | 
| 
 | 
   562  | 
  may depend on further defined constants, but not @{text "c"} itself.
 | 
| 
 | 
   563  | 
  Definitions of functions may be presented as @{text "c \<^vec>x \<equiv>
 | 
| 
 | 
   564  | 
  t"} instead of the puristic @{text "c \<equiv> \<lambda>\<^vec>x. t"}.
 | 
| 
20542
 | 
   565  | 
  | 
| 
20543
 | 
   566  | 
  An \emph{overloaded definition} consists of a collection of axioms
 | 
| 
 | 
   567  | 
  for the same constant, with zero or one equations @{text
 | 
| 
 | 
   568  | 
  "c((\<^vec>\<alpha>)\<kappa>) \<equiv> t"} for each type constructor @{text "\<kappa>"} (for
 | 
| 
 | 
   569  | 
  distinct variables @{text "\<^vec>\<alpha>"}).  The RHS may mention
 | 
| 
 | 
   570  | 
  previously defined constants as above, or arbitrary constants @{text
 | 
| 
 | 
   571  | 
  "d(\<alpha>\<^isub>i)"} for some @{text "\<alpha>\<^isub>i"} projected from @{text
 | 
| 
 | 
   572  | 
  "\<^vec>\<alpha>"}.  Thus overloaded definitions essentially work by
  | 
| 
 | 
   573  | 
  primitive recursion over the syntactic structure of a single type
  | 
| 
 | 
   574  | 
  argument.
  | 
| 
20521
 | 
   575  | 
*}
  | 
| 
20498
 | 
   576  | 
  | 
| 
20521
 | 
   577  | 
text %mlref {*
 | 
| 
 | 
   578  | 
  \begin{mldecls}
 | 
| 
 | 
   579  | 
  @{index_ML_type ctyp} \\
 | 
| 
 | 
   580  | 
  @{index_ML_type cterm} \\
 | 
| 
20547
 | 
   581  | 
  @{index_ML Thm.ctyp_of: "theory -> typ -> ctyp"} \\
 | 
| 
 | 
   582  | 
  @{index_ML Thm.cterm_of: "theory -> term -> cterm"} \\
 | 
| 
 | 
   583  | 
  \end{mldecls}
 | 
| 
 | 
   584  | 
  \begin{mldecls}
 | 
| 
20521
 | 
   585  | 
  @{index_ML_type thm} \\
 | 
| 
20542
 | 
   586  | 
  @{index_ML proofs: "int ref"} \\
 | 
| 
 | 
   587  | 
  @{index_ML Thm.assume: "cterm -> thm"} \\
 | 
| 
 | 
   588  | 
  @{index_ML Thm.forall_intr: "cterm -> thm -> thm"} \\
 | 
| 
 | 
   589  | 
  @{index_ML Thm.forall_elim: "cterm -> thm -> thm"} \\
 | 
| 
 | 
   590  | 
  @{index_ML Thm.implies_intr: "cterm -> thm -> thm"} \\
 | 
| 
 | 
   591  | 
  @{index_ML Thm.implies_elim: "thm -> thm -> thm"} \\
 | 
| 
 | 
   592  | 
  @{index_ML Thm.generalize: "string list * string list -> int -> thm -> thm"} \\
 | 
| 
 | 
   593  | 
  @{index_ML Thm.instantiate: "(ctyp * ctyp) list * (cterm * cterm) list -> thm -> thm"} \\
 | 
| 
 | 
   594  | 
  @{index_ML Thm.get_axiom_i: "theory -> string -> thm"} \\
 | 
| 
 | 
   595  | 
  @{index_ML Thm.invoke_oracle_i: "theory -> string -> theory * Object.T -> thm"} \\
 | 
| 
20547
 | 
   596  | 
  \end{mldecls}
 | 
| 
 | 
   597  | 
  \begin{mldecls}
 | 
| 
20542
 | 
   598  | 
  @{index_ML Theory.add_axioms_i: "(string * term) list -> theory -> theory"} \\
 | 
| 
 | 
   599  | 
  @{index_ML Theory.add_deps: "string -> string * typ -> (string * typ) list -> theory -> theory"} \\
 | 
| 
 | 
   600  | 
  @{index_ML Theory.add_oracle: "string * (theory * Object.T -> term) -> theory -> theory"} \\
 | 
| 
 | 
   601  | 
  @{index_ML Theory.add_defs_i: "bool -> bool -> (bstring * term) list -> theory -> theory"} \\
 | 
| 
20521
 | 
   602  | 
  \end{mldecls}
 | 
| 
 | 
   603  | 
  | 
| 
 | 
   604  | 
  \begin{description}
 | 
| 
 | 
   605  | 
  | 
| 
20542
 | 
   606  | 
  \item @{ML_type ctyp} and @{ML_type cterm} represent certified types
 | 
| 
 | 
   607  | 
  and terms, respectively.  These are abstract datatypes that
  | 
| 
 | 
   608  | 
  guarantee that its values have passed the full well-formedness (and
  | 
| 
 | 
   609  | 
  well-typedness) checks, relative to the declarations of type
  | 
| 
 | 
   610  | 
  constructors, constants etc. in the theory.
