src/HOL/Ring_and_Field.thy
author nipkow
Sun, 25 Jan 2004 00:42:22 +0100
changeset 14360 e654599b114e
parent 14353 79f9fbef9106
child 14365 3d4df8c166ae
permissions -rw-r--r--
Added an exception handler and error msg.
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
     1
(*  Title:   HOL/Ring_and_Field.thy
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
     2
    ID:      $Id$
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
     3
    Author:  Gertrud Bauer and Markus Wenzel, TU Muenchen
14269
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
     4
             Lawrence C Paulson, University of Cambridge
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
     5
    License: GPL (GNU GENERAL PUBLIC LICENSE)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
     6
*)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
     7
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
     8
header {*
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
     9
  \title{Ring and field structures}
14353
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
    10
  \author{Gertrud Bauer, L. C. Paulson and Markus Wenzel}
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    11
*}
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    12
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    13
theory Ring_and_Field = Inductive:
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    14
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    15
subsection {* Abstract algebraic structures *}
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    16
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    17
axclass semiring \<subseteq> zero, one, plus, times
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    18
  add_assoc: "(a + b) + c = a + (b + c)"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    19
  add_commute: "a + b = b + a"
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
    20
  add_0 [simp]: "0 + a = a"
14341
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
    21
  add_left_imp_eq: "a + b = a + c ==> b=c"
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
    22
    --{*This axiom is needed for semirings only: for rings, etc., it is
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
    23
        redundant. Including it allows many more of the following results
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
    24
        to be proved for semirings too. The drawback is that this redundant
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
    25
        axiom must be proved for instances of rings.*}
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    26
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    27
  mult_assoc: "(a * b) * c = a * (b * c)"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    28
  mult_commute: "a * b = b * a"
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
    29
  mult_1 [simp]: "1 * a = a"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    30
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    31
  left_distrib: "(a + b) * c = a * c + b * c"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    32
  zero_neq_one [simp]: "0 \<noteq> 1"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    33
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    34
axclass ring \<subseteq> semiring, minus
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    35
  left_minus [simp]: "- a + a = 0"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    36
  diff_minus: "a - b = a + (-b)"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    37
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    38
axclass ordered_semiring \<subseteq> semiring, linorder
14348
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
    39
  zero_less_one: "0 < 1" --{*This axiom too is needed for semirings only.*}
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    40
  add_left_mono: "a \<le> b ==> c + a \<le> c + b"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    41
  mult_strict_left_mono: "a < b ==> 0 < c ==> c * a < c * b"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    42
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    43
axclass ordered_ring \<subseteq> ordered_semiring, ring
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    44
  abs_if: "\<bar>a\<bar> = (if a < 0 then -a else a)"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    45
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    46
axclass field \<subseteq> ring, inverse
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    47
  left_inverse [simp]: "a \<noteq> 0 ==> inverse a * a = 1"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    48
  divide_inverse:      "b \<noteq> 0 ==> a / b = a * inverse b"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    49
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    50
axclass ordered_field \<subseteq> ordered_ring, field
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    51
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    52
axclass division_by_zero \<subseteq> zero, inverse
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
    53
  inverse_zero [simp]: "inverse 0 = 0"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
    54
  divide_zero [simp]: "a / 0 = 0"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    55
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    56
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
    57
subsection {* Derived Rules for Addition *}
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    58
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
    59
lemma add_0_right [simp]: "a + 0 = (a::'a::semiring)"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    60
proof -
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    61
  have "a + 0 = 0 + a" by (simp only: add_commute)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    62
  also have "... = a" by simp
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    63
  finally show ?thesis .
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    64
qed
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    65
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    66
lemma add_left_commute: "a + (b + c) = b + (a + (c::'a::semiring))"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    67
  by (rule mk_left_commute [of "op +", OF add_assoc add_commute])
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    68
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    69
theorems add_ac = add_assoc add_commute add_left_commute
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    70
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    71
lemma right_minus [simp]: "a + -(a::'a::ring) = 0"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    72
proof -
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    73
  have "a + -a = -a + a" by (simp add: add_ac)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    74
  also have "... = 0" by simp
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    75
  finally show ?thesis .
