| author | wenzelm | 
| Sun, 26 Nov 2017 21:08:32 +0100 | |
| changeset 67091 | 1393c2340eec | 
| parent 65273 | 917ae0ba03a2 | 
| child 68157 | 057d5b4ce47e | 
| permissions | -rw-r--r-- | 
| 63569 | 1  | 
(* Title: HOL/MacLaurin.thy  | 
2  | 
Author: Jacques D. Fleuriot, 2001 University of Edinburgh  | 
|
3  | 
Author: Lawrence C Paulson, 2004  | 
|
4  | 
Author: Lukas Bulwahn and Bernhard Häupler, 2005  | 
|
| 12224 | 5  | 
*)  | 
6  | 
||
| 63570 | 7  | 
section \<open>MacLaurin and Taylor Series\<close>  | 
| 15944 | 8  | 
|
| 15131 | 9  | 
theory MacLaurin  | 
| 
29811
 
026b0f9f579f
fixed Proofs and dependencies ; Theory Dense_Linear_Order moved to Library
 
chaieb@chaieb-laptop 
parents: 
29803 
diff
changeset
 | 
10  | 
imports Transcendental  | 
| 15131 | 11  | 
begin  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
12  | 
|
| 63569 | 13  | 
subsection \<open>Maclaurin's Theorem with Lagrange Form of Remainder\<close>  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
14  | 
|
| 63569 | 15  | 
text \<open>This is a very long, messy proof even now that it's been broken down  | 
16  | 
into lemmas.\<close>  | 
|
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
17  | 
|
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
18  | 
lemma Maclaurin_lemma:  | 
| 63569 | 19  | 
"0 < h \<Longrightarrow>  | 
20  | 
\<exists>B::real. f h = (\<Sum>m<n. (j m / (fact m)) * (h^m)) + (B * ((h^n) /(fact n)))"  | 
|
21  | 
by (rule exI[where x = "(f h - (\<Sum>m<n. (j m / (fact m)) * h^m)) * (fact n) / (h^n)"]) simp  | 
|
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
22  | 
|
| 63569 | 23  | 
lemma eq_diff_eq': "x = y - z \<longleftrightarrow> y = x + z"  | 
24  | 
for x y z :: real  | 
|
25  | 
by arith  | 
|
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
26  | 
|
| 63569 | 27  | 
lemma fact_diff_Suc: "n < Suc m \<Longrightarrow> fact (Suc m - n) = (Suc m - n) * fact (m - n)"  | 
28  | 
by (subst fact_reduce) auto  | 
|
| 32038 | 29  | 
|
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
30  | 
lemma Maclaurin_lemma2:  | 
| 
41166
 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 
hoelzl 
parents: 
41120 
diff
changeset
 | 
31  | 
fixes B  | 
| 63569 | 32  | 
assumes DERIV: "\<forall>m t. m < n \<and> 0\<le>t \<and> t\<le>h \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t"  | 
33  | 
and INIT: "n = Suc k"  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
61284 
diff
changeset
 | 
34  | 
defines "difg \<equiv>  | 
| 63569 | 35  | 
(\<lambda>m t::real. diff m t -  | 
36  | 
((\<Sum>p<n - m. diff (m + p) 0 / fact p * t ^ p) + B * (t ^ (n - m) / fact (n - m))))"  | 
|
37  | 
(is "difg \<equiv> (\<lambda>m t. diff m t - ?difg m t)")  | 
|
38  | 
shows "\<forall>m t. m < n \<and> 0 \<le> t \<and> t \<le> h \<longrightarrow> DERIV (difg m) t :> difg (Suc m) t"  | 
|
| 
41166
 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 
hoelzl 
parents: 
41120 
diff
changeset
 | 
39  | 
proof (rule allI impI)+  | 
| 63569 | 40  | 
fix m t  | 
41  | 
assume INIT2: "m < n \<and> 0 \<le> t \<and> t \<le> h"  | 
|
| 
41166
 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 
hoelzl 
parents: 
41120 
diff
changeset
 | 
42  | 
have "DERIV (difg m) t :> diff (Suc m) t -  | 
| 63569 | 43  | 
((\<Sum>x<n - m. real x * t ^ (x - Suc 0) * diff (m + x) 0 / fact x) +  | 
44  | 
real (n - m) * t ^ (n - Suc m) * B / fact (n - m))"  | 
|
45  | 
by (auto simp: difg_def intro!: derivative_eq_intros DERIV[rule_format, OF INIT2])  | 
|
| 
56193
 
c726ecfb22b6
cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
 
hoelzl 
parents: 
56181 
diff
changeset
 | 
46  | 
moreover  | 
| 
41166
 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 
hoelzl 
parents: 
41120 
diff
changeset
 | 
47  | 
  from INIT2 have intvl: "{..<n - m} = insert 0 (Suc ` {..<n - Suc m})" and "0 < n - m"
 | 
| 
 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 
hoelzl 
parents: 
41120 
diff
changeset
 | 
48  | 
unfolding atLeast0LessThan[symmetric] by auto  | 
| 63569 | 49  | 
have "(\<Sum>x<n - m. real x * t ^ (x - Suc 0) * diff (m + x) 0 / fact x) =  | 
50  | 
(\<Sum>x<n - Suc m. real (Suc x) * t ^ x * diff (Suc m + x) 0 / fact (Suc x))"  | 
|
| 64267 | 51  | 
unfolding intvl by (subst sum.insert) (auto simp add: sum.reindex)  | 
| 
41166
 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 
hoelzl 
parents: 
41120 
diff
changeset
 | 
52  | 
moreover  | 
| 
59730
 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 
paulson <lp15@cam.ac.uk> 
parents: 
58889 
diff
changeset
 | 
53  | 
have fact_neq_0: "\<And>x. (fact x) + real x * (fact x) \<noteq> 0"  | 
| 63569 | 54  | 
by (metis add_pos_pos fact_gt_zero less_add_same_cancel1 less_add_same_cancel2  | 
55  | 
less_numeral_extra(3) mult_less_0_iff of_nat_less_0_iff)  | 
|
56  | 
have "\<And>x. (Suc x) * t ^ x * diff (Suc m + x) 0 / fact (Suc x) = diff (Suc m + x) 0 * t^x / fact x"  | 
|
| 
59730
 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 
paulson <lp15@cam.ac.uk> 
parents: 
58889 
diff
changeset
 | 
57  | 
by (rule nonzero_divide_eq_eq[THEN iffD2]) auto  | 
| 
41166
 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 
hoelzl 
parents: 
41120 
diff
changeset
 | 
58  | 
moreover  | 
| 63569 | 59  | 
have "(n - m) * t ^ (n - Suc m) * B / fact (n - m) = B * (t ^ (n - Suc m) / fact (n - Suc m))"  | 
60  | 
using \<open>0 < n - m\<close> by (simp add: divide_simps fact_reduce)  | 
|
| 
41166
 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 
hoelzl 
parents: 
41120 
diff
changeset
 | 
61  | 
ultimately show "DERIV (difg m) t :> difg (Suc m) t"  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
61284 
diff
changeset
 | 
62  | 
unfolding difg_def by (simp add: mult.commute)  | 
| 
41120
 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 
bulwahn 
parents: 
36974 
diff
changeset
 | 
63  | 
qed  | 
| 32038 | 64  | 
|
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
65  | 
lemma Maclaurin:  | 
| 29187 | 66  | 
assumes h: "0 < h"  | 
| 63569 | 67  | 
and n: "0 < n"  | 
68  | 
and diff_0: "diff 0 = f"  | 
|
69  | 
and diff_Suc: "\<forall>m t. m < n \<and> 0 \<le> t \<and> t \<le> h \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t"  | 
|
| 29187 | 70  | 
shows  | 
| 63569 | 71  | 
"\<exists>t::real. 0 < t \<and> t < h \<and>  | 
| 64267 | 72  | 
      f h = sum (\<lambda>m. (diff m 0 / fact m) * h ^ m) {..<n} + (diff n t / fact n) * h ^ n"
 | 
| 29187 | 73  | 
proof -  | 
74  | 
from n obtain m where m: "n = Suc m"  | 
|
| 
41166
 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 
hoelzl 
parents: 
41120 
diff
changeset
 | 
75  | 
by (cases n) (simp add: n)  | 
| 63569 | 76  | 
from m have "m < n" by simp  | 
| 29187 | 77  | 
|
| 63569 | 78  | 
obtain B where f_h: "f h = (\<Sum>m<n. diff m 0 / fact m * h ^ m) + B * (h ^ n / fact n)"  | 
| 29187 | 79  | 
using Maclaurin_lemma [OF h] ..  | 
80  | 
||
| 63040 | 81  | 
define g where [abs_def]: "g t =  | 
| 64267 | 82  | 
    f t - (sum (\<lambda>m. (diff m 0 / fact m) * t^m) {..<n} + B * (t^n / fact n))" for t
 | 
| 63569 | 83  | 
have g2: "g 0 = 0" "g h = 0"  | 
| 64267 | 84  | 
by (simp_all add: m f_h g_def lessThan_Suc_eq_insert_0 image_iff diff_0 sum.reindex)  | 
| 29187 | 85  | 
|
| 63040 | 86  | 
define difg where [abs_def]: "difg m t =  | 
| 64267 | 87  | 
    diff m t - (sum (\<lambda>p. (diff (m + p) 0 / fact p) * (t ^ p)) {..<n-m} +
 | 
| 63569 | 88  | 
B * ((t ^ (n - m)) / fact (n - m)))" for m t  | 
| 29187 | 89  | 
have difg_0: "difg 0 = g"  | 
| 63569 | 90  | 
by (simp add: difg_def g_def diff_0)  | 
91  | 
have difg_Suc: "\<forall>m t. m < n \<and> 0 \<le> t \<and> t \<le> h \<longrightarrow> DERIV (difg m) t :> difg (Suc m) t"  | 
|
| 63040 | 92  | 
using diff_Suc m unfolding difg_def [abs_def] by (rule Maclaurin_lemma2)  | 
| 
56193
 
