author | wenzelm |
Tue, 03 Mar 2009 17:42:30 +0100 | |
changeset 30221 | 14145e81a2fe |
parent 27239 | f2f42f9fa09d |
child 30510 | 4120fc59dd85 |
permissions | -rw-r--r-- |
17481 | 1 |
(* Title: LK/LK0.thy |
7093 | 2 |
ID: $Id$ |
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
4 |
Copyright 1993 University of Cambridge |
|
5 |
||
6 |
There may be printing problems if a seqent is in expanded normal form |
|
17481 | 7 |
(eta-expanded, beta-contracted) |
7093 | 8 |
*) |
9 |
||
17481 | 10 |
header {* Classical First-Order Sequent Calculus *} |
11 |
||
12 |
theory LK0 |
|
13 |
imports Sequents |
|
14 |
begin |
|
7093 | 15 |
|
16 |
global |
|
17 |
||
17481 | 18 |
classes "term" |
19 |
defaultsort "term" |
|
7093 | 20 |
|
21 |
consts |
|
22 |
||
21524 | 23 |
Trueprop :: "two_seqi" |
7093 | 24 |
|
17481 | 25 |
True :: o |
26 |
False :: o |
|
22894 | 27 |
equal :: "['a,'a] => o" (infixl "=" 50) |
17481 | 28 |
Not :: "o => o" ("~ _" [40] 40) |
22894 | 29 |
conj :: "[o,o] => o" (infixr "&" 35) |
30 |
disj :: "[o,o] => o" (infixr "|" 30) |
|
31 |
imp :: "[o,o] => o" (infixr "-->" 25) |
|
32 |
iff :: "[o,o] => o" (infixr "<->" 25) |
|
17481 | 33 |
The :: "('a => o) => 'a" (binder "THE " 10) |
34 |
All :: "('a => o) => o" (binder "ALL " 10) |
|
35 |
Ex :: "('a => o) => o" (binder "EX " 10) |
|
7093 | 36 |
|
37 |
syntax |
|
17481 | 38 |
"@Trueprop" :: "two_seqe" ("((_)/ |- (_))" [6,6] 5) |
39 |
||
40 |
parse_translation {* [("@Trueprop", two_seq_tr "Trueprop")] *} |
|
41 |
print_translation {* [("Trueprop", two_seq_tr' "@Trueprop")] *} |
|
7093 | 42 |
|
22894 | 43 |
abbreviation |
44 |
not_equal (infixl "~=" 50) where |
|
45 |
"x ~= y == ~ (x = y)" |
|
7093 | 46 |
|
12116 | 47 |
syntax (xsymbols) |
17481 | 48 |
Not :: "o => o" ("\<not> _" [40] 40) |
22894 | 49 |
conj :: "[o, o] => o" (infixr "\<and>" 35) |
50 |
disj :: "[o, o] => o" (infixr "\<or>" 30) |
|
51 |
imp :: "[o, o] => o" (infixr "\<longrightarrow>" 25) |
|
52 |
iff :: "[o, o] => o" (infixr "\<longleftrightarrow>" 25) |
|
21524 | 53 |
All_binder :: "[idts, o] => o" ("(3\<forall>_./ _)" [0, 10] 10) |
54 |
Ex_binder :: "[idts, o] => o" ("(3\<exists>_./ _)" [0, 10] 10) |
|
22894 | 55 |
not_equal :: "['a, 'a] => o" (infixl "\<noteq>" 50) |
7093 | 56 |
|
57 |
syntax (HTML output) |
|
17481 | 58 |
Not :: "o => o" ("\<not> _" [40] 40) |
22894 | 59 |
conj :: "[o, o] => o" (infixr "\<and>" 35) |
60 |
disj :: "[o, o] => o" (infixr "\<or>" 30) |
|
21524 | 61 |
All_binder :: "[idts, o] => o" ("(3\<forall>_./ _)" [0, 10] 10) |
62 |
Ex_binder :: "[idts, o] => o" ("(3\<exists>_./ _)" [0, 10] 10) |
|
22894 | 63 |
not_equal :: "['a, 'a] => o" (infixl "\<noteq>" 50) |
7093 | 64 |
|
65 |
local |
|
17481 | 66 |
|
67 |
axioms |
|
7093 | 68 |
|
69 |