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    76
qed
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    77
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    78
lemma right_minus_eq: "(a - b = 0) = (a = (b::'a::ring))"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    79
proof
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    80
  have "a = a - b + b" by (simp add: diff_minus add_ac)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    81
  also assume "a - b = 0"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    82
  finally show "a = b" by simp
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    83
next
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    84
  assume "a = b"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    85
  thus "a - b = 0" by (simp add: diff_minus)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    86
qed
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    87
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    88
lemma add_left_cancel [simp]:
14341
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
    89
     "(a + b = a + c) = (b = (c::'a::semiring))"
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
    90
by (blast dest: add_left_imp_eq) 
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    91
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    92
lemma add_right_cancel [simp]:
14341
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
    93
     "(b + a = c + a) = (b = (c::'a::semiring))"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    94
  by (simp add: add_commute)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    95
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    96
lemma minus_minus [simp]: "- (- (a::'a::ring)) = a"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    97
  proof (rule add_left_cancel [of "-a", THEN iffD1])
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    98
    show "(-a + -(-a) = -a + a)"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    99
    by simp
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   100
  qed
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   101
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   102
lemma equals_zero_I: "a+b = 0 ==> -a = (b::'a::ring)"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   103
apply (rule right_minus_eq [THEN iffD1, symmetric])
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   104
apply (simp add: diff_minus add_commute) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   105
done
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   106
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   107
lemma minus_zero [simp]: "- 0 = (0::'a::ring)"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   108
by (simp add: equals_zero_I)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   109
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   110
lemma diff_self [simp]: "a - (a::'a::ring) = 0"
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   111
  by (simp add: diff_minus)
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   112
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   113
lemma diff_0 [simp]: "(0::'a::ring) - a = -a"
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   114
by (simp add: diff_minus)
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   115
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   116
lemma diff_0_right [simp]: "a - (0::'a::ring) = a" 
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   117
by (simp add: diff_minus)
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   118
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   119
lemma diff_minus_eq_add [simp]: "a - - b = a + (b::'a::ring)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   120
by (simp add: diff_minus)
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   121
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   122
lemma neg_equal_iff_equal [simp]: "(-a = -b) = (a = (b::'a::ring))" 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   123
  proof 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   124
    assume "- a = - b"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   125
    hence "- (- a) = - (- b)"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   126
      by simp
14266
08b34c902618 conversion of integers to use Ring_and_Field;
paulson
parents: 14265
diff changeset
   127
    thus "a=b" by simp
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   128
  next
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   129
    assume "a=b"
14266
08b34c902618 conversion of integers to use Ring_and_Field;
paulson
parents: 14265
diff changeset
   130
    thus "-a = -b" by simp
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   131
  qed
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   132
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   133
lemma neg_equal_0_iff_equal [simp]: "(-a = 0) = (a = (0::'a::ring))"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   134
by (subst neg_equal_iff_equal [symmetric], simp)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   135
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   136
lemma neg_0_equal_iff_equal [simp]: "(0 = -a) = (0 = (a::'a::ring))"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   137
by (subst neg_equal_iff_equal [symmetric], simp)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   138
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   139
text{*The next two equations can make the simplifier loop!*}
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   140
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   141
lemma equation_minus_iff: "(a = - b) = (b = - (a::'a::ring))"
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   142
  proof -
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   143
  have "(- (-a) = - b) = (- a = b)" by (rule neg_equal_iff_equal)
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   144
  thus ?thesis by (simp add: eq_commute)
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   145
  qed
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   146
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   147
lemma minus_equation_iff: "(- a = b) = (- (b::'a::ring) = a)"
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   148
  proof -
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   149
  have "(- a = - (-b)) = (a = -b)" by (rule neg_equal_iff_equal)
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   150
  thus ?thesis by (simp add: eq_commute)
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   151
  qed
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   152
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   153
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   154
subsection {* Derived rules for multiplication *}
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   155
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   156
lemma mult_1_right [simp]: "a * (1::'a::semiring) = a"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   157
proof -
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   158
  have "a * 1 = 1 * a" by (simp add: mult_commute)
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   159
  also have "... = a" by simp
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   160
  finally show ?thesis .
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   161
qed
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   162
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   163
lemma mult_left_commute: "a * (b * c) = b * (a * (c::'a::semiring))"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   164
  by (rule mk_left_commute [of "op *", OF mult_assoc mult_commute])
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   165
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   166
theorems mult_ac = mult_assoc mult_commute mult_left_commute
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   167
14353
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
   168
lemma mult_zero_left [simp]: "0 * a = (0::'a::semiring)"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   169
proof -
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   170
  have "0*a + 0*a = 0*a + 0"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   171
    by (simp add: left_distrib [symmetric])
14266
08b34c902618 conversion of integers to use Ring_and_Field;
paulson
parents: 14265
diff changeset
   172
  thus ?thesis by (simp only: add_left_cancel)
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   173
qed
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   174
14353
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
   175
lemma mult_zero_right [simp]: "a * 0 = (0::'a::semiring)"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   176
  by (simp add: mult_commute)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   177
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   178
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   179
subsection {* Distribution rules *}
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   180
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   181
lemma right_distrib: "a * (b + c) = a * b + a * (c::'a::semiring)"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   182
proof -
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   183
  have "a * (b + c) = (b + c) * a" by (simp add: mult_ac)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   184
  also have "... = b * a + c * a" by (simp only: left_distrib)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   185
  also have "... = a * b + a * c" by (simp add: mult_ac)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   186
  finally show ?thesis .
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   187
qed
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   188
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   189
theorems ring_distrib = right_distrib left_distrib
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   190
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   191
text{*For the @{text combine_numerals} simproc*}
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   192
lemma combine_common_factor: "a*e + (b*e + c) = (a+b)*e + (c::'a::semiring)"