  | 
| 
 | 
   611  | 
  | 
| 
20547
 | 
   612  | 
  \item @{ML ctyp_of}~@{text "thy \<tau>"} and @{ML cterm_of}~@{text "thy
 | 
| 
 | 
   613  | 
  t"} explicitly checks types and terms, respectively.  This also
  | 
| 
 | 
   614  | 
  involves some basic normalizations, such expansion of type and term
  | 
| 
 | 
   615  | 
  abbreviations from the theory context.
  | 
| 
 | 
   616  | 
  | 
| 
 | 
   617  | 
  Re-certification is relatively slow and should be avoided in tight
  | 
| 
 | 
   618  | 
  reasoning loops.  There are separate operations to decompose
  | 
| 
 | 
   619  | 
  certified entities (including actual theorems).
  | 
| 
20542
 | 
   620  | 
  | 
| 
 | 
   621  | 
  \item @{ML_type thm} represents proven propositions.  This is an
 | 
| 
 | 
   622  | 
  abstract datatype that guarantees that its values have been
  | 
| 
 | 
   623  | 
  constructed by basic principles of the @{ML_struct Thm} module.
 | 
| 
20543
 | 
   624  | 
  Every @{ML thm} value contains a sliding back-reference to the
 | 
| 
 | 
   625  | 
  enclosing theory, cf.\ \secref{sec:context-theory}.
 | 
| 
20542
 | 
   626  | 
  | 
| 
20543
 | 
   627  | 
  \item @{ML proofs} determines the detail of proof recording within
 | 
| 
 | 
   628  | 
  @{ML_type thm} values: @{ML 0} records only oracles, @{ML 1} records
 | 
| 
 | 
   629  | 
  oracles, axioms and named theorems, @{ML 2} records full proof
 | 
| 
 | 
   630  | 
  terms.
  | 
| 
20542
 | 
   631  | 
  | 
| 
 | 
   632  | 
  \item @{ML Thm.assume}, @{ML Thm.forall_intr}, @{ML
 | 
| 
 | 
   633  | 
  Thm.forall_elim}, @{ML Thm.implies_intr}, and @{ML Thm.implies_elim}
 | 
| 
 | 
   634  | 
  correspond to the primitive inferences of \figref{fig:prim-rules}.
 | 
| 
 | 
   635  | 
  | 
| 
 | 
   636  | 
  \item @{ML Thm.generalize}~@{text "(\<^vec>\<alpha>, \<^vec>x)"}
 | 
| 
 | 
   637  | 
  corresponds to the @{text "generalize"} rules of
 | 
| 
20543
 | 
   638  | 
  \figref{fig:subst-rules}.  Here collections of type and term
 | 
| 
 | 
   639  | 
  variables are generalized simultaneously, specified by the given
  | 
| 
 | 
   640  | 
  basic names.