(*Structural rules: contraction, thinning, exchange [Soren Heilmann] *) |
|
70 |
||
17481 | 71 |
contRS: "$H |- $E, $S, $S, $F ==> $H |- $E, $S, $F" |
72 |
contLS: "$H, $S, $S, $G |- $E ==> $H, $S, $G |- $E" |
|
7093 | 73 |
|
17481 | 74 |
thinRS: "$H |- $E, $F ==> $H |- $E, $S, $F" |
75 |
thinLS: "$H, $G |- $E ==> $H, $S, $G |- $E" |
|
7093 | 76 |
|
17481 | 77 |
exchRS: "$H |- $E, $R, $S, $F ==> $H |- $E, $S, $R, $F" |
78 |
exchLS: "$H, $R, $S, $G |- $E ==> $H, $S, $R, $G |- $E" |
|
7093 | 79 |
|
17481 | 80 |
cut: "[| $H |- $E, P; $H, P |- $E |] ==> $H |- $E" |
7093 | 81 |
|
82 |
(*Propositional rules*) |
|
83 |
||
17481 | 84 |
basic: "$H, P, $G |- $E, P, $F" |
7093 | 85 |
|
17481 | 86 |
conjR: "[| $H|- $E, P, $F; $H|- $E, Q, $F |] ==> $H|- $E, P&Q, $F" |
87 |
conjL: "$H, P, Q, $G |- $E ==> $H, P & Q, $G |- $E" |
|
7093 | 88 |
|
17481 | 89 |
disjR: "$H |- $E, P, Q, $F ==> $H |- $E, P|Q, $F" |
90 |
disjL: "[| $H, P, $G |- $E; $H, Q, $G |- $E |] ==> $H, P|Q, $G |- $E" |
|
7093 | 91 |
|
17481 | 92 |
impR: "$H, P |- $E, Q, $F ==> $H |- $E, P-->Q, $F" |
93 |
impL: "[| $H,$G |- $E,P; $H, Q, $G |- $E |] ==> $H, P-->Q, $G |- $E" |
|
7093 | 94 |
|
17481 | 95 |
notR: "$H, P |- $E, $F ==> $H |- $E, ~P, $F" |
96 |
notL: "$H, $G |- $E, P ==> $H, ~P, $G |- $E" |
|
7093 | 97 |
|
17481 | 98 |
FalseL: "$H, False, $G |- $E" |
7093 | 99 |
|
17481 | 100 |
True_def: "True == False-->False" |
101 |
iff_def: "P<->Q == (P-->Q) & (Q-->P)" |
|
7093 | 102 |
|
103 |
(*Quantifiers*) |
|
104 |
||
17481 | 105 |
allR: "(!!x.$H |- $E, P(x), $F) ==> $H |- $E, ALL x. P(x), $F" |
106 |
allL: "$H, P(x), $G, ALL x. P(x) |- $E ==> $H, ALL x. P(x), $G |- $E" |
|
7093 | 107 |
|
17481 | 108 |
exR: "$H |- $E, P(x), $F, EX x. P(x) ==> $H |- $E, EX x. P(x), $F" |
109 |
exL: "(!!x.$H, P(x), $G |- $E) ==> $H, EX x. P(x), $G |- $E" |
|
7093 | 110 |
|
111 |
(*Equality*) |
|
112 |
||
17481 | 113 |
refl: "$H |- $E, a=a, $F" |
114 |
subst: "$H(a), $G(a) |- $E(a) ==> $H(b), a=b, $G(b) |- $E(b)" |
|
7093 | 115 |
|
116 |
(* Reflection *) |
|
117 |
||
17481 | 118 |
eq_reflection: "|- x=y ==> (x==y)" |
119 |
iff_reflection: "|- P<->Q ==> (P==Q)" |
|
7093 | 120 |
|
121 |
(*Descriptions*) |
|
122 |
||
17481 | 123 |
The: "[| $H |- $E, P(a), $F; !!x.$H, P(x) |- $E, x=a, $F |] ==> |
7093 | 124 |
$H |- $E, P(THE x. P(x)), $F" |
125 |
||
126 |
constdefs |
|
17481 | 127 |
If :: "[o, 'a, 'a] => 'a" ("(if (_)/ then (_)/ else (_))" 10) |
7093 | 128 |
"If(P,x,y) == THE z::'a. (P --> z=x) & (~P --> z=y)" |
129 |
||
21426 | 130 |
|
131 |
(** Structural Rules on formulas **) |
|
132 |
||
133 |
(*contraction*) |
|
134 |
||
135 |
lemma contR: "$H |- $E, P, P, $F ==> $H |- $E, P, $F" |
|
136 |
by (rule contRS) |
|
137 |
||
138 |
lemma contL: "$H, P, P, $G |- $E ==> $H, P, $G |- $E" |
|
139 |