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   193
by (simp add: left_distrib add_ac)
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   194
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   195
lemma minus_add_distrib [simp]: "- (a + b) = -a + -(b::'a::ring)"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   196
apply (rule equals_zero_I)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   197
apply (simp add: add_ac) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   198
done
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   199
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   200
lemma minus_mult_left: "- (a * b) = (-a) * (b::'a::ring)"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   201
apply (rule equals_zero_I)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   202
apply (simp add: left_distrib [symmetric]) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   203
done
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   204
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   205
lemma minus_mult_right: "- (a * b) = a * -(b::'a::ring)"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   206
apply (rule equals_zero_I)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   207
apply (simp add: right_distrib [symmetric]) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   208
done
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   209
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   210
lemma minus_mult_minus [simp]: "(- a) * (- b) = a * (b::'a::ring)"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   211
  by (simp add: minus_mult_left [symmetric] minus_mult_right [symmetric])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   212
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   213
lemma right_diff_distrib: "a * (b - c) = a * b - a * (c::'a::ring)"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   214
by (simp add: right_distrib diff_minus 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   215
              minus_mult_left [symmetric] minus_mult_right [symmetric]) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   216
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   217
lemma left_diff_distrib: "(a - b) * c = a * c - b * (c::'a::ring)"
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   218
by (simp add: mult_commute [of _ c] right_diff_distrib) 
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   219
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   220
lemma minus_diff_eq [simp]: "- (a - b) = b - (a::'a::ring)"
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   221
by (simp add: diff_minus add_commute) 
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   222
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   223
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   224
subsection {* Ordering Rules for Addition *}
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   225
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   226
lemma add_right_mono: "a \<le> (b::'a::ordered_semiring) ==> a + c \<le> b + c"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   227
by (simp add: add_commute [of _ c] add_left_mono)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   228
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   229
text {* non-strict, in both arguments *}
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   230
lemma add_mono: "[|a \<le> b;  c \<le> d|] ==> a + c \<le> b + (d::'a::ordered_semiring)"
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   231
  apply (erule add_right_mono [THEN order_trans])
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   232
  apply (simp add: add_commute add_left_mono)
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   233
  done
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   234
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   235
lemma add_strict_left_mono:
14341
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   236
     "a < b ==> c + a < c + (b::'a::ordered_semiring)"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   237
 by (simp add: order_less_le add_left_mono) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   238
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   239
lemma add_strict_right_mono:
14341
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   240
     "a < b ==> a + c < b + (c::'a::ordered_semiring)"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   241
 by (simp add: add_commute [of _ c] add_strict_left_mono)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   242
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   243
text{*Strict monotonicity in both arguments*}
14341
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   244
lemma add_strict_mono: "[|a<b; c<d|] ==> a + c < b + (d::'a::ordered_semiring)"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   245
apply (erule add_strict_right_mono [THEN order_less_trans])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   246
apply (erule add_strict_left_mono)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   247
done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   248
14341
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   249
lemma add_less_le_mono: "[| a<b; c\<le>d |] ==> a + c < b + (d::'a::ordered_semiring)"
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   250
apply (erule add_strict_right_mono [THEN order_less_le_trans])
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   251
apply (erule add_left_mono) 
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   252
done
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   253
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   254
lemma add_le_less_mono:
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   255
     "[| a\<le>b; c<d |] ==> a + c < b + (d::'a::ordered_semiring)"
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   256
apply (erule add_right_mono [THEN order_le_less_trans])
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   257
apply (erule add_strict_left_mono) 
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   258
done
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   259
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   260
lemma add_less_imp_less_left:
14341
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   261
      assumes less: "c + a < c + b"  shows "a < (b::'a::ordered_semiring)"
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   262
  proof (rule ccontr)
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   263
    assume "~ a < b"
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   264
    hence "b \<le> a" by (simp add: linorder_not_less)
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   265
    hence "c+b \<le> c+a" by (rule add_left_mono)
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   266
    with this and less show False 
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   267
      by (simp add: linorder_not_less [symmetric])
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   268
  qed
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   269
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   270
lemma add_less_imp_less_right:
14341
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   271
      "a + c < b + c ==> a < (b::'a::ordered_semiring)"
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   272
apply (rule add_less_imp_less_left [of c])
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   273
apply (simp add: add_commute)  
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   274
done
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   275
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   276
lemma add_less_cancel_left [simp]:
14341
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   277
    "(c+a < c+b) = (a < (b::'a::ordered_semiring))"
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   278
by (blast intro: add_less_imp_less_left add_strict_left_mono) 
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   279
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   280
lemma add_less_cancel_right [simp]:
14341
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   281
    "(a+c < b+c) = (a < (b::'a::ordered_semiring))"
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   282
by (blast intro: add_less_imp_less_right add_strict_right_mono)
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   283
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   284
lemma add_le_cancel_left [simp]:
14341
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   285
    "(c+a \<le> c+b) = (a \<le> (b::'a::ordered_semiring))"
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   286
by (simp add: linorder_not_less [symmetric]) 
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   287
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   288
lemma add_le_cancel_right [simp]:
14341
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   289
    "(a+c \<le> b+c) = (a \<le> (b::'a::ordered_semiring))"
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   290
by (simp add: linorder_not_less [symmetric]) 
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   291
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   292
lemma add_le_imp_le_left:
14341
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   293
      "c + a \<le> c + b ==> a \<le> (b::'a::ordered_semiring)"
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   294
by simp
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   295
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   296
lemma add_le_imp_le_right:
14341
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   297
      "a + c \<le> b + c ==> a \<le> (b::'a::ordered_semiring)"
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   298
by simp
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   299
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   300
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   301
subsection {* Ordering Rules for Unary Minus *}
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   302
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   303
lemma le_imp_neg_le:
14269
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
   304