c726ecfb22b6
cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
 
hoelzl 
parents: 
56181 
diff
changeset
 | 
93  | 
have difg_eq_0: "\<forall>m<n. difg m 0 = 0"  | 
| 64267 | 94  | 
by (auto simp: difg_def m Suc_diff_le lessThan_Suc_eq_insert_0 image_iff sum.reindex)  | 
| 63569 | 95  | 
have isCont_difg: "\<And>m x. m < n \<Longrightarrow> 0 \<le> x \<Longrightarrow> x \<le> h \<Longrightarrow> isCont (difg m) x"  | 
| 29187 | 96  | 
by (rule DERIV_isCont [OF difg_Suc [rule_format]]) simp  | 
| 63569 | 97  | 
have differentiable_difg: "\<And>m x. m < n \<Longrightarrow> 0 \<le> x \<Longrightarrow> x \<le> h \<Longrightarrow> difg m differentiable (at x)"  | 
| 29187 | 98  | 
by (rule differentiableI [OF difg_Suc [rule_format]]) simp  | 
| 63569 | 99  | 
have difg_Suc_eq_0:  | 
100  | 
"\<And>m t. m < n \<Longrightarrow> 0 \<le> t \<Longrightarrow> t \<le> h \<Longrightarrow> DERIV (difg m) t :> 0 \<Longrightarrow> difg (Suc m) t = 0"  | 
|
| 29187 | 101  | 
by (rule DERIV_unique [OF difg_Suc [rule_format]]) simp  | 
102  | 
||
103  | 
have "\<exists>t. 0 < t \<and> t < h \<and> DERIV (difg m) t :> 0"  | 
|
| 60758 | 104  | 
using \<open>m < n\<close>  | 
| 29187 | 105  | 
proof (induct m)  | 
| 
41166
 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 
hoelzl 
parents: 
41120 
diff
changeset
 | 
106  | 
case 0  | 
| 29187 | 107  | 
show ?case  | 
108  | 
proof (rule Rolle)  | 
|
109  | 
show "0 < h" by fact  | 
|
| 63569 | 110  | 
show "difg 0 0 = difg 0 h"  | 
111  | 
by (simp add: difg_0 g2)  | 
|
| 61076 | 112  | 
show "\<forall>x. 0 \<le> x \<and> x \<le> h \<longrightarrow> isCont (difg (0::nat)) x"  | 
| 29187 | 113  | 
by (simp add: isCont_difg n)  | 
| 61076 | 114  | 
show "\<forall>x. 0 < x \<and> x < h \<longrightarrow> difg (0::nat) differentiable (at x)"  | 
| 29187 | 115  | 
by (simp add: differentiable_difg n)  | 
116  | 
qed  | 
|
117  | 
next  | 
|
| 
41166
 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 
hoelzl 
parents: 
41120 
diff
changeset
 | 
118  | 
case (Suc m')  | 
| 63569 | 119  | 
then have "\<exists>t. 0 < t \<and> t < h \<and> DERIV (difg m') t :> 0"  | 
120  | 
by simp  | 
|
121  | 
then obtain t where t: "0 < t" "t < h" "DERIV (difg m') t :> 0"  | 
|
122  | 
by fast  | 
|
| 29187 | 123  | 
have "\<exists>t'. 0 < t' \<and> t' < t \<and> DERIV (difg (Suc m')) t' :> 0"  | 
124  | 
proof (rule Rolle)  | 
|
125  | 
show "0 < t" by fact  | 
|
126  | 
show "difg (Suc m') 0 = difg (Suc m') t"  | 
|
| 60758 | 127  | 
using t \<open>Suc m' < n\<close> by (simp add: difg_Suc_eq_0 difg_eq_0)  | 
| 29187 | 128  | 
show "\<forall>x. 0 \<le> x \<and> x \<le> t \<longrightarrow> isCont (difg (Suc m')) x"  | 
| 60758 | 129  | 
using \<open>t < h\<close> \<open>Suc m' < n\<close> by (simp add: isCont_difg)  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
51489 
diff
changeset
 | 
130  | 
show "\<forall>x. 0 < x \<and> x < t \<longrightarrow> difg (Suc m') differentiable (at x)"  | 
| 60758 | 131  | 
using \<open>t < h\<close> \<open>Suc m' < n\<close> by (simp add: differentiable_difg)  | 
| 29187 | 132  | 
qed  | 
| 63569 | 133  | 
with \<open>t < h\<close> show ?case  | 
134  | 
by auto  | 
|
| 29187 | 135  | 
qed  | 
| 63569 | 136  | 
then obtain t where "0 < t" "t < h" "DERIV (difg m) t :> 0"  | 
137  | 
by fast  | 
|
138  | 
with \<open>m < n\<close> have "difg (Suc m) t = 0"  | 
|
139  | 
by (simp add: difg_Suc_eq_0)  | 
|
| 29187 | 140  | 
show ?thesis  | 
141  | 
proof (intro exI conjI)  | 
|
142  | 
show "0 < t" by fact  | 
|
143  | 
show "t < h" by fact  | 
|
| 
59730
 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 
paulson <lp15@cam.ac.uk> 
parents: 
58889 
diff
changeset
 | 
144  | 
show "f h = (\<Sum>m<n. diff m 0 / (fact m) * h ^ m) + diff n t / (fact n) * h ^ n"  | 
| 63569 | 145  | 
using \<open>difg (Suc m) t = 0\<close> by (simp add: m f_h difg_def)  | 
| 29187 | 146  | 
qed  | 
147  | 
qed  | 
|
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
148  | 
|
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
149  | 
lemma Maclaurin_objl:  | 
| 63569 | 150  | 
"0 < h \<and> n > 0 \<and> diff 0 = f \<and>  | 
151  | 
(\<forall>m t. m < n \<and> 0 \<le> t \<and> t \<le> h \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t) \<longrightarrow>  | 
|
152  | 
(\<exists>t. 0 < t \<and> t < h \<and> f h = (\<Sum>m<n. diff m 0 / (fact m) * h ^ m) + diff n t / fact n * h ^ n)"  | 
|
153  | 
for n :: nat and h :: real  | 
|
154  | 
by (blast intro: Maclaurin)  | 
|
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
155  | 
|
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
156  | 
lemma Maclaurin2:  | 
| 63569 | 157  | 
fixes n :: nat  | 
158  | 
and h :: real  | 
|
159  | 
assumes INIT1: "0 < h"  | 
|
160  | 
and INIT2: "diff 0 = f"  | 
|
161  | 
and DERIV: "\<forall>m t. m < n \<and> 0 \<le> t \<and> t \<le> h \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t"  | 
|
162  | 
shows "\<exists>t. 0 < t \<and> t \<le> h \<and> f h = (\<Sum>m<n. diff m 0 / (fact m) * h ^ m) + diff n t / fact n * h ^ n"  | 
|
163  | 
proof (cases n)  | 
|
164  | 
case 0  | 
|
165  | 
with INIT1 INIT2 show ?thesis by fastforce  | 
|
| 
41120
 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 
bulwahn 
parents: 
36974 
diff
changeset
 | 
166  | 
next  | 
| 
41166
 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 
hoelzl 
parents: 
41120 
diff
changeset
 | 
167  | 
case Suc  | 
| 63569 | 168  | 
then have "n > 0" by simp  | 
169  | 
from INIT1 this INIT2 DERIV  | 
|
170  | 
have "\<exists>t>0. t < h \<and> f h = (\<Sum>m<n. diff m 0 / fact m * h ^ m) + diff n t / fact n * h ^ n"  | 
|
| 
41120
 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 
bulwahn 
parents: 
36974 
diff
changeset
 | 
171  | 
by (rule Maclaurin)  | 
| 63569 | 172  | 
then show ?thesis by fastforce  | 
| 
41120
 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 
bulwahn 
parents: 
36974 
diff
changeset
 | 
173  | 
qed  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
174  | 
|
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
175  | 
lemma Maclaurin2_objl:  | 
| 63569 | 176  | 
"0 < h \<and> diff 0 = f \<and>  | 
177  | 
(\<forall>m t. m < n \<and> 0 \<le> t \<and> t \<le> h \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t) \<longrightarrow>  | 
|
178  | 
(\<exists>t. 0 < t \<and> t \<le> h \<and> f h = (\<Sum>m<n. diff m 0 / fact m * h ^ m) + diff n t / fact n * h ^ n)"  | 
|
179  | 
for n :: nat and h :: real  | 
|
180  | 
by (blast intro: Maclaurin2)  | 
|
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
181  | 
|
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
182  | 
lemma Maclaurin_minus:  | 
| 63569 | 183  | 
fixes n :: nat and h :: real  | 
| 
41166
 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 
hoelzl 
parents: 
41120 
diff
changeset
 | 
184  | 
assumes "h < 0" "0 < n" "diff 0 = f"  | 
| 63569 | 185  | 
and DERIV: "\<forall>m t. m < n \<and> h \<le> t \<and> t \<le> 0 \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t"  | 
186  | 
shows "\<exists>t. h < t \<and> t < 0 \<and> f h = (\<Sum>m<n. diff m 0 / fact m * h ^ m) + diff n t / fact n * h ^ n"  | 
|
| 
41120
 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 
bulwahn 
parents: 
36974 
diff
changeset
 | 
187  | 
proof -  | 
| 63569 | 188  | 
txt \<open>Transform \<open>ABL'\<close> into \<open>derivative_intros\<close> format.\<close>  | 