by (rule contLS) |
|
140 |
||
141 |
(*thinning*) |
|
142 |
||
143 |
lemma thinR: "$H |- $E, $F ==> $H |- $E, P, $F" |
|
144 |
by (rule thinRS) |
|
145 |
||
146 |
lemma thinL: "$H, $G |- $E ==> $H, P, $G |- $E" |
|
147 |
by (rule thinLS) |
|
148 |
||
149 |
(*exchange*) |
|
150 |
||
151 |
lemma exchR: "$H |- $E, Q, P, $F ==> $H |- $E, P, Q, $F" |
|
152 |
by (rule exchRS) |
|
153 |
||
154 |
lemma exchL: "$H, Q, P, $G |- $E ==> $H, P, Q, $G |- $E" |
|
155 |
by (rule exchLS) |
|
156 |
||
157 |
ML {* |
|
158 |
(*Cut and thin, replacing the right-side formula*) |
|
27208
5fe899199f85
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
27146
diff
changeset
|
159 |
fun cutR_tac ctxt s i = |
27239 | 160 |
res_inst_tac ctxt [(("P", 0), s) ] @{thm cut} i THEN rtac @{thm thinR} i |
21426 | 161 |
|
162 |
(*Cut and thin, replacing the left-side formula*) |
|
27208
5fe899199f85
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
27146
diff
changeset
|
163 |
fun cutL_tac ctxt s i = |
27239 | 164 |
res_inst_tac ctxt [(("P", 0), s)] @{thm cut} i THEN rtac @{thm thinL} (i+1) |
21426 | 165 |
*} |
166 |
||
167 |
||
168 |
(** If-and-only-if rules **) |
|
169 |
lemma iffR: |
|
170 |
"[| $H,P |- $E,Q,$F; $H,Q |- $E,P,$F |] ==> $H |- $E, P <-> Q, $F" |
|
171 |
apply (unfold iff_def) |
|
172 |
apply (assumption | rule conjR impR)+ |
|
173 |
done |
|
174 |
||
175 |
lemma iffL: |
|
176 |
"[| $H,$G |- $E,P,Q; $H,Q,P,$G |- $E |] ==> $H, P <-> Q, $G |- $E" |
|
177 |
apply (unfold iff_def) |
|
178 |
apply (assumption | rule conjL impL basic)+ |
|
179 |
done |
|
180 |
||
181 |
lemma iff_refl: "$H |- $E, (P <-> P), $F" |
|
182 |
apply (rule iffR basic)+ |
|
183 |
done |
|
184 |
||
185 |
lemma TrueR: "$H |- $E, True, $F" |
|
186 |
apply (unfold True_def) |
|
187 |
apply (rule impR) |
|
188 |
apply (rule basic) |
|
189 |
done |
|
190 |
||
191 |
(*Descriptions*) |
|
192 |
lemma the_equality: |
|
193 |
assumes p1: "$H |- $E, P(a), $F" |
|
194 |
and p2: "!!x. $H, P(x) |- $E, x=a, $F" |
|
195 |
shows "$H |- $E, (THE x. P(x)) = a, $F" |
|
196 |
apply (rule cut) |
|
197 |
apply (rule_tac [2] p2) |
|
198 |
apply (rule The, rule thinR, rule exchRS, rule p1) |
|
199 |
apply (rule thinR, rule exchRS, rule p2) |
|
200 |
done |
|
201 |
||
202 |
||
203 |
(** Weakened quantifier rules. Incomplete, they let the search terminate.**) |
|
204 |
||
205 |
lemma allL_thin: "$H, P(x), $G |- $E ==> $H, ALL x. P(x), $G |- $E" |
|
206 |
apply (rule allL) |
|
207 |
apply (erule thinL) |
|
208 |
done |
|
209 |
||
210 |
lemma exR_thin: "$H |- $E, P(x), $F ==> $H |- $E, EX x. P(x), $F" |
|
211 |
apply (rule exR) |
|
212 |
apply (erule thinR) |
|
213 |
done |
|
214 |
||
215 |
(*The rules of LK*) |
|
216 |
||
217 |
ML {* |
|
218 |
val prop_pack = empty_pack add_safes |