      assumes "a \<le> (b::'a::ordered_ring)" shows "-b \<le> -a"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   305
  proof -
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   306
  have "-a+a \<le> -a+b"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   307
    by (rule add_left_mono) 
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   308
  hence "0 \<le> -a+b"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   309
    by simp
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   310
  hence "0 + (-b) \<le> (-a + b) + (-b)"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   311
    by (rule add_right_mono) 
14266
08b34c902618 conversion of integers to use Ring_and_Field;
paulson
parents: 14265
diff changeset
   312
  thus ?thesis
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   313
    by (simp add: add_assoc)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   314
  qed
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   315
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   316
lemma neg_le_iff_le [simp]: "(-b \<le> -a) = (a \<le> (b::'a::ordered_ring))"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   317
  proof 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   318
    assume "- b \<le> - a"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   319
    hence "- (- a) \<le> - (- b)"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   320
      by (rule le_imp_neg_le)
14266
08b34c902618 conversion of integers to use Ring_and_Field;
paulson
parents: 14265
diff changeset
   321
    thus "a\<le>b" by simp
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   322
  next
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   323
    assume "a\<le>b"
14266
08b34c902618 conversion of integers to use Ring_and_Field;
paulson
parents: 14265
diff changeset
   324
    thus "-b \<le> -a" by (rule le_imp_neg_le)
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   325
  qed
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   326
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   327
lemma neg_le_0_iff_le [simp]: "(-a \<le> 0) = (0 \<le> (a::'a::ordered_ring))"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   328
by (subst neg_le_iff_le [symmetric], simp)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   329
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   330
lemma neg_0_le_iff_le [simp]: "(0 \<le> -a) = (a \<le> (0::'a::ordered_ring))"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   331
by (subst neg_le_iff_le [symmetric], simp)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   332
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   333
lemma neg_less_iff_less [simp]: "(-b < -a) = (a < (b::'a::ordered_ring))"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   334
by (force simp add: order_less_le) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   335
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   336
lemma neg_less_0_iff_less [simp]: "(-a < 0) = (0 < (a::'a::ordered_ring))"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   337
by (subst neg_less_iff_less [symmetric], simp)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   338
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   339
lemma neg_0_less_iff_less [simp]: "(0 < -a) = (a < (0::'a::ordered_ring))"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   340
by (subst neg_less_iff_less [symmetric], simp)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   341
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   342
text{*The next several equations can make the simplifier loop!*}
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   343
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   344
lemma less_minus_iff: "(a < - b) = (b < - (a::'a::ordered_ring))"
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   345
  proof -
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   346
  have "(- (-a) < - b) = (b < - a)" by (rule neg_less_iff_less)
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   347
  thus ?thesis by simp
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   348
  qed
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   349
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   350
lemma minus_less_iff: "(- a < b) = (- b < (a::'a::ordered_ring))"
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   351
  proof -
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   352
  have "(- a < - (-b)) = (- b < a)" by (rule neg_less_iff_less)
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   353
  thus ?thesis by simp
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   354
  qed
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   355
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   356
lemma le_minus_iff: "(a \<le> - b) = (b \<le> - (a::'a::ordered_ring))"
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   357
apply (simp add: linorder_not_less [symmetric])
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   358
apply (rule minus_less_iff) 
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   359
done
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   360
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   361
lemma minus_le_iff: "(- a \<le> b) = (- b \<le> (a::'a::ordered_ring))"
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   362
apply (simp add: linorder_not_less [symmetric])
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   363
apply (rule less_minus_iff) 
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   364
done
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   365
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   366
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   367
subsection{*Subtraction Laws*}
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   368
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   369
lemma add_diff_eq: "a + (b - c) = (a + b) - (c::'a::ring)"
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   370
by (simp add: diff_minus add_ac)
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   371
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   372
lemma diff_add_eq: "(a - b) + c = (a + c) - (b::'a::ring)"
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   373
by (simp add: diff_minus add_ac)
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   374
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   375
lemma diff_eq_eq: "(a-b = c) = (a = c + (b::'a::ring))"
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   376
by (auto simp add: diff_minus add_assoc)
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   377
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   378
lemma eq_diff_eq: "(a = c-b) = (a + (b::'a::ring) = c)"
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   379
by (auto simp add: diff_minus add_assoc)
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   380
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   381
lemma diff_diff_eq: "(a - b) - c = a - (b + (c::'a::ring))"
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   382
by (simp add: diff_minus add_ac)
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   383
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   384
lemma diff_diff_eq2: "a - (b - c) = (a + c) - (b::'a::ring)"
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   385
by (simp add: diff_minus add_ac)
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   386
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   387
text{*Further subtraction laws for ordered rings*}
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   388
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   389
lemma less_iff_diff_less_0: "(a < b) = (a - b < (0::'a::ordered_ring))"
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   390
proof -
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   391
  have  "(a < b) = (a + (- b) < b + (-b))"  
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   392
    by (simp only: add_less_cancel_right)
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   393
  also have "... =  (a - b < 0)" by (simp add: diff_minus)
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   394
  finally show ?thesis .
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   395
qed
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   396
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   397
lemma diff_less_eq: "(a-b < c) = (a < c + (b::'a::ordered_ring))"
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   398
apply (subst less_iff_diff_less_0)
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   399
apply (rule less_iff_diff_less_0 [of _ c, THEN ssubst])
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   400
apply (simp add: diff_minus add_ac)
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   401
done
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   402
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   403
lemma less_diff_eq: "(a < c-b) = (a + (b::'a::ordered_ring) < c)"
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   404
apply (subst less_iff_diff_less_0)
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   405
apply (rule less_iff_diff_less_0 [of _ "c-b", THEN ssubst])
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   406
apply (simp add: diff_minus add_ac)
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   407
done
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   408
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   409
lemma diff_le_eq: "(a-b \<le> c) = (a \<le> c + (b::'a::ordered_ring))"
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   410
by (simp add: linorder_not_less [symmetric] less_diff_eq)
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   411
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   412
lemma le_diff_eq: "(a \<le> c-b) = (a + (b::'a::ordered_ring) \<le> c)"
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   413
by (simp add: linorder_not_less [symmetric] diff_less_eq)
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   414
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   415
text{*This list of rewrites simplifies (in)equalities by bringing subtractions
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   416
  to the top and then moving negative terms to the other side.