  | 
| 
20521
 | 
   641  | 
  | 
| 
20542
 | 
   642  | 
  \item @{ML Thm.instantiate}~@{text "(\<^vec>\<alpha>\<^isub>s,
 | 
| 
 | 
   643  | 
  \<^vec>x\<^isub>\<tau>)"} corresponds to the @{text "instantiate"} rules
 | 
| 
 | 
   644  | 
  of \figref{fig:subst-rules}.  Type variables are substituted before
 | 
| 
 | 
   645  | 
  term variables.  Note that the types in @{text "\<^vec>x\<^isub>\<tau>"}
 | 
| 
 | 
   646  | 
  refer to the instantiated versions.
  | 
| 
 | 
   647  | 
  | 
| 
 | 
   648  | 
  \item @{ML Thm.get_axiom_i}~@{text "thy name"} retrieves a named
 | 
| 
 | 
   649  | 
  axiom, cf.\ @{text "axiom"} in \figref{fig:prim-rules}.
 | 
| 
 | 
   650  | 
  | 
| 
20543
 | 
   651  | 
  \item @{ML Thm.invoke_oracle_i}~@{text "thy name arg"} invokes a
 | 
| 
 | 
   652  | 
  named oracle function, cf.\ @{text "axiom"} in
 | 
| 
 | 
   653  | 
  \figref{fig:prim-rules}.
 | 
| 
20521
 | 
   654  | 
  | 
| 
20543
 | 
   655  | 
  \item @{ML Theory.add_axioms_i}~@{text "[(name, A), \<dots>]"} declares
 | 
| 
 | 
   656  | 
  arbitrary propositions as axioms.
  | 
| 
20542
 | 
   657  | 
  | 
| 
20543
 | 
   658  | 
  \item @{ML Theory.add_oracle}~@{text "(name, f)"} declares an oracle
 | 
| 
 | 
   659  | 
  function for generating arbitrary axioms on the fly.
  | 
| 
20542
 | 
   660  | 
  | 
| 
 | 
   661  | 
  \item @{ML Theory.add_deps}~@{text "name c\<^isub>\<tau>
 | 
| 
20543
 | 
   662  | 
  \<^vec>d\<^isub>\<sigma>"} declares dependencies of a named specification
  | 
| 
 | 
   663  | 
  for constant @{text "c\<^isub>\<tau>"}, relative to existing
 | 
| 
 | 
   664  | 
  specifications for constants @{text "\<^vec>d\<^isub>\<sigma>"}.
 | 
| 
20542
 | 
   665  | 
  | 
| 
 | 
   666  | 
  \item @{ML Theory.add_defs_i}~@{text "unchecked overloaded [(name, c
 | 
| 
20543
 | 
   667  | 
  \<^vec>x \<equiv> t), \<dots>]"} states a definitional axiom for an existing
  | 
| 
 | 
   668  | 
  constant @{text "c"}.  Dependencies are recorded (cf.\ @{ML
 | 
| 
 | 
   669  | 
  Theory.add_deps}), unless the @{text "unchecked"} option is set.
 | 
| 
20521
 | 
   670  | 
  | 
| 
 | 
   671  | 
  \end{description}
 | 
| 
 | 
   672  | 
*}
  | 
| 
 | 
   673  | 
  | 
| 
 | 
   674  | 
  | 
| 
20543
 | 
   675  | 
subsection {* Auxiliary definitions *}
 | 
| 
20521
 | 
   676  | 
  | 
| 
 | 
   677  | 
text {*
 | 
| 
20543
 | 
   678  | 
  Theory @{text "Pure"} provides a few auxiliary definitions, see
 | 
| 
 | 
   679  | 
  \figref{fig:pure-aux}.  These special constants are normally not
 | 
| 
 | 
   680  | 
  exposed to the user, but appear in internal encodings.