|
219 |
[thm "basic", thm "refl", thm "TrueR", thm "FalseL", |
|
220 |
thm "conjL", thm "conjR", thm "disjL", thm "disjR", thm "impL", thm "impR", |
|
221 |
thm "notL", thm "notR", thm "iffL", thm "iffR"]; |
|
222 |
||
223 |
val LK_pack = prop_pack add_safes [thm "allR", thm "exL"] |
|
224 |
add_unsafes [thm "allL_thin", thm "exR_thin", thm "the_equality"]; |
|
225 |
||
226 |
val LK_dup_pack = prop_pack add_safes [thm "allR", thm "exL"] |
|
227 |
add_unsafes [thm "allL", thm "exR", thm "the_equality"]; |
|
228 |
||
229 |
||
230 |
local |
|
231 |
val thinR = thm "thinR" |
|
232 |
val thinL = thm "thinL" |
|
233 |
val cut = thm "cut" |
|
234 |
in |
|
235 |
||
236 |
fun lemma_tac th i = |
|
237 |
rtac (thinR RS cut) i THEN REPEAT (rtac thinL i) THEN rtac th i; |
|
238 |
||
239 |
end; |
|
240 |
*} |
|
241 |
||
242 |
method_setup fast_prop = |
|
21588 | 243 |
{* Method.no_args (Method.SIMPLE_METHOD' (fast_tac prop_pack)) *} |
21426 | 244 |
"propositional reasoning" |
245 |
||
246 |
method_setup fast = |
|
21588 | 247 |
{* Method.no_args (Method.SIMPLE_METHOD' (fast_tac LK_pack)) *} |
21426 | 248 |
"classical reasoning" |
249 |
||
250 |
method_setup fast_dup = |
|
21588 | 251 |
{* Method.no_args (Method.SIMPLE_METHOD' (fast_tac LK_dup_pack)) *} |
21426 | 252 |
"classical reasoning" |
253 |
||
254 |
method_setup best = |
|
21588 | 255 |
{* Method.no_args (Method.SIMPLE_METHOD' (best_tac LK_pack)) *} |
21426 | 256 |
"classical reasoning" |
257 |
||
258 |
method_setup best_dup = |
|
21588 | 259 |
{* Method.no_args (Method.SIMPLE_METHOD' (best_tac LK_dup_pack)) *} |
21426 | 260 |
"classical reasoning" |
7093 | 261 |
|
7118
ee384c7b7416
adding missing declarations for the <<...>> notation
paulson
parents:
7093
diff
changeset
|
262 |
|
21426 | 263 |
lemma mp_R: |
264 |
assumes major: "$H |- $E, $F, P --> Q" |
|
265 |
and minor: "$H |- $E, $F, P" |
|
266 |
shows "$H |- $E, Q, $F" |
|
267 |
apply (rule thinRS [THEN cut], rule major) |
|
268 |
apply (tactic "step_tac LK_pack 1") |
|
269 |
apply (rule thinR, rule minor) |
|
270 |
done |
|
271 |
||
272 |
lemma mp_L: |
|
273 |
assumes major: "$H, $G |- $E, P --> Q" |
|
274 |
and minor: "$H, $G, Q |- $E" |
|
275 |
shows "$H, P, $G |- $E" |
|
276 |
apply (rule thinL [THEN cut], rule major) |
|
277 |
apply (tactic "step_tac LK_pack 1") |
|
278 |
apply (rule thinL, rule minor) |
|
279 |
done |
|
280 |
||
281 |
||
282 |
(** Two rules to generate left- and right- rules from implications **) |
|
283 |
||
284 |
lemma R_of_imp: |
|
285 |
assumes major: "|- P --> Q" |
|
286 |
and minor: "$H |- $E, $F, P" |
|
287 |
shows "$H |- $E, Q, $F" |
|
288 |
apply (rule mp_R) |
|
289 |
apply (rule_tac [2] minor) |
|
290 |
apply (rule thinRS, rule major [THEN thinLS]) |
|
291 |