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   417
  Use with @{text add_ac}*}
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   418
lemmas compare_rls =
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   419
       diff_minus [symmetric]
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   420
       add_diff_eq diff_add_eq diff_diff_eq diff_diff_eq2
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   421
       diff_less_eq less_diff_eq diff_le_eq le_diff_eq
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   422
       diff_eq_eq eq_diff_eq
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   423
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   424
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   425
subsection{*Lemmas for the @{text cancel_numerals} simproc*}
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   426
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   427
lemma eq_iff_diff_eq_0: "(a = b) = (a-b = (0::'a::ring))"
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   428
by (simp add: compare_rls)
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   429
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   430
lemma le_iff_diff_le_0: "(a \<le> b) = (a-b \<le> (0::'a::ordered_ring))"
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   431
by (simp add: compare_rls)
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   432
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   433
lemma eq_add_iff1:
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   434
     "(a*e + c = b*e + d) = ((a-b)*e + c = (d::'a::ring))"
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   435
apply (simp add: diff_minus left_distrib add_ac)
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   436
apply (simp add: compare_rls minus_mult_left [symmetric]) 
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   437
done
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   438
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   439
lemma eq_add_iff2:
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   440
     "(a*e + c = b*e + d) = (c = (b-a)*e + (d::'a::ring))"
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   441
apply (simp add: diff_minus left_distrib add_ac)
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   442
apply (simp add: compare_rls minus_mult_left [symmetric]) 
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   443
done
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   444
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   445
lemma less_add_iff1:
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   446
     "(a*e + c < b*e + d) = ((a-b)*e + c < (d::'a::ordered_ring))"
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   447
apply (simp add: diff_minus left_distrib add_ac)
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   448
apply (simp add: compare_rls minus_mult_left [symmetric]) 
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   449
done
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   450
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   451
lemma less_add_iff2:
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   452
     "(a*e + c < b*e + d) = (c < (b-a)*e + (d::'a::ordered_ring))"
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   453
apply (simp add: diff_minus left_distrib add_ac)
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   454
apply (simp add: compare_rls minus_mult_left [symmetric]) 
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   455
done
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   456
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   457
lemma le_add_iff1:
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   458
     "(a*e + c \<le> b*e + d) = ((a-b)*e + c \<le> (d::'a::ordered_ring))"
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   459
apply (simp add: diff_minus left_distrib add_ac)
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   460
apply (simp add: compare_rls minus_mult_left [symmetric]) 
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   461
done
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   462
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   463
lemma le_add_iff2:
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   464
     "(a*e + c \<le> b*e + d) = (c \<le> (b-a)*e + (d::'a::ordered_ring))"
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   465
apply (simp add: diff_minus left_distrib add_ac)
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   466
apply (simp add: compare_rls minus_mult_left [symmetric]) 
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   467
done
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   468
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   469
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   470
subsection {* Ordering Rules for Multiplication *}
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   471
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   472
lemma mult_strict_right_mono:
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   473
     "[|a < b; 0 < c|] ==> a * c < b * (c::'a::ordered_semiring)"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   474
by (simp add: mult_commute [of _ c] mult_strict_left_mono)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   475
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   476
lemma mult_left_mono:
14341
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   477
     "[|a \<le> b; 0 \<le> c|] ==> c * a \<le> c * (b::'a::ordered_semiring)"
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   478
  apply (case_tac "c=0", simp)
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   479
  apply (force simp add: mult_strict_left_mono order_le_less) 
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   480
  done
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   481
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   482
lemma mult_right_mono:
14341
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   483
     "[|a \<le> b; 0 \<le> c|] ==> a*c \<le> b * (c::'a::ordered_semiring)"
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   484
  by (simp add: mult_left_mono mult_commute [of _ c]) 
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   485
14348
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   486
lemma mult_left_le_imp_le:
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   487
     "[|c*a \<le> c*b; 0 < c|] ==> a \<le> (b::'a::ordered_semiring)"
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   488
  by (force simp add: mult_strict_left_mono linorder_not_less [symmetric])
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   489
 
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   490
lemma mult_right_le_imp_le:
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   491
     "[|a*c \<le> b*c; 0 < c|] ==> a \<le> (b::'a::ordered_semiring)"
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   492
  by (force simp add: mult_strict_right_mono linorder_not_less [symmetric])
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   493
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   494
lemma mult_left_less_imp_less:
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   495
     "[|c*a < c*b; 0 \<le> c|] ==> a < (b::'a::ordered_semiring)"
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   496
  by (force simp add: mult_left_mono linorder_not_le [symmetric])
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   497
 
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   498
lemma mult_right_less_imp_less:
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   499
     "[|a*c < b*c; 0 \<le> c|] ==> a < (b::'a::ordered_semiring)"
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   500
  by (force simp add: mult_right_mono linorder_not_le [symmetric])
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   501
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   502
lemma mult_strict_left_mono_neg:
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   503
     "[|b < a; c < 0|] ==> c * a < c * (b::'a::ordered_ring)"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   504
apply (drule mult_strict_left_mono [of _ _ "-c"])
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   505
apply (simp_all add: minus_mult_left [symmetric]) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   506
done
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   507
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   508
lemma mult_strict_right_mono_neg:
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   509
     "[|b < a; c < 0|] ==> a * c < b * (c::'a::ordered_ring)"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   510
apply (drule mult_strict_right_mono [of _ _ "-c"])
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   511
apply (simp_all add: minus_mult_right [symmetric]) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   512
done
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   513
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   514
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   515
subsection{* Products of Signs *}
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   516
14341
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   517
lemma mult_pos: "[| (0::'a::ordered_semiring) < a; 0 < b |] ==> 0 < a*b"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   518
by (drule mult_strict_left_mono [of 0 b], auto)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   519
14341
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   520
lemma mult_pos_neg: "[| (0::'a::ordered_semiring) < a; b < 0 |] ==> a*b < 0"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   521
by (drule mult_strict_left_mono [of b 0], auto)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   522
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   523
lemma mult_neg: "[| a < (0::'a::ordered_ring); b < 0 |] ==> 0 < a*b"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   524
by (drule mult_strict_right_mono_neg, auto)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   525
14341
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   526
lemma zero_less_mult_pos:
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   527
     "[| 0 < a*b; 0 < a|] ==> 0 < (b::'a::ordered_semiring)"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   528
apply (case_tac "b\<le>0") 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   529
 apply (auto simp add: order_le_less linorder_not_less)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   530
apply (drule_tac mult_pos_neg [of a b]) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   531
 apply (auto dest: order_less_not_sym)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   532
done
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   533