  | 
| 
20501
 | 
   681  | 
  | 
| 
 | 
   682  | 
  \begin{figure}[htb]
 | 
| 
 | 
   683  | 
  \begin{center}
 | 
| 
20498
 | 
   684  | 
  \begin{tabular}{ll}
 | 
| 
20521
 | 
   685  | 
  @{text "conjunction :: prop \<Rightarrow> prop \<Rightarrow> prop"} & (infix @{text "&"}) \\
 | 
| 
 | 
   686  | 
  @{text "\<turnstile> A & B \<equiv> (\<And>C. (A \<Longrightarrow> B \<Longrightarrow> C) \<Longrightarrow> C)"} \\[1ex]
 | 
| 
20543
 | 
   687  | 
  @{text "prop :: prop \<Rightarrow> prop"} & (prefix @{text "#"}, suppressed) \\
 | 
| 
20521
 | 
   688  | 
  @{text "#A \<equiv> A"} \\[1ex]
 | 
| 
 | 
   689  | 
  @{text "term :: \<alpha> \<Rightarrow> prop"} & (prefix @{text "TERM"}) \\
 | 
| 
 | 
   690  | 
  @{text "term x \<equiv> (\<And>A. A \<Longrightarrow> A)"} \\[1ex]
 | 
| 
 | 
   691  | 
  @{text "TYPE :: \<alpha> itself"} & (prefix @{text "TYPE"}) \\
 | 
| 
 | 
   692  | 
  @{text "(unspecified)"} \\
 | 
| 
20498
 | 
   693  | 
  \end{tabular}
 | 
| 
20521
 | 
   694  | 
  \caption{Definitions of auxiliary connectives}\label{fig:pure-aux}
 | 
| 
20501
 | 
   695  | 
  \end{center}
 | 
| 
 | 
   696  | 
  \end{figure}
 | 
| 
 | 
   697  | 
  | 
| 
20537
 | 
   698  | 
  Derived conjunction rules include introduction @{text "A \<Longrightarrow> B \<Longrightarrow> A &
 | 
| 
 | 
   699  | 
  B"}, and destructions @{text "A & B \<Longrightarrow> A"} and @{text "A & B \<Longrightarrow> B"}.
 | 
| 
 | 
   700  | 
  Conjunction allows to treat simultaneous assumptions and conclusions
  | 
| 
 | 
   701  | 
  uniformly.  For example, multiple claims are intermediately
  | 
| 
20543
 | 
   702  | 
  represented as explicit conjunction, but this is refined into
  | 
| 
 | 
   703  | 
  separate sub-goals before the user continues the proof; the final
  | 
| 
 | 
   704  | 
  result is projected into a list of theorems (cf.\
  | 
| 
20537
 | 
   705  | 
  \secref{sec:tactical-goals}).
 | 
| 
20498
 | 
   706  | 
  | 
| 
20537
 | 
   707  | 
  The @{text "prop"} marker (@{text "#"}) makes arbitrarily complex
 | 
| 
 | 
   708  | 
  propositions appear as atomic, without changing the meaning: @{text
 | 
| 
 | 
   709  | 
  "\<Gamma> \<turnstile> A"} and @{text "\<Gamma> \<turnstile> #A"} are interchangeable.  See
 | 
| 
 | 
   710  | 
  \secref{sec:tactical-goals} for specific operations.
 | 
| 
20521
 | 
   711  | 
  | 
| 
20543
 | 
   712  | 
  The @{text "term"} marker turns any well-typed term into a derivable
 | 
| 
 | 
   713  | 
  proposition: @{text "\<turnstile> TERM t"} holds unconditionally.  Although
 | 
| 
 | 
   714  | 
  this is logically vacuous, it allows to treat terms and proofs
  | 
| 
 | 
   715  | 
  uniformly, similar to a type-theoretic framework.
  | 
| 
20498
 | 
   716  | 
  | 
| 
20537
 | 
   717  | 
  The @{text "TYPE"} constructor is the canonical representative of
 | 
| 
 | 
   718  | 
  the unspecified type @{text "\<alpha> itself"}; it essentially injects the
 | 
| 
 | 
   719  | 
  language of types into that of terms.  There is specific notation
  | 
| 
 | 
   720  | 
  @{text "TYPE(\<tau>)"} for @{text "TYPE\<^bsub>\<tau>
 | 
| 
20521
 | 
   721  | 
 itself\<^esub>"}.