| 
41166
 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 
hoelzl 
parents: 
41120 
diff
changeset
 | 
189  | 
note DERIV' = DERIV_chain'[OF _ DERIV[rule_format], THEN DERIV_cong]  | 
| 63569 | 190  | 
let ?sum = "\<lambda>t.  | 
191  | 
(\<Sum>m<n. (- 1) ^ m * diff m (- 0) / (fact m) * (- h) ^ m) +  | 
|
| 
59730
 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 
paulson <lp15@cam.ac.uk> 
parents: 
58889 
diff
changeset
 | 
192  | 
(- 1) ^ n * diff n (- t) / (fact n) * (- h) ^ n"  | 
| 63569 | 193  | 
from assms have "\<exists>t>0. t < - h \<and> f (- (- h)) = ?sum t"  | 
| 
56381
 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 
hoelzl 
parents: 
56238 
diff
changeset
 | 
194  | 
by (intro Maclaurin) (auto intro!: derivative_eq_intros DERIV')  | 
| 63569 | 195  | 
then obtain t where "0 < t" "t < - h" "f (- (- h)) = ?sum t"  | 
196  | 
by blast  | 
|
197  | 
moreover have "(- 1) ^ n * diff n (- t) * (- h) ^ n / fact n = diff n (- t) * h ^ n / fact n"  | 
|
198  | 
by (auto simp: power_mult_distrib[symmetric])  | 
|
| 
41120
 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 
bulwahn 
parents: 
36974 
diff
changeset
 | 
199  | 
moreover  | 
| 63569 | 200  | 
have "(\<Sum>m<n. (- 1) ^ m * diff m 0 * (- h) ^ m / fact m) = (\<Sum>m<n. diff m 0 * h ^ m / fact m)"  | 
| 64267 | 201  | 
by (auto intro: sum.cong simp add: power_mult_distrib[symmetric])  | 
| 63569 | 202  | 
ultimately have "h < - t \<and> - t < 0 \<and>  | 
203  | 
f h = (\<Sum>m<n. diff m 0 / (fact m) * h ^ m) + diff n (- t) / (fact n) * h ^ n"  | 
|
| 
41120
 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 
bulwahn 
parents: 
36974 
diff
changeset
 | 
204  | 
by auto  | 
| 63569 | 205  | 
then show ?thesis ..  | 
| 
41120
 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 
bulwahn 
parents: 
36974 
diff
changeset
 | 
206  | 
qed  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
207  | 
|
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
208  | 
lemma Maclaurin_minus_objl:  | 
| 63569 | 209  | 
fixes n :: nat and h :: real  | 
| 
59730
 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 
paulson <lp15@cam.ac.uk> 
parents: 
58889 
diff
changeset
 | 
210  | 
shows  | 
| 63569 | 211  | 
"h < 0 \<and> n > 0 \<and> diff 0 = f \<and>  | 
| 67091 | 212  | 
(\<forall>m t. m < n \<and> h \<le> t \<and> t \<le> 0 \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t) \<longrightarrow>  | 
| 63569 | 213  | 
(\<exists>t. h < t \<and> t < 0 \<and> f h = (\<Sum>m<n. diff m 0 / fact m * h ^ m) + diff n t / fact n * h ^ n)"  | 
214  | 
by (blast intro: Maclaurin_minus)  | 
|
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
215  | 
|
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
216  | 
|
| 63569 | 217  | 
subsection \<open>More Convenient "Bidirectional" Version.\<close>  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
218  | 
|
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
219  | 
(* not good for PVS sin_approx, cos_approx *)  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
220  | 
|
| 
59730
 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 
paulson <lp15@cam.ac.uk> 
parents: 
58889 
diff
changeset
 | 
221  | 
lemma Maclaurin_bi_le_lemma:  | 
| 63569 | 222  | 
"n > 0 \<Longrightarrow>  | 
223  | 
diff 0 0 = (\<Sum>m<n. diff m 0 * 0 ^ m / (fact m)) + diff n 0 * 0 ^ n / (fact n :: real)"  | 
|
224  | 
by (induct n) auto  | 
|
| 14738 | 225  | 
|
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
226  | 
lemma Maclaurin_bi_le:  | 
| 63569 | 227  | 
fixes n :: nat and x :: real  | 
228  | 
assumes "diff 0 = f"  | 
|
229  | 
and DERIV : "\<forall>m t. m < n \<and> \<bar>t\<bar> \<le> \<bar>x\<bar> \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t"  | 
|
230  | 
shows "\<exists>t. \<bar>t\<bar> \<le> \<bar>x\<bar> \<and> f x = (\<Sum>m<n. diff m 0 / (fact m) * x ^ m) + diff n t / (fact n) * x ^ n"  | 
|
231  | 
(is "\<exists>t. _ \<and> f x = ?f x t")  | 
|
232  | 
proof (cases "n = 0")  | 
|
233  | 
case True  | 
|
234  | 
with \<open>diff 0 = f\<close> show ?thesis by force  | 
|
| 
41120
 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 
bulwahn 
parents: 
36974 
diff
changeset
 | 
235  | 
next  | 
| 63569 | 236  | 
case False  | 
| 
41166
 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 
hoelzl 
parents: 
41120 
diff
changeset
 | 
237  | 
show ?thesis  | 
| 
 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 
hoelzl 
parents: 
41120 
diff
changeset
 | 
238  | 
proof (cases rule: linorder_cases)  | 
| 63569 | 239  | 
assume "x = 0"  | 
240  | 
with \<open>n \<noteq> 0\<close> \<open>diff 0 = f\<close> DERIV have "\<bar>0\<bar> \<le> \<bar>x\<bar> \<and> f x = ?f x 0"  | 
|
241  | 
by (auto simp add: Maclaurin_bi_le_lemma)  | 
|
242  | 
then show ?thesis ..  | 
|
| 
41120
 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 
bulwahn 
parents: 
36974 
diff
changeset
 | 
243  | 
next  | 
| 
41166
 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 
hoelzl 
parents: 
41120 
diff
changeset
 | 
244  | 
assume "x < 0"  | 
| 63569 | 245  | 
with \<open>n \<noteq> 0\<close> DERIV have "\<exists>t>x. t < 0 \<and> diff 0 x = ?f x t"  | 
246  | 
by (intro Maclaurin_minus) auto  | 
|
247  | 
then obtain t where "x < t" "t < 0"  | 
|
248  | 
"diff 0 x = (\<Sum>m<n. diff m 0 / fact m * x ^ m) + diff n t / fact n * x ^ n"  | 
|
249  | 
by blast  | 
|
250  | 
with \<open>x < 0\<close> \<open>diff 0 = f\<close> have "\<bar>t\<bar> \<le> \<bar>x\<bar> \<and> f x = ?f x t"  | 
|
251  | 
by simp  | 
|
252  | 
then show ?thesis ..  | 
|
| 
41166
 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 
hoelzl 
parents: 
41120 
diff
changeset
 | 
253  | 
next  | 
| 
 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 
hoelzl 
parents: 
41120 
diff
changeset
 | 
254  | 
assume "x > 0"  | 
| 63569 | 255  | 
with \<open>n \<noteq> 0\<close> \<open>diff 0 = f\<close> DERIV have "\<exists>t>0. t < x \<and> diff 0 x = ?f x t"  | 
256  | 
by (intro Maclaurin) auto  | 
|
257  | 
then obtain t where "0 < t" "t < x"  | 
|
258  | 
"diff 0 x = (\<Sum>m<n. diff m 0 / fact m * x ^ m) + diff n t / fact n * x ^ n"  | 
|
259  | 
by blast  | 
|
| 60758 | 260  | 
with \<open>x > 0\<close> \<open>diff 0 = f\<close> have "\<bar>t\<bar> \<le> \<bar>x\<bar> \<and> f x = ?f x t" by simp  | 
| 63569 | 261  | 
then show ?thesis ..  | 
| 
41120
 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 
bulwahn 
parents: 
36974 
diff
changeset
 | 
262  | 
qed  | 
| 
 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 
bulwahn 
parents: 
36974 
diff
changeset
 | 
263  | 
qed  | 
| 
 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 
bulwahn 
parents: 
36974 
diff
changeset
 | 
264  | 
|
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
265  | 
lemma Maclaurin_all_lt:  | 
| 63569 | 266  | 
fixes x :: real  | 
267  | 
assumes INIT1: "diff 0 = f"  | 
|
268  | 
and INIT2: "0 < n"  | 
|
269  | 
and INIT3: "x \<noteq> 0"  | 
|
270  | 
and DERIV: "\<forall>m x. DERIV (diff m) x :> diff(Suc m) x"  | 
|
271  | 
shows "\<exists>t. 0 < \<bar>t\<bar> \<and> \<bar>t\<bar> < \<bar>x\<bar> \<and> f x =  | 
|
272  | 
(\<Sum>m<n. (diff m 0 / fact m) * x ^ m) + (diff n t / fact n) * x ^ n"  | 
|
273  | 
(is "\<exists>t. _ \<and> _ \<and> f x = ?f x t")  | 
|
| 
41166
 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 
hoelzl 
parents: 