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   534
lemma zero_less_mult_iff:
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   535
     "((0::'a::ordered_ring) < a*b) = (0 < a & 0 < b | a < 0 & b < 0)"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   536
apply (auto simp add: order_le_less linorder_not_less mult_pos mult_neg)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   537
apply (blast dest: zero_less_mult_pos) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   538
apply (simp add: mult_commute [of a b]) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   539
apply (blast dest: zero_less_mult_pos) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   540
done
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   541
14341
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   542
text{*A field has no "zero divisors", and this theorem holds without the
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   543
      assumption of an ordering.  See @{text field_mult_eq_0_iff} below.*}
14266
08b34c902618 conversion of integers to use Ring_and_Field;
paulson
parents: 14265
diff changeset
   544
lemma mult_eq_0_iff [simp]: "(a*b = (0::'a::ordered_ring)) = (a = 0 | b = 0)"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   545
apply (case_tac "a < 0")
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   546
apply (auto simp add: linorder_not_less order_le_less linorder_neq_iff)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   547
apply (force dest: mult_strict_right_mono_neg mult_strict_right_mono)+
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   548
done
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   549
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   550
lemma zero_le_mult_iff:
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   551
     "((0::'a::ordered_ring) \<le> a*b) = (0 \<le> a & 0 \<le> b | a \<le> 0 & b \<le> 0)"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   552
by (auto simp add: eq_commute [of 0] order_le_less linorder_not_less
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   553
                   zero_less_mult_iff)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   554
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   555
lemma mult_less_0_iff:
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   556
     "(a*b < (0::'a::ordered_ring)) = (0 < a & b < 0 | a < 0 & 0 < b)"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   557
apply (insert zero_less_mult_iff [of "-a" b]) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   558
apply (force simp add: minus_mult_left[symmetric]) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   559
done
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   560
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   561
lemma mult_le_0_iff:
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   562
     "(a*b \<le> (0::'a::ordered_ring)) = (0 \<le> a & b \<le> 0 | a \<le> 0 & 0 \<le> b)"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   563
apply (insert zero_le_mult_iff [of "-a" b]) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   564
apply (force simp add: minus_mult_left[symmetric]) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   565
done
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   566
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   567
lemma zero_le_square: "(0::'a::ordered_ring) \<le> a*a"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   568
by (simp add: zero_le_mult_iff linorder_linear) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   569
14348
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   570
lemma zero_le_one: "(0::'a::ordered_semiring) \<le> 1"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   571
  by (rule zero_less_one [THEN order_less_imp_le]) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   572
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   573
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   574
subsection{*More Monotonicity*}
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   575
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   576
lemma mult_left_mono_neg:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   577
     "[|b \<le> a; c \<le> 0|] ==> c * a \<le> c * (b::'a::ordered_ring)"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   578
apply (drule mult_left_mono [of _ _ "-c"]) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   579
apply (simp_all add: minus_mult_left [symmetric]) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   580
done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   581
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   582
lemma mult_right_mono_neg:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   583
     "[|b \<le> a; c \<le> 0|] ==> a * c \<le> b * (c::'a::ordered_ring)"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   584
  by (simp add: mult_left_mono_neg mult_commute [of _ c]) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   585
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   586
text{*Strict monotonicity in both arguments*}
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   587
lemma mult_strict_mono:
14341
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   588
     "[|a<b; c<d; 0<b; 0\<le>c|] ==> a * c < b * (d::'a::ordered_semiring)"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   589
apply (case_tac "c=0")
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   590
 apply (simp add: mult_pos) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   591
apply (erule mult_strict_right_mono [THEN order_less_trans])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   592
 apply (force simp add: order_le_less) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   593
apply (erule mult_strict_left_mono, assumption)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   594
done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   595
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   596
text{*This weaker variant has more natural premises*}
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   597
lemma mult_strict_mono':
14341
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   598
     "[| a<b; c<d; 0 \<le> a; 0 \<le> c|] ==> a * c < b * (d::'a::ordered_semiring)"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   599
apply (rule mult_strict_mono)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   600
apply (blast intro: order_le_less_trans)+
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   601
done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   602
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   603
lemma mult_mono:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   604
     "[|a \<le> b; c \<le> d; 0 \<le> b; 0 \<le> c|] 
14341
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   605
      ==> a * c  \<le>  b * (d::'a::ordered_semiring)"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   606
apply (erule mult_right_mono [THEN order_trans], assumption)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   607
apply (erule mult_left_mono, assumption)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   608
done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   609
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   610
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   611
subsection{*Cancellation Laws for Relationships With a Common Factor*}
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   612
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   613
text{*Cancellation laws for @{term "c*a < c*b"} and @{term "a*c < b*c"},
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   614
   also with the relations @{text "\<le>"} and equality.*}
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   615
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   616
lemma mult_less_cancel_right:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   617
    "(a*c < b*c) = ((0 < c & a < b) | (c < 0 & b < (a::'a::ordered_ring)))"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   618
apply (case_tac "c = 0")
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   619
apply (auto simp add: linorder_neq_iff mult_strict_right_mono 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   620
                      mult_strict_right_mono_neg)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   621
apply (auto simp add: linorder_not_less 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   622
                      linorder_not_le [symmetric, of "a*c"]
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   623
                      linorder_not_le [symmetric, of a])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   624
apply (erule_tac [!] notE)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   625
apply (auto simp add: order_less_imp_le mult_right_mono 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   626
                      mult_right_mono_neg)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   627
done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   628
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   629
lemma mult_less_cancel_left:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   630
    "(c*a < c*b) = ((0 < c & a < b) | (c < 0 & b < (a::'a::ordered_ring)))"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   631
by (simp add: mult_commute [of c] mult_less_cancel_right)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   632
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   633
lemma mult_le_cancel_right:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   634
     "(a*c \<le> b*c) = ((0<c --> a\<le>b) & (c<0 --> b \<le> (a::'a::ordered_ring)))"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   635
by (simp add: linorder_not_less [symmetric] mult_less_cancel_right)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   636
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   637
lemma mult_le_cancel_left:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   638
     "(c*a \<le> c*b) = ((0<c --> a\<le>b) & (c<0 --> b \<le> (a::'a::ordered_ring)))"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   639
by (simp add: mult_commute [of c] mult_le_cancel_right)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   640
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   641
lemma mult_less_imp_less_left:
14341
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   642
      assumes less: "c*a < c*b" and nonneg: "0 \<le> c"
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   643
      shows "a < (b::'a::ordered_semiring)"
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   644
  proof (rule ccontr)
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   645
    assume "~ a < b"