  | 
| 
20537
 | 
   722  | 
  Although being devoid of any particular meaning, the @{text
 | 
| 
 | 
   723  | 
  "TYPE(\<tau>)"} accounts for the type @{text "\<tau>"} within the term
 | 
| 
 | 
   724  | 
  language.  In particular, @{text "TYPE(\<alpha>)"} may be used as formal
 | 
| 
 | 
   725  | 
  argument in primitive definitions, in order to circumvent hidden
  | 
| 
 | 
   726  | 
  polymorphism (cf.\ \secref{sec:terms}).  For example, @{text "c
 | 
| 
 | 
   727  | 
  TYPE(\<alpha>) \<equiv> A[\<alpha>]"} defines @{text "c :: \<alpha> itself \<Rightarrow> prop"} in terms of
 | 
| 
 | 
   728  | 
  a proposition @{text "A"} that depends on an additional type
 | 
| 
 | 
   729  | 
  argument, which is essentially a predicate on types.
  | 
| 
20521
 | 
   730  | 
*}
  | 
| 
20501
 | 
   731  | 
  | 
| 
20521
 | 
   732  | 
text %mlref {*
 | 
| 
 | 
   733  | 
  \begin{mldecls}
 | 
| 
 | 
   734  | 
  @{index_ML Conjunction.intr: "thm -> thm -> thm"} \\
 | 
| 
 | 
   735  | 
  @{index_ML Conjunction.elim: "thm -> thm * thm"} \\
 | 
| 
 | 
   736  | 
  @{index_ML Drule.mk_term: "cterm -> thm"} \\
 | 
| 
 | 
   737  | 
  @{index_ML Drule.dest_term: "thm -> cterm"} \\
 | 
| 
 | 
   738  | 
  @{index_ML Logic.mk_type: "typ -> term"} \\
 | 
| 
 | 
   739  | 
  @{index_ML Logic.dest_type: "term -> typ"} \\
 | 
| 
 | 
   740  | 
  \end{mldecls}
 | 
| 
 | 
   741  | 
  | 
| 
 | 
   742  | 
  \begin{description}
 | 
| 
 | 
   743  | 
  | 
| 
20542
 | 
   744  | 
  \item @{ML Conjunction.intr} derives @{text "A & B"} from @{text
 | 
| 
 | 
   745  | 
  "A"} and @{text "B"}.
 | 
| 
 | 
   746  | 
  | 
| 
20543
 | 
   747  | 
  \item @{ML Conjunction.elim} derives @{text "A"} and @{text "B"}
 | 
| 
20542
 | 
   748  | 
  from @{text "A & B"}.
 | 
| 
 | 
   749  | 
  | 
| 
20543
 | 
   750  | 
  \item @{ML Drule.mk_term} derives @{text "TERM t"}.
 | 
| 
20542
 | 
   751  | 
  | 
| 
20543
 | 
   752  | 
  \item @{ML Drule.dest_term} recovers term @{text "t"} from @{text
 | 
| 
 | 
   753  | 
  "TERM t"}.
  | 
| 
20542
 | 
   754  | 
  | 
| 
 | 
   755  | 
  \item @{ML Logic.mk_type}~@{text "\<tau>"} produces the term @{text
 | 
| 
 | 
   756  | 
  "TYPE(\<tau>)"}.
  | 
| 
 | 
   757  | 
  | 
| 
 | 
   758  | 
  \item @{ML Logic.dest_type}~@{text "TYPE(\<tau>)"} recovers the type
 | 
| 
 | 
   759  | 
  @{text "\<tau>"}.
 | 
| 
20521
 | 
   760  | 
  | 
| 
 | 
   761  | 
  \end{description}
 | 
| 
20491
 | 
   762  | 
*}
  | 
| 
18537
 | 
   763  | 
  | 
| 
20480
 | 
   764  | 
  | 
| 
20491
 | 
   765  | 
section {* Rules \label{sec:rules} *}
 | 
| 
18537
 | 
   766  | 
  | 
| 
20929
 | 
   767  | 
text %FIXME {*
 | 
| 
18537
 | 
   768  | 
  | 
| 
 | 
   769  | 
FIXME
  | 
| 
 | 
   770  | 
  | 
| 
20491
 | 
   771  | 
  A \emph{rule} is any Pure theorem in HHF normal form; there is a
 | 
| 
 | 
   772  | 
  separate calculus for rule composition, which is modeled after
  | 
| 
 | 
   773  | 
  Gentzen's Natural Deduction \cite{Gentzen:1935}, but allows
 | 
| 
 | 
   774  | 
  rules to be nested arbitrarily, similar to \cite{extensions91}.