41120 
diff
changeset
 | 
274  | 
proof (cases rule: linorder_cases)  | 
| 63569 | 275  | 
assume "x = 0"  | 
276  | 
with INIT3 show ?thesis ..  | 
|
| 
41166
 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 
hoelzl 
parents: 
41120 
diff
changeset
 | 
277  | 
next  | 
| 
 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 
hoelzl 
parents: 
41120 
diff
changeset
 | 
278  | 
assume "x < 0"  | 
| 63569 | 279  | 
with assms have "\<exists>t>x. t < 0 \<and> f x = ?f x t"  | 
280  | 
by (intro Maclaurin_minus) auto  | 
|
281  | 
then obtain t where "t > x" "t < 0" "f x = ?f x t"  | 
|
282  | 
by blast  | 
|
283  | 
with \<open>x < 0\<close> have "0 < \<bar>t\<bar> \<and> \<bar>t\<bar> < \<bar>x\<bar> \<and> f x = ?f x t"  | 
|
284  | 
by simp  | 
|
285  | 
then show ?thesis ..  | 
|
| 
41166
 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 
hoelzl 
parents: 
41120 
diff
changeset
 | 
286  | 
next  | 
| 
 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 
hoelzl 
parents: 
41120 
diff
changeset
 | 
287  | 
assume "x > 0"  | 
| 63569 | 288  | 
with assms have "\<exists>t>0. t < x \<and> f x = ?f x t"  | 
289  | 
by (intro Maclaurin) auto  | 
|
290  | 
then obtain t where "t > 0" "t < x" "f x = ?f x t"  | 
|
291  | 
by blast  | 
|
292  | 
with \<open>x > 0\<close> have "0 < \<bar>t\<bar> \<and> \<bar>t\<bar> < \<bar>x\<bar> \<and> f x = ?f x t"  | 
|
293  | 
by simp  | 
|
294  | 
then show ?thesis ..  | 
|
| 
41120
 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 
bulwahn 
parents: 
36974 
diff
changeset
 | 
295  | 
qed  | 
| 
 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 
bulwahn 
parents: 
36974 
diff
changeset
 | 
296  | 
|
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
297  | 
|
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
298  | 
lemma Maclaurin_all_lt_objl:  | 
| 63569 | 299  | 
fixes x :: real  | 
| 
59730
 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 
paulson <lp15@cam.ac.uk> 
parents: 
58889 
diff
changeset
 | 
300  | 
shows  | 
| 63569 | 301  | 
"diff 0 = f \<and> (\<forall>m x. DERIV (diff m) x :> diff (Suc m) x) \<and> x \<noteq> 0 \<and> n > 0 \<longrightarrow>  | 
302  | 
(\<exists>t. 0 < \<bar>t\<bar> \<and> \<bar>t\<bar> < \<bar>x\<bar> \<and>  | 
|
303  | 
f x = (\<Sum>m<n. (diff m 0 / fact m) * x ^ m) + (diff n t / fact n) * x ^ n)"  | 
|
304  | 
by (blast intro: Maclaurin_all_lt)  | 
|
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
305  | 
|
| 63569 | 306  | 
lemma Maclaurin_zero: "x = 0 \<Longrightarrow> n \<noteq> 0 \<Longrightarrow> (\<Sum>m<n. (diff m 0 / fact m) * x ^ m) = diff 0 0"  | 
307  | 
for x :: real and n :: nat  | 
|
308  | 
by (induct n) auto  | 
|
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
309  | 
|
| 
41120
 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 
bulwahn 
parents: 
36974 
diff
changeset
 | 
310  | 
|
| 
 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 
bulwahn 
parents: 
36974 
diff
changeset
 | 
311  | 
lemma Maclaurin_all_le:  | 
| 63569 | 312  | 
fixes x :: real and n :: nat  | 
| 
41120
 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 
bulwahn 
parents: 
36974 
diff
changeset
 | 
313  | 
assumes INIT: "diff 0 = f"  | 
| 63569 | 314  | 
and DERIV: "\<forall>m x. DERIV (diff m) x :> diff (Suc m) x"  | 
315  | 
shows "\<exists>t. \<bar>t\<bar> \<le> \<bar>x\<bar> \<and> f x = (\<Sum>m<n. (diff m 0 / fact m) * x ^ m) + (diff n t / fact n) * x ^ n"  | 
|
316  | 
(is "\<exists>t. _ \<and> f x = ?f x t")  | 
|
317  | 
proof (cases "n = 0")  | 
|
318  | 
case True  | 
|
319  | 
with INIT show ?thesis by force  | 
|
320  | 
next  | 
|
321  | 
case False  | 
|
| 
41166
 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 
hoelzl 
parents: 
41120 
diff
changeset
 | 
322  | 
show ?thesis  | 
| 63569 | 323  | 
proof (cases "x = 0")  | 
324  | 
case True  | 
|
| 60758 | 325  | 
with \<open>n \<noteq> 0\<close> have "(\<Sum>m<n. diff m 0 / (fact m) * x ^ m) = diff 0 0"  | 
| 
41166
 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 
hoelzl 
parents: 
41120 
diff
changeset
 | 
326  | 
by (intro Maclaurin_zero) auto  | 
| 63569 | 327  | 
with INIT \<open>x = 0\<close> \<open>n \<noteq> 0\<close> have " \<bar>0\<bar> \<le> \<bar>x\<bar> \<and> f x = ?f x 0"  | 
328  | 
by force  | 
|
329  | 
then show ?thesis ..  | 
|
| 
41166
 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 
hoelzl 
parents: 
41120 
diff
changeset
 | 
330  | 
next  | 
| 63569 | 331  | 
case False  | 
| 60758 | 332  | 
with INIT \<open>n \<noteq> 0\<close> DERIV have "\<exists>t. 0 < \<bar>t\<bar> \<and> \<bar>t\<bar> < \<bar>x\<bar> \<and> f x = ?f x t"  | 
| 
41166
 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 
hoelzl 
parents: 
41120 
diff
changeset
 | 
333  | 
by (intro Maclaurin_all_lt) auto  | 
| 63569 | 334  | 
then obtain t where "0 < \<bar>t\<bar> \<and> \<bar>t\<bar> < \<bar>x\<bar> \<and> f x = ?f x t" ..  | 
335  | 
then have "\<bar>t\<bar> \<le> \<bar>x\<bar> \<and> f x = ?f x t"  | 
|
336  | 
by simp  | 
|
337  | 
then show ?thesis ..  | 
|
| 
41120
 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 
bulwahn 
parents: 
36974 
diff
changeset
 | 
338  | 
qed  | 
| 
 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 
bulwahn 
parents: 
36974 
diff
changeset
 | 
339  | 
qed  | 
| 
 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 
bulwahn 
parents: 
36974 
diff
changeset
 | 
340  | 
|
| 
59730
 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 
paulson <lp15@cam.ac.uk> 
parents: 
58889 
diff
changeset
 | 
341  | 
lemma Maclaurin_all_le_objl:  | 
| 63569 | 342  | 
"diff 0 = f \<and> (\<forall>m x. DERIV (diff m) x :> diff (Suc m) x) \<longrightarrow>  | 
343  | 
(\<exists>t::real. \<bar>t\<bar> \<le> \<bar>x\<bar> \<and> f x = (\<Sum>m<n. (diff m 0 / fact m) * x ^ m) + (diff n t / fact n) * x ^ n)"  | 
|
344  | 
for x :: real and n :: nat  | 
|
345  | 
by (blast intro: Maclaurin_all_le)  | 
|
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
346  | 
|
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
347  | 
|
| 63569 | 348  | 
subsection \<open>Version for Exponential Function\<close>  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
349  | 
|
| 
59730
 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 
paulson <lp15@cam.ac.uk> 
parents: 
58889 
diff
changeset
 | 
350  | 
lemma Maclaurin_exp_lt:  | 
| 63569 | 351  | 
fixes x :: real and n :: nat  | 
| 
59730
 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 
paulson <lp15@cam.ac.uk> 
parents: 
58889 
diff
changeset
 | 
352  | 
shows  | 
| 63569 | 353  | 
"x \<noteq> 0 \<Longrightarrow> n > 0 \<Longrightarrow>  | 
354  | 
(\<exists>t. 0 < \<bar>t\<bar> \<and> \<bar>t\<bar> < \<bar>x\<bar> \<and> exp x = (\<Sum>m<n. (x ^ m) / fact m) + (exp t / fact n) * x ^ n)"  | 
|
355  | 
using Maclaurin_all_lt_objl [where diff = "\<lambda>n. exp" and f = exp and x = x and n = n] by auto  | 
|
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
356  | 
|
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
357  | 
lemma Maclaurin_exp_le:  | 
| 63569 | 358  | 
fixes x :: real and n :: nat  | 
359  | 
shows "\<exists>t. \<bar>t\<bar> \<le> \<bar>x\<bar> \<and> exp x = (\<Sum>m<n. (x ^ m) / fact m) + (exp t / fact n) * x ^ n"  | 
|
360  | 
using Maclaurin_all_le_objl [where diff = "\<lambda>n. exp" and f = exp and x = x and n = n] by auto  | 
|
361  | 
||
| 
65273
 