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   646
    hence "b \<le> a" by (simp add: linorder_not_less)
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   647
    hence "c*b \<le> c*a" by (rule mult_left_mono)
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   648
    with this and less show False 
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   649
      by (simp add: linorder_not_less [symmetric])
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   650
  qed
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   651
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   652
lemma mult_less_imp_less_right:
14341
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   653
    "[|a*c < b*c; 0 \<le> c|] ==> a < (b::'a::ordered_semiring)"
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   654
  by (rule mult_less_imp_less_left, simp add: mult_commute)
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   655
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   656
text{*Cancellation of equalities with a common factor*}
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   657
lemma mult_cancel_right [simp]:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   658
     "(a*c = b*c) = (c = (0::'a::ordered_ring) | a=b)"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   659
apply (cut_tac linorder_less_linear [of 0 c])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   660
apply (force dest: mult_strict_right_mono_neg mult_strict_right_mono
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   661
             simp add: linorder_neq_iff)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   662
done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   663
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   664
text{*These cancellation theorems require an ordering. Versions are proved
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   665
      below that work for fields without an ordering.*}
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   666
lemma mult_cancel_left [simp]:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   667
     "(c*a = c*b) = (c = (0::'a::ordered_ring) | a=b)"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   668
by (simp add: mult_commute [of c] mult_cancel_right)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   669
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   670
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   671
subsection {* Fields *}
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   672
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   673
lemma right_inverse [simp]:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   674
      assumes not0: "a \<noteq> 0" shows "a * inverse (a::'a::field) = 1"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   675
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   676
  have "a * inverse a = inverse a * a" by (simp add: mult_ac)
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   677
  also have "... = 1" using not0 by simp
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   678
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   679
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   680
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   681
lemma right_inverse_eq: "b \<noteq> 0 ==> (a / b = 1) = (a = (b::'a::field))"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   682
proof
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   683
  assume neq: "b \<noteq> 0"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   684
  {
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   685
    hence "a = (a / b) * b" by (simp add: divide_inverse mult_ac)
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   686
    also assume "a / b = 1"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   687
    finally show "a = b" by simp
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   688
  next
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   689
    assume "a = b"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   690
    with neq show "a / b = 1" by (simp add: divide_inverse)
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   691
  }
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   692
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   693
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   694
lemma nonzero_inverse_eq_divide: "a \<noteq> 0 ==> inverse (a::'a::field) = 1/a"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   695
by (simp add: divide_inverse)
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   696
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   697
lemma divide_self [simp]: "a \<noteq> 0 ==> a / (a::'a::field) = 1"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   698
  by (simp add: divide_inverse)
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   699
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   700
lemma divide_inverse_zero: "a/b = a * inverse(b::'a::{field,division_by_zero})"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   701
apply (case_tac "b = 0")
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   702
apply (simp_all add: divide_inverse)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   703
done
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   704
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   705
lemma divide_zero_left [simp]: "0/a = (0::'a::{field,division_by_zero})"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   706
by (simp add: divide_inverse_zero)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   707
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   708
lemma inverse_eq_divide: "inverse (a::'a::{field,division_by_zero}) = 1/a"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   709
by (simp add: divide_inverse_zero)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   710
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   711
lemma nonzero_add_divide_distrib: "c \<noteq> 0 ==> (a+b)/(c::'a::field) = a/c + b/c"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   712
by (simp add: divide_inverse left_distrib) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   713
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   714
lemma add_divide_distrib: "(a+b)/(c::'a::{field,division_by_zero}) = a/c + b/c"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   715
apply (case_tac "c=0", simp) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   716
apply (simp add: nonzero_add_divide_distrib) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   717
done
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   718
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   719
text{*Compared with @{text mult_eq_0_iff}, this version removes the requirement
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   720
      of an ordering.*}
14348
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   721
lemma field_mult_eq_0_iff [simp]: "(a*b = (0::'a::field)) = (a = 0 | b = 0)"
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   722
  proof cases
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   723
    assume "a=0" thus ?thesis by simp
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   724
  next
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   725
    assume anz [simp]: "a\<noteq>0"
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   726
    thus ?thesis
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   727
    proof auto
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   728
      assume "a * b = 0"
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   729
      hence "inverse a * (a * b) = 0" by simp
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   730
      thus "b = 0"  by (simp (no_asm_use) add: mult_assoc [symmetric])
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   731
    qed
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   732
  qed
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   733
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   734
text{*Cancellation of equalities with a common factor*}
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   735
lemma field_mult_cancel_right_lemma:
14269
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
   736
      assumes cnz: "c \<noteq> (0::'a::field)"
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
   737
	  and eq:  "a*c = b*c"
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
   738
	 shows "a=b"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   739
  proof -
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   740
  have "(a * c) * inverse c = (b * c) * inverse c"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   741
    by (simp add: eq)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   742
  thus "a=b"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   743
    by (simp add: mult_assoc cnz)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   744
  qed
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   745
14348
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   746
lemma field_mult_cancel_right [simp]:
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   747
     "(a*c = b*c) = (c = (0::'a::field) | a=b)"
14269
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
   748
  proof cases
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   749
    assume "c=0" thus ?thesis by simp
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   750
  next
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   751
    assume "c\<noteq>0" 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   752
    thus ?thesis by (force dest: field_mult_cancel_right_lemma)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   753
  qed
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   754
14348
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   755
lemma field_mult_cancel_left [simp]:
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   756
     "(c*a = c*b) = (c = (0::'a::field) | a=b)"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   757
  by (simp add: mult_commute [of c] field_mult_cancel_right) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   758
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   759
lemma nonzero_imp_inverse_nonzero: "a \<noteq> 0 ==> inverse a \<noteq> (0::'a::field)"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   760
  proof
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   761
  assume ianz: "inverse a = 0"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   762
  assume "a \<noteq> 0"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   763
  hence "1 = a * inverse a" by simp
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   764
  also have "... = 0" by (simp add: ianz)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   765
  finally have "1 = (0::'a::field)" .