 | 
| 
 | 
   775  | 
  | 
| 
 | 
   776  | 
  Normally, all theorems accessible to the user are proper rules.
  | 
| 
 | 
   777  | 
  Low-level inferences are occasional required internally, but the
  | 
| 
 | 
   778  | 
  result should be always presented in canonical form.  The higher
  | 
| 
 | 
   779  | 
  interfaces of Isabelle/Isar will always produce proper rules.  It is
  | 
| 
 | 
   780  | 
  important to maintain this invariant in add-on applications!
  | 
| 
 | 
   781  | 
  | 
| 
 | 
   782  | 
  There are two main principles of rule composition: @{text
 | 
| 
 | 
   783  | 
  "resolution"} (i.e.\ backchaining of rules) and @{text
 | 
| 
 | 
   784  | 
  "by-assumption"} (i.e.\ closing a branch); both principles are
  | 
| 
20519
 | 
   785  | 
  combined in the variants of @{text "elim-resolution"} and @{text
 | 
| 
20491
 | 
   786  | 
  "dest-resolution"}.  Raw @{text "composition"} is occasionally
 | 
| 
 | 
   787  | 
  useful as well, also it is strictly speaking outside of the proper
  | 
| 
 | 
   788  | 
  rule calculus.
  | 
| 
 | 
   789  | 
  | 
| 
 | 
   790  | 
  Rules are treated modulo general higher-order unification, which is
  | 
| 
 | 
   791  | 
  unification modulo the equational theory of @{text "\<alpha>\<beta>\<eta>"}-conversion
 | 
| 
 | 
   792  | 
  on @{text "\<lambda>"}-terms.  Moreover, propositions are understood modulo
 | 
| 
 | 
   793  | 
  the (derived) equivalence @{text "(A \<Longrightarrow> (\<And>x. B x)) \<equiv> (\<And>x. A \<Longrightarrow> B x)"}.
 | 
| 
 | 
   794  | 
  | 
| 
 | 
   795  | 
  This means that any operations within the rule calculus may be
  | 
| 
 | 
   796  | 
  subject to spontaneous @{text "\<alpha>\<beta>\<eta>"}-HHF conversions.  It is common
 | 
| 
 | 
   797  | 
  practice not to contract or expand unnecessarily.  Some mechanisms
  | 
| 
 | 
   798  | 
  prefer an one form, others the opposite, so there is a potential
  | 
| 
 | 
   799  | 
  danger to produce some oscillation!
  | 
| 
 | 
   800  | 
  | 
| 
 | 
   801  | 
  Only few operations really work \emph{modulo} HHF conversion, but
 | 
| 
 | 
   802  | 
  expect a normal form: quantifiers @{text "\<And>"} before implications
 | 
| 
 | 
   803  | 
  @{text "\<Longrightarrow>"} at each level of nesting.
 | 
| 
 | 
   804  | 
  | 
| 
18537
 | 
   805  | 
\glossary{Hereditary Harrop Formula}{The set of propositions in HHF
 | 
| 
 | 
   806  | 
format is defined inductively as @{text "H = (\<And>x\<^sup>*. H\<^sup>* \<Longrightarrow>
 | 
| 
 | 
   807  | 
A)"}, for variables @{text "x"} and atomic propositions @{text "A"}.
 | 
| 
 | 
   808  | 
Any proposition may be put into HHF form by normalizing with the rule
  | 
| 
 | 
   809  | 
@{text "(A \<Longrightarrow> (\<And>x. B x)) \<equiv> (\<And>x. A \<Longrightarrow> B x)"}.  In Isabelle, the outermost
 | 
| 
 | 
   810  | 
quantifier prefix is represented via \seeglossary{schematic
 | 
| 
 | 
   811  | 
variables}, such that the top-level structure is merely that of a
  | 
| 
 | 
   812  | 
\seeglossary{Horn Clause}}.