917ae0ba03a2
Removal of [simp] status for greaterThan_0. Moved two theorems into main HOL.
 
paulson <lp15@cam.ac.uk> 
parents: 
64267 
diff
changeset
 | 
362  | 
corollary exp_lower_taylor_quadratic: "0 \<le> x \<Longrightarrow> 1 + x + x\<^sup>2 / 2 \<le> exp x"  | 
| 63569 | 363  | 
for x :: real  | 
364  | 
using Maclaurin_exp_le [of x 3] by (auto simp: numeral_3_eq_3 power2_eq_square)  | 
|
365  | 
||
| 
65273
 
917ae0ba03a2
Removal of [simp] status for greaterThan_0. Moved two theorems into main HOL.
 
paulson <lp15@cam.ac.uk> 
parents: 
64267 
diff
changeset
 | 
366  | 
corollary ln_2_less_1: "ln 2 < (1::real)"  | 
| 
 
917ae0ba03a2
Removal of [simp] status for greaterThan_0. Moved two theorems into main HOL.
 
paulson <lp15@cam.ac.uk> 
parents: 
64267 
diff
changeset
 | 
367  | 
proof -  | 
| 
 
917ae0ba03a2
Removal of [simp] status for greaterThan_0. Moved two theorems into main HOL.
 
paulson <lp15@cam.ac.uk> 
parents: 
64267 
diff
changeset
 | 
368  | 
have "2 < 5/(2::real)" by simp  | 
| 
 
917ae0ba03a2
Removal of [simp] status for greaterThan_0. Moved two theorems into main HOL.
 
paulson <lp15@cam.ac.uk> 
parents: 
64267 
diff
changeset
 | 
369  | 
also have "5/2 \<le> exp (1::real)" using exp_lower_taylor_quadratic[of 1, simplified] by simp  | 
| 
 
917ae0ba03a2
Removal of [simp] status for greaterThan_0. Moved two theorems into main HOL.
 
paulson <lp15@cam.ac.uk> 
parents: 
64267 
diff
changeset
 | 
370  | 
finally have "exp (ln 2) < exp (1::real)" by simp  | 
| 
 
917ae0ba03a2
Removal of [simp] status for greaterThan_0. Moved two theorems into main HOL.
 
paulson <lp15@cam.ac.uk> 
parents: 
64267 
diff
changeset
 | 
371  | 
thus "ln 2 < (1::real)" by (subst (asm) exp_less_cancel_iff) simp  | 
| 
 
917ae0ba03a2
Removal of [simp] status for greaterThan_0. Moved two theorems into main HOL.
 