done |
|
292 |
||
293 |
lemma L_of_imp: |
|
294 |
assumes major: "|- P --> Q" |
|
295 |
and minor: "$H, $G, Q |- $E" |
|
296 |
shows "$H, P, $G |- $E" |
|
297 |
apply (rule mp_L) |
|
298 |
apply (rule_tac [2] minor) |
|
299 |
apply (rule thinRS, rule major [THEN thinLS]) |
|
300 |
done |
|
301 |
||
302 |
(*Can be used to create implications in a subgoal*) |
|
303 |
lemma backwards_impR: |
|
304 |
assumes prem: "$H, $G |- $E, $F, P --> Q" |
|
305 |
shows "$H, P, $G |- $E, Q, $F" |
|
306 |
apply (rule mp_L) |
|
307 |
apply (rule_tac [2] basic) |
|
308 |
apply (rule thinR, rule prem) |
|
309 |
done |
|
310 |
||
311 |
lemma conjunct1: "|-P&Q ==> |-P" |
|
312 |
apply (erule thinR [THEN cut]) |
|
313 |
apply fast |
|
314 |
done |
|
315 |
||
316 |
lemma conjunct2: "|-P&Q ==> |-Q" |
|
317 |
apply (erule thinR [THEN cut]) |
|
318 |
apply fast |
|
319 |
done |
|
320 |
||
321 |
lemma spec: "|- (ALL x. P(x)) ==> |- P(x)" |
|
322 |
apply (erule thinR [THEN cut]) |
|
323 |
apply fast |
|
324 |
done |
|
325 |
||
326 |
||
327 |
(** Equality **) |
|
328 |
||
329 |
lemma sym: "|- a=b --> b=a" |
|
330 |
by (tactic {* safe_tac (LK_pack add_safes [thm "subst"]) 1 *}) |
|
331 |
||
332 |
lemma trans: "|- a=b --> b=c --> a=c" |
|
333 |
by (tactic {* safe_tac (LK_pack add_safes [thm "subst"]) 1 *}) |
|
334 |
||
335 |
(* Symmetry of equality in hypotheses *) |
|
336 |
lemmas symL = sym [THEN L_of_imp, standard] |
|
337 |
||
338 |
(* Symmetry of equality in hypotheses *) |
|
339 |
lemmas symR = sym [THEN R_of_imp, standard] |
|
340 |
||
341 |
lemma transR: "[| $H|- $E, $F, a=b; $H|- $E, $F, b=c |] ==> $H|- $E, a=c, $F" |
|
342 |
by (rule trans [THEN R_of_imp, THEN mp_R]) |
|
343 |
||
344 |
(* Two theorms for rewriting only one instance of a definition: |
|
345 |
the first for definitions of formulae and the second for terms *) |
|
346 |
||
347 |
lemma def_imp_iff: "(A == B) ==> |- A <-> B" |
|
348 |
apply unfold |
|
349 |
apply (rule iff_refl) |
|
350 |
done |
|
351 |
||
352 |
lemma meta_eq_to_obj_eq: "(A == B) ==> |- A = B" |
|
353 |
apply unfold |
|
354 |
apply (rule refl) |
|
355 |
done |
|
356 |
||
357 |
||
358 |
(** if-then-else rules **) |
|
359 |
||
360 |
lemma if_True: "|- (if True then x else y) = x" |
|
361 |
unfolding If_def by fast |
|
362 |
||
363 |
lemma if_False: "|- (if False then x else y) = y" |
|
364 |
unfolding If_def by fast |
|
365 |
||
366 |
lemma if_P: "|- P ==> |- (if P then x else y) = x" |
|
367 |
apply (unfold If_def) |
|
368 |
apply (erule thinR [THEN cut]) |
|
369 |
apply fast |
|
370 |
done |
|
371 |
||
372 |
lemma if_not_P: "|- ~P ==> |- (if P then x else y) = y"; |
|
373 |
apply (unfold If_def) |
|
374 |
apply (erule thinR [THEN cut]) |
|
375 |
apply fast |
|
376 |
done |
|
377 |
||
378 |
end |