 | 
| 
 | 
   813  | 
  | 
| 
 | 
   814  | 
\glossary{HHF}{See \seeglossary{Hereditary Harrop Formula}.}
 | 
| 
 | 
   815  | 
  | 
| 
20498
 | 
   816  | 
  | 
| 
 | 
   817  | 
  \[
  | 
| 
 | 
   818  | 
  \infer[@{text "(assumption)"}]{@{text "C\<vartheta>"}}
 | 
| 
 | 
   819  | 
  {@{text "(\<And>\<^vec>x. \<^vec>H \<^vec>x \<Longrightarrow> A \<^vec>x) \<Longrightarrow> C"} & @{text "A\<vartheta> = H\<^sub>i\<vartheta>"}~~\text{(for some~@{text i})}}
 | 
| 
 | 
   820  | 
  \]
  | 
| 
 | 
   821  | 
  | 
| 
 | 
   822  | 
  | 
| 
 | 
   823  | 
  \[
  | 
| 
 | 
   824  | 
  \infer[@{text "(compose)"}]{@{text "\<^vec>A\<vartheta> \<Longrightarrow> C\<vartheta>"}}
 | 
| 
 | 
   825  | 
  {@{text "\<^vec>A \<Longrightarrow> B"} & @{text "B' \<Longrightarrow> C"} & @{text "B\<vartheta> = B'\<vartheta>"}}
 | 
| 
 | 
   826  | 
  \]
  | 
| 
 | 
   827  | 
  | 
| 
 | 
   828  | 
  | 
| 
 | 
   829  | 
  \[
  | 
| 
 | 
   830  | 
  \infer[@{text "(\<And>_lift)"}]{@{text "(\<And>\<^vec>x. \<^vec>A (?\<^vec>a \<^vec>x)) \<Longrightarrow> (\<And>\<^vec>x. B (?\<^vec>a \<^vec>x))"}}{@{text "\<^vec>A ?\<^vec>a \<Longrightarrow> B ?\<^vec>a"}}
 | 
| 
 | 
   831  | 
  \]
  | 
| 
 | 
   832  | 
  \[
  | 
| 
 | 
   833  | 
  \infer[@{text "(\<Longrightarrow>_lift)"}]{@{text "(\<^vec>H \<Longrightarrow> \<^vec>A) \<Longrightarrow> (\<^vec>H \<Longrightarrow> B)"}}{@{text "\<^vec>A \<Longrightarrow> B"}}
 | 
| 
 | 
   834  | 
  \]
  | 
| 
 | 
   835  | 
  | 
| 
 | 
   836  | 
  The @{text resolve} scheme is now acquired from @{text "\<And>_lift"},
 | 
| 
 | 
   837  | 
  @{text "\<Longrightarrow>_lift"}, and @{text compose}.
 | 
| 
 | 
   838  | 
  | 
| 
 | 
   839  | 
  \[
  | 
| 
 | 
   840  | 
  \infer[@{text "(resolution)"}]
 | 
| 
 | 
   841  | 
  {@{text "(\<And>\<^vec>x. \<^vec>H \<^vec>x \<Longrightarrow> \<^vec>A (?\<^vec>a \<^vec>x))\<vartheta> \<Longrightarrow> C\<vartheta>"}}
 | 
| 
 | 
   842  | 
  {\begin{tabular}{l}
 | 
| 
 | 
   843  | 
    @{text "\<^vec>A ?\<^vec>a \<Longrightarrow> B ?\<^vec>a"} \\
 | 
| 
 | 
   844  | 
    @{text "(\<And>\<^vec>x. \<^vec>H \<^vec>x \<Longrightarrow> B' \<^vec>x) \<Longrightarrow> C"} \\
 | 
| 
 | 
   845  | 
    @{text "(\<lambda>\<^vec>x. B (?\<^vec>a \<^vec>x))\<vartheta> = B'\<vartheta>"} \\
 | 
| 
 | 
   846  | 
   \end{tabular}}
 | 
| 
 | 
   847  | 
  \]
  | 
| 
 | 
   848  | 
  | 
| 
 | 
   849  | 
  | 
| 
 | 
   850  | 
  FIXME @{text "elim_resolution"}, @{text "dest_resolution"}
 | 
| 
18537
 | 
   851  | 
*}
  | 
| 
 | 
   852  | 
  | 
| 
20498
 | 
   853  | 
  | 
| 
18537
 | 
   854  | 
end
  |