paulson <lp15@cam.ac.uk> 
parents: 
64267 
diff
changeset
 | 
372  | 
qed  | 
| 63569 | 373  | 
|
374  | 
subsection \<open>Version for Sine Function\<close>  | 
|
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
375  | 
|
| 67091 | 376  | 
lemma mod_exhaust_less_4: "m mod 4 = 0 \<or> m mod 4 = 1 \<or> m mod 4 = 2 \<or> m mod 4 = 3"  | 
| 63569 | 377  | 
for m :: nat  | 
378  | 
by auto  | 
|
379  | 
||
380  | 
lemma Suc_Suc_mult_two_diff_two [simp]: "n \<noteq> 0 \<Longrightarrow> Suc (Suc (2 * n - 2)) = 2 * n"  | 
|
381  | 
by (induct n) auto  | 
|
382  | 
||
383  | 
lemma lemma_Suc_Suc_4n_diff_2 [simp]: "n \<noteq> 0 \<Longrightarrow> Suc (Suc (4 * n - 2)) = 4 * n"  | 
|
384  | 
by (induct n) auto  | 
|
385  | 
||
386  | 
lemma Suc_mult_two_diff_one [simp]: "n \<noteq> 0 \<Longrightarrow> Suc (2 * n - 1) = 2 * n"  | 
|
387  | 
by (induct n) auto  | 
|
| 
60017
 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 
paulson <lp15@cam.ac.uk> 
parents: 
59730 
diff
changeset
 | 
388  | 
|
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
389  | 
|
| 63569 | 390  | 
text \<open>It is unclear why so many variant results are needed.\<close>  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
391  | 
|
| 63569 | 392  | 
lemma sin_expansion_lemma: "sin (x + real (Suc m) * pi / 2) = cos (x + real m * pi / 2)"  | 
393  | 
by (auto simp: cos_add sin_add add_divide_distrib distrib_right)  | 
|
| 
36974
 
b877866b5b00
remove some unnamed simp rules from Transcendental.thy; move the needed ones to MacLaurin.thy where they are used
 
huffman 
parents: 
32047 
diff
changeset
 | 
394  | 
|
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
395  | 
lemma Maclaurin_sin_expansion2:  | 
| 63569 | 396  | 
"\<exists>t. \<bar>t\<bar> \<le> \<bar>x\<bar> \<and>  | 
397  | 
sin x = (\<Sum>m<n. sin_coeff m * x ^ m) + (sin (t + 1/2 * real n * pi) / fact n) * x ^ n"  | 
|
398  | 
using Maclaurin_all_lt_objl  | 
|
399  | 
[where f = sin and n = n and x = x and diff = "\<lambda>n x. sin (x + 1/2 * real n * pi)"]  | 
|
400  | 
apply safe  | 
|
401  | 
apply simp  | 
|
402  | 
apply (simp add: sin_expansion_lemma del: of_nat_Suc)  | 
|
403  | 
apply (force intro!: derivative_eq_intros)  | 
|
| 64267 | 404  | 
apply (subst (asm) sum.neutral; auto)  | 
| 63569 | 405  | 
apply (rule ccontr)  | 
406  | 
apply simp  | 
|
407  | 
apply (drule_tac x = x in spec)  | 
|
408  | 
apply simp  | 
|
409  | 
apply (erule ssubst)  | 
|
410  | 
apply (rule_tac x = t in exI)  | 
|
411  | 
apply simp  | 
|
| 64267 | 412  | 
apply (rule sum.cong[OF refl])  | 
| 63569 | 413  | 
apply (auto simp add: sin_coeff_def sin_zero_iff elim: oddE simp del: of_nat_Suc)  | 
414  | 
done  | 
|
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
415  | 
|
| 
15234
 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 
paulson 
parents: 
15229 
diff
changeset
 | 
416  | 
lemma Maclaurin_sin_expansion:  | 
| 63569 | 417  | 
"\<exists>t. sin x = (\<Sum>m<n. sin_coeff m * x ^ m) + (sin (t + 1/2 * real n * pi) / fact n) * x ^ n"  | 
418  | 
using Maclaurin_sin_expansion2 [of x n] by blast  | 
|
| 
15234
 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 
paulson 
parents: 
15229 
diff
changeset
 | 
419  | 
|
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
420  | 
lemma Maclaurin_sin_expansion3:  | 
| 63569 | 421  | 
"n > 0 \<Longrightarrow> 0 < x \<Longrightarrow>  | 
422  | 
\<exists>t. 0 < t \<and> t < x \<and>  | 
|
423  | 
sin x = (\<Sum>m<n. sin_coeff m * x ^ m) + (sin (t + 1/2 * real n * pi) / fact n) * x ^ n"  | 
|
424  | 
using Maclaurin_objl  | 
|
425  | 
[where f = sin and n = n and h = x and diff = "\<lambda>n x. sin (x + 1/2 * real n * pi)"]  | 
|
426  | 
apply safe  | 
|
427  | 
apply simp  | 
|
428  | 
apply (simp (no_asm) add: sin_expansion_lemma del: of_nat_Suc)  | 
|
429  | 
apply (force intro!: derivative_eq_intros)  | 
|
430  | 
apply (erule ssubst)  | 
|
431  | 
apply (rule_tac x = t in exI)  | 
|
432  | 
apply simp  | 
|
| 64267 | 433  | 
apply (rule sum.cong[OF refl])  | 
| 63569 | 434  | 
apply (auto simp add: sin_coeff_def sin_zero_iff elim: oddE simp del: of_nat_Suc)  | 
435  | 
done  | 
|
436  | 
||
437  | 
lemma Maclaurin_sin_expansion4:  | 
|
438  | 
"0 < x \<Longrightarrow>  | 
|
439  | 
\<exists>t. 0 < t \<and> t \<le> x \<and>  | 
|
440  | 
sin x = (\<Sum>m<n. sin_coeff m * x ^ m) + (sin (t + 1/2 * real n * pi) / fact n) * x ^ n"  | 
|
441  | 
using Maclaurin2_objl  | 
|
442  | 
[where f = sin and n = n and h = x and diff = "\<lambda>n x. sin (x + 1/2 * real n * pi)"]  | 
|
443  | 
apply safe  | 
|
| 
61284
 
2314c2f62eb1
real_of_nat_Suc is now a simprule
 
paulson <lp15@cam.ac.uk> 
parents: 
61076 
diff
changeset
 | 
444  | 
apply simp  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
61284 
diff
changeset
 | 
445  | 
apply (simp (no_asm) add: sin_expansion_lemma del: of_nat_Suc)  | 
| 
61284
 
2314c2f62eb1
real_of_nat_Suc is now a simprule
 
paulson <lp15@cam.ac.uk> 
parents: 
61076 
diff
changeset
 | 
446  | 
apply (force intro!: derivative_eq_intros)  | 
| 
 
2314c2f62eb1
real_of_nat_Suc is now a simprule
 
paulson <lp15@cam.ac.uk> 
parents: 
61076 
diff
changeset
 | 
447  | 
apply (erule ssubst)  | 
| 63569 | 448  | 
apply (rule_tac x = t in exI)  | 
449  | 
apply simp  | 
|
| 64267 | 450  | 
apply (rule sum.cong[OF refl])  | 
| 63569 | 451  | 
apply (auto simp add: sin_coeff_def sin_zero_iff elim: oddE simp del: of_nat_Suc)  | 
452  | 
done  | 
|
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
453  | 
|
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
454  | 
|
| 63569 | 455  | 
subsection \<open>Maclaurin Expansion for Cosine Function\<close>  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
456  | 
|
| 63569 | 457  | 
lemma sumr_cos_zero_one [simp]: "(\<Sum>m<Suc n. cos_coeff m * 0 ^ m) = 1"  | 
458  | 
by (induct n) auto  | 
|
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
459  | 
|
| 63569 | 460  | 
lemma cos_expansion_lemma: "cos (x + real (Suc m) * pi / 2) = - sin (x + real m * pi / 2)"  | 
461  | 
by (auto simp: cos_add sin_add distrib_right add_divide_distrib)  | 
|
| 
36974
 
b877866b5b00
remove some unnamed simp rules from Transcendental.thy; move the needed ones to MacLaurin.thy where they are used
 
huffman 
parents: 
32047 
diff
changeset
 | 
462  | 
|
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
463  | 
lemma Maclaurin_cos_expansion:  | 
| 63569 | 464  | 
"\<exists>t::real. \<bar>t\<bar> \<le> \<bar>x\<bar> \<and>  | 
465  | 
cos x = (\<Sum>m<n. cos_coeff m * x ^ m) + (cos(t + 1/2 * real n * pi) / fact n) * x ^ n"  | 
|
466  | 
using Maclaurin_all_lt_objl  | 
|
467  | 
[where f = cos and n = n and x = x and diff = "\<lambda>n x. cos (x + 1/2 * real n * pi)"]  | 
|
468  | 
apply safe  | 
|
469  | 
apply simp  | 
|
470  | 
apply (simp add: cos_expansion_lemma del: of_nat_Suc)  | 
|
471  | 
apply (cases n)  | 
|
472  | 
apply simp  | 
|
| 64267 | 473  | 
apply (simp del: sum_lessThan_Suc)  | 
| 63569 | 474  | 
apply (rule ccontr)  | 
475  | 
apply simp  | 
|
476  | 
apply (drule_tac x = x in spec)  | 
|
477  | 
apply simp  | 
|
478  | 
apply (erule ssubst)  | 
|
479  | 
apply (rule_tac x = t in exI)  | 
|
480  | 
apply simp  | 
|
| 64267 | 481  | 
apply (rule sum.cong[OF refl])  | 
| 63569 | 482  | 
apply (auto simp add: cos_coeff_def cos_zero_iff elim: evenE)  | 
483  | 
done  | 
|
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
484  | 
|
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
485  | 
lemma Maclaurin_cos_expansion2:  | 
| 63569 | 486  | 
"0 < x \<Longrightarrow> n > 0 \<Longrightarrow>  | 
487  | 
\<exists>t. 0 < t \<and> t < x \<and>  | 
|
488  | 
cos x = (\<Sum>m<n. cos_coeff m * x ^ m) + (cos (t + 1/2 * real n * pi) / fact n) * x ^ n"  | 
|
489  | 
using Maclaurin_objl  | 
|
490  | 
[where f = cos and n = n and h = x and diff = "\<lambda>n x. cos (x + 1/2 * real n * pi)"]  | 
|
491  | 
apply safe  | 
|
492  | 
apply simp  | 
|
493  | 
apply (simp add: cos_expansion_lemma del: of_nat_Suc)  | 
|
494  | 
apply (erule ssubst)  | 
|
495  | 
apply (rule_tac x = t in exI)  | 
|
| 
61284
 
2314c2f62eb1
real_of_nat_Suc is now a simprule
 
paulson <lp15@cam.ac.uk> 
parents: 
61076 
diff
changeset
 | 
496  | 
apply simp  | 
| 64267 | 497  | 
apply (rule sum.cong[OF refl])  | 
| 63569 | 498  | 
apply (auto simp: cos_coeff_def cos_zero_iff elim: evenE)  | 
499  | 
done  | 
|
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
500  | 
|
| 
15234
 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 
paulson 
parents: 
15229 
diff
changeset
 | 
501  | 
lemma Maclaurin_minus_cos_expansion:  | 
| 63569 | 502  | 
"x < 0 \<Longrightarrow> n > 0 \<Longrightarrow>  | 
503  | 
\<exists>t. x < t \<and> t < 0 \<and>  | 
|
504  | 
cos x = (\<Sum>m<n. cos_coeff m * x ^ m) + ((cos (t + 1/2 * real n * pi) / fact n) * x ^ n)"  | 
|
505  | 
using Maclaurin_minus_objl  | 
|
506  | 
[where f = cos and n = n and h = x and diff = "\<lambda>n x. cos (x + 1/2 * real n *pi)"]  | 
|
507  | 
apply safe  | 
|
508  | 
apply simp  | 
|
509  | 
apply (simp add: cos_expansion_lemma del: of_nat_Suc)  | 
|
510  | 
apply (erule ssubst)  | 
|
511  | 
apply (rule_tac x = t in exI)  | 
|
| 
61284
 
2314c2f62eb1
real_of_nat_Suc is now a simprule
 
paulson <lp15@cam.ac.uk> 
parents: 
61076 
diff
changeset
 | 
512  | 
apply simp  | 
| 64267 | 513  | 
apply (rule sum.cong[OF refl])  | 
| 63569 | 514  | 
apply (auto simp: cos_coeff_def cos_zero_iff elim: evenE)  | 
515  | 
done  | 
|
516  | 
||
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
517  | 
|
| 63569 | 518  | 
(* Version for ln(1 +/- x). Where is it?? *)  | 
519  | 
||
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
520  | 
|
| 63569 | 521  | 
lemma sin_bound_lemma: "x = y \<Longrightarrow> \<bar>u\<bar> \<le> v \<Longrightarrow> \<bar>(x + u) - y\<bar> \<le> v"  | 
522  | 
for x y u v :: real  | 
|
523  | 
by auto  | 
|
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
524  | 
|
| 63569 | 525  | 
lemma Maclaurin_sin_bound: "\<bar>sin x - (\<Sum>m<n. sin_coeff m * x ^ m)\<bar> \<le> inverse (fact n) * \<bar>x\<bar> ^ n"  | 
| 14738 | 526  | 
proof -  | 
| 63569 | 527  | 
have est: "x \<le> 1 \<Longrightarrow> 0 \<le> y \<Longrightarrow> x * y \<le> 1 * y" for x y :: real  | 
528  | 
by (rule mult_right_mono) simp_all  | 
|
529  | 
let ?diff = "\<lambda>(n::nat) x.  | 
|
530  | 
if n mod 4 = 0 then sin x  | 
|
531  | 
else if n mod 4 = 1 then cos x  | 
|
532  | 
else if n mod 4 = 2 then - sin x  | 
|
533  | 
else - cos x"  | 
|
| 22985 | 534  | 
have diff_0: "?diff 0 = sin" by simp  | 
535  | 
have DERIV_diff: "\<forall>m x. DERIV (?diff m) x :> ?diff (Suc m) x"  | 
|
| 63569 | 536  | 
apply clarify  | 
| 22985 | 537  | 
apply (subst (1 2 3) mod_Suc_eq_Suc_mod)  | 
538  | 
apply (cut_tac m=m in mod_exhaust_less_4)  | 
|
| 63569 | 539  | 
apply safe  | 
540  | 
apply (auto intro!: derivative_eq_intros)  | 
|
| 22985 | 541  | 
done  | 
542  | 
from Maclaurin_all_le [OF diff_0 DERIV_diff]  | 
|
| 63569 | 543  | 
obtain t where t1: "\<bar>t\<bar> \<le> \<bar>x\<bar>"  | 
544  | 
and t2: "sin x = (\<Sum>m<n. ?diff m 0 / (fact m) * x ^ m) + ?diff n t / (fact n) * x ^ n"  | 
|
545  | 
by fast  | 
|
546  | 
have diff_m_0: "\<And>m. ?diff m 0 = (if even m then 0 else (- 1) ^ ((m - Suc 0) div 2))"  | 
|
| 22985 | 547  | 
apply (subst even_even_mod_4_iff)  | 
548  | 
apply (cut_tac m=m in mod_exhaust_less_4)  | 
|
| 63569 | 549  | 
apply (elim disjE)  | 
550  | 
apply simp_all  | 
|
551  | 
apply (safe dest!: mod_eqD)  | 
|
552  | 
apply simp_all  | 
|
| 22985 | 553  | 
done  | 
| 14738 | 554  | 
show ?thesis  | 
| 
44306
 
33572a766836
fold definitions of sin_coeff and cos_coeff in Maclaurin lemmas
 
huffman 
parents: 
41166 
diff
changeset
 | 
555  | 
unfolding sin_coeff_def  | 
| 22985 | 556  | 
apply (subst t2)  | 
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
557  | 
apply (rule sin_bound_lemma)  | 
| 64267 | 558  | 
apply (rule sum.cong[OF refl])  | 
| 63569 | 559  | 
apply (subst diff_m_0, simp)  | 
560  | 
using est  | 
|
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
561  | 
apply (auto intro: mult_right_mono [where b=1, simplified] mult_right_mono  | 
| 63569 | 562  | 
simp: ac_simps divide_inverse power_abs [symmetric] abs_mult)  | 
| 14738 | 563  | 
done  | 
564  | 
qed  | 
|
565  | 
||
| 63570 | 566  | 
|
567  | 
section \<open>Taylor series\<close>  | 
|
568  | 
||
569  | 
text \<open>  | 
|
570  | 
We use MacLaurin and the translation of the expansion point \<open>c\<close> to \<open>0\<close>  | 
|
571  | 
to prove Taylor's theorem.  | 
|
572  | 
\<close>  | 
|
573  | 
||
574  | 
lemma taylor_up:  | 
|
575  | 
assumes INIT: "n > 0" "diff 0 = f"  | 
|
576  | 
and DERIV: "\<forall>m t. m < n \<and> a \<le> t \<and> t \<le> b \<longrightarrow> DERIV (diff m) t :> (diff (Suc m) t)"  | 
|
577  | 
and INTERV: "a \<le> c" "c < b"  | 
|
578  | 
shows "\<exists>t::real. c < t \<and> t < b \<and>  | 
|
579  | 
f b = (\<Sum>m<n. (diff m c / fact m) * (b - c)^m) + (diff n t / fact n) * (b - c)^n"  | 
|
580  | 
proof -  | 
|
581  | 
from INTERV have "0 < b - c" by arith  | 
|
582  | 
moreover from INIT have "n > 0" "(\<lambda>m x. diff m (x + c)) 0 = (\<lambda>x. f (x + c))"  | 
|
583  | 
by auto  | 
|
584  | 
moreover  | 
|
585  | 
have "\<forall>m t. m < n \<and> 0 \<le> t \<and> t \<le> b - c \<longrightarrow> DERIV (\<lambda>x. diff m (x + c)) t :> diff (Suc m) (t + c)"  | 
|
586  | 
proof (intro strip)  | 
|
587  | 
fix m t  | 
|
588  | 
assume "m < n \<and> 0 \<le> t \<and> t \<le> b - c"  | 
|
589  | 
with DERIV and INTERV have "DERIV (diff m) (t + c) :> diff (Suc m) (t + c)"  | 
|
590  | 
by auto  | 
|
591  | 
moreover from DERIV_ident and DERIV_const have "DERIV (\<lambda>x. x + c) t :> 1 + 0"  | 
|
592  | 
by (rule DERIV_add)  | 
|
593  | 
ultimately have "DERIV (\<lambda>x. diff m (x + c)) t :> diff (Suc m) (t + c) * (1 + 0)"  | 
|
594  | 
by (rule DERIV_chain2)  | 
|
595  | 
then show "DERIV (\<lambda>x. diff m (x + c)) t :> diff (Suc m) (t + c)"  | 
|
596  | 
by simp  | 
|
597  | 
qed  | 
|
598  | 
ultimately obtain x where  | 
|
599  | 
"0 < x \<and> x < b - c \<and>  | 
|
600  | 
f (b - c + c) =  | 
|
601  | 
(\<Sum>m<n. diff m (0 + c) / fact m * (b - c) ^ m) + diff n (x + c) / fact n * (b - c) ^ n"  | 
|
602  | 
by (rule Maclaurin [THEN exE])  | 
|
603  | 
then have "c < x + c \<and> x + c < b \<and> f b =  | 
|
604  | 
(\<Sum>m<n. diff m c / fact m * (b - c) ^ m) + diff n (x + c) / fact n * (b - c) ^ n"  | 
|
605  | 
by fastforce  | 
|
606  | 
then show ?thesis by fastforce  | 
|
607  | 
qed  | 
|
608  | 
||
609  | 
lemma taylor_down:  | 
|
610  | 
fixes a :: real and n :: nat  | 
|
611  | 
assumes INIT: "n > 0" "diff 0 = f"  | 
|
612  | 
and DERIV: "(\<forall>m t. m < n \<and> a \<le> t \<and> t \<le> b \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t)"  | 
|
613  | 
and INTERV: "a < c" "c \<le> b"  | 
|
614  | 
shows "\<exists>t. a < t \<and> t < c \<and>  | 
|
615  | 
f a = (\<Sum>m<n. (diff m c / fact m) * (a - c)^m) + (diff n t / fact n) * (a - c)^n"  | 
|
616  | 
proof -  | 
|
617  | 
from INTERV have "a-c < 0" by arith  | 
|
618  | 
moreover from INIT have "n > 0" "(\<lambda>m x. diff m (x + c)) 0 = (\<lambda>x. f (x + c))"  | 
|
619  | 
by auto  | 
|
620  | 
moreover  | 
|
621  | 
have "\<forall>m t. m < n \<and> a - c \<le> t \<and> t \<le> 0 \<longrightarrow> DERIV (\<lambda>x. diff m (x + c)) t :> diff (Suc m) (t + c)"  | 
|
622  | 
proof (rule allI impI)+  | 
|
623  | 
fix m t  | 
|
624  | 
assume "m < n \<and> a - c \<le> t \<and> t \<le> 0"  | 
|
625  | 
with DERIV and INTERV have "DERIV (diff m) (t + c) :> diff (Suc m) (t + c)"  | 
|
626  | 
by auto  | 
|
627  | 
moreover from DERIV_ident and DERIV_const have "DERIV (\<lambda>x. x + c) t :> 1 + 0"  | 
|
628  | 
by (rule DERIV_add)  | 
|
629  | 
ultimately have "DERIV (\<lambda>x. diff m (x + c)) t :> diff (Suc m) (t + c) * (1 + 0)"  | 
|
630  | 
by (rule DERIV_chain2)  | 
|
631  | 
then show "DERIV (\<lambda>x. diff m (x + c)) t :> diff (Suc m) (t + c)"  | 
|
632  | 
by simp  | 
|
633  | 
qed  | 
|
634  | 
ultimately obtain x where  | 
|
635  | 
"a - c < x \<and> x < 0 \<and>  | 
|
636  | 
f (a - c + c) =  | 
|
637  | 
(\<Sum>m<n. diff m (0 + c) / fact m * (a - c) ^ m) + diff n (x + c) / fact n * (a - c) ^ n"  | 
|
638  | 
by (rule Maclaurin_minus [THEN exE])  | 
|
639  | 
then have "a < x + c \<and> x + c < c \<and>  | 
|
640  | 
f a = (\<Sum>m<n. diff m c / fact m * (a - c) ^ m) + diff n (x + c) / fact n * (a - c) ^ n"  | 
|
641  | 
by fastforce  | 
|
642  | 
then show ?thesis by fastforce  | 
|
643  | 
qed  | 
|
644  | 
||
645  | 
theorem taylor:  | 
|
646  | 
fixes a :: real and n :: nat  | 
|
647  | 
assumes INIT: "n > 0" "diff 0 = f"  | 
|
648  | 
and DERIV: "\<forall>m t. m < n \<and> a \<le> t \<and> t \<le> b \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t"  | 
|
649  | 
and INTERV: "a \<le> c " "c \<le> b" "a \<le> x" "x \<le> b" "x \<noteq> c"  | 
|
650  | 
shows "\<exists>t.  | 
|
651  | 
(if x < c then x < t \<and> t < c else c < t \<and> t < x) \<and>  | 
|
652  | 
f x = (\<Sum>m<n. (diff m c / fact m) * (x - c)^m) + (diff n t / fact n) * (x - c)^n"  | 
|
653  | 
proof (cases "x < c")  | 
|
654  | 
case True  | 
|
655  | 
note INIT  | 
|
656  | 
moreover have "\<forall>m t. m < n \<and> x \<le> t \<and> t \<le> b \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t"  | 
|
657  | 
using DERIV and INTERV by fastforce  | 
|
658  | 
moreover note True  | 
|
659  | 
moreover from INTERV have "c \<le> b"  | 
|
660  | 
by simp  | 
|
661  | 
ultimately have "\<exists>t>x. t < c \<and> f x =  | 
|
662  | 
(\<Sum>m<n. diff m c / (fact m) * (x - c) ^ m) + diff n t / (fact n) * (x - c) ^ n"  | 
|
663  | 
by (rule taylor_down)  | 
|
664  | 
with True show ?thesis by simp  | 
|
665  | 
next  | 
|
666  | 
case False  | 
|
667  | 
note INIT  | 
|
668  | 
moreover have "\<forall>m t. m < n \<and> a \<le> t \<and> t \<le> x \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t"  | 
|
669  | 
using DERIV and INTERV by fastforce  | 
|
670  | 
moreover from INTERV have "a \<le> c"  | 
|
671  | 
by arith  | 
|
672  | 
moreover from False and INTERV have "c < x"  | 
|
673  | 
by arith  | 
|
674  | 
ultimately have "\<exists>t>c. t < x \<and> f x =  | 
|
675  | 
(\<Sum>m<n. diff m c / (fact m) * (x - c) ^ m) + diff n t / (fact n) * (x - c) ^ n"  | 
|
676  | 
by (rule taylor_up)  | 
|
677  | 
with False show ?thesis by simp  | 
|
678  | 
qed  | 
|
679  | 
||
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14738 
diff
changeset
 | 
680  | 
end  |