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   766
  thus False by (simp add: eq_commute)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   767
  qed
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   768
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   769
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   770
subsection{*Basic Properties of @{term inverse}*}
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   771
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   772
lemma inverse_zero_imp_zero: "inverse a = 0 ==> a = (0::'a::field)"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   773
apply (rule ccontr) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   774
apply (blast dest: nonzero_imp_inverse_nonzero) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   775
done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   776
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   777
lemma inverse_nonzero_imp_nonzero:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   778
   "inverse a = 0 ==> a = (0::'a::field)"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   779
apply (rule ccontr) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   780
apply (blast dest: nonzero_imp_inverse_nonzero) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   781
done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   782
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   783
lemma inverse_nonzero_iff_nonzero [simp]:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   784
   "(inverse a = 0) = (a = (0::'a::{field,division_by_zero}))"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   785
by (force dest: inverse_nonzero_imp_nonzero) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   786
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   787
lemma nonzero_inverse_minus_eq:
14269
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
   788
      assumes [simp]: "a\<noteq>0"  shows "inverse(-a) = -inverse(a::'a::field)"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   789
  proof -
14269
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
   790
    have "-a * inverse (- a) = -a * - inverse a"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   791
      by simp
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   792
    thus ?thesis 
14269
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
   793
      by (simp only: field_mult_cancel_left, simp)
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   794
  qed
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   795
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   796
lemma inverse_minus_eq [simp]:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   797
     "inverse(-a) = -inverse(a::'a::{field,division_by_zero})";
14269
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
   798
  proof cases
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   799
    assume "a=0" thus ?thesis by (simp add: inverse_zero)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   800
  next
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   801
    assume "a\<noteq>0" 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   802
    thus ?thesis by (simp add: nonzero_inverse_minus_eq)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   803
  qed
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   804
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   805
lemma nonzero_inverse_eq_imp_eq:
14269
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
   806
      assumes inveq: "inverse a = inverse b"
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
   807
	  and anz:  "a \<noteq> 0"
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
   808
	  and bnz:  "b \<noteq> 0"
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
   809
	 shows "a = (b::'a::field)"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   810
  proof -
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   811
  have "a * inverse b = a * inverse a"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   812
    by (simp add: inveq)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   813
  hence "(a * inverse b) * b = (a * inverse a) * b"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   814
    by simp
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   815
  thus "a = b"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   816
    by (simp add: mult_assoc anz bnz)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   817
  qed
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   818
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   819
lemma inverse_eq_imp_eq:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   820
     "inverse a = inverse b ==> a = (b::'a::{field,division_by_zero})"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   821
apply (case_tac "a=0 | b=0") 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   822
 apply (force dest!: inverse_zero_imp_zero
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   823
              simp add: eq_commute [of "0::'a"])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   824
apply (force dest!: nonzero_inverse_eq_imp_eq) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   825
done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   826
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   827
lemma inverse_eq_iff_eq [simp]:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   828
     "(inverse a = inverse b) = (a = (b::'a::{field,division_by_zero}))"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   829
by (force dest!: inverse_eq_imp_eq) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   830
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   831
lemma nonzero_inverse_inverse_eq:
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   832
      assumes [simp]: "a \<noteq> 0"  shows "inverse(inverse (a::'a::field)) = a"
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   833
  proof -
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   834
  have "(inverse (inverse a) * inverse a) * a = a" 
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   835
    by (simp add: nonzero_imp_inverse_nonzero)
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   836
  thus ?thesis
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   837
    by (simp add: mult_assoc)
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   838
  qed
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   839
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   840
lemma inverse_inverse_eq [simp]:
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   841
     "inverse(inverse (a::'a::{field,division_by_zero})) = a"
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   842
  proof cases
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   843
    assume "a=0" thus ?thesis by simp
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   844
  next
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   845
    assume "a\<noteq>0" 
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   846
    thus ?thesis by (simp add: nonzero_inverse_inverse_eq)
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   847
  qed
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   848
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   849
lemma inverse_1 [simp]: "inverse 1 = (1::'a::field)"
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   850
  proof -
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   851
  have "inverse 1 * 1 = (1::'a::field)" 
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   852
    by (rule left_inverse [OF zero_neq_one [symmetric]])
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   853
  thus ?thesis  by simp
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   854
  qed
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   855
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   856
lemma nonzero_inverse_mult_distrib: 
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   857
      assumes anz: "a \<noteq> 0"
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   858
          and bnz: "b \<noteq> 0"
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   859
      shows "inverse(a*b) = inverse(b) * inverse(a::'a::field)"
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   860
  proof -
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   861
  have "inverse(a*b) * (a * b) * inverse(b) = inverse(b)" 
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   862
    by (simp add: field_mult_eq_0_iff anz bnz)
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   863
  hence "inverse(a*b) * a = inverse(b)" 
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   864
    by (simp add: mult_assoc bnz)
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   865
  hence "inverse(a*b) * a * inverse(a) = inverse(b) * inverse(a)" 
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   866
    by simp
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   867
  thus ?thesis
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   868
    by (simp add: mult_assoc anz)
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   869
  qed
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   870
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   871
text{*This version builds in division by zero while also re-orienting
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   872
      the right-hand side.*}
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   873
lemma inverse_mult_distrib [simp]:
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   874
     "inverse(a*b) = inverse(a) * inverse(b::'a::{field,division_by_zero})"
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   875
  proof cases
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   876
    assume "a \<noteq> 0 & b \<noteq> 0" 
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   877
    thus ?thesis  by (simp add: nonzero_inverse_mult_distrib mult_commute)
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   878
  next
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   879
    assume "~ (a \<noteq> 0 & b \<noteq> 0)" 
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   880
    thus ?thesis  by force
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   881
  qed
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   882
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   883
text{*There is no slick version using division by zero.*}
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   884
lemma inverse_add:
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   885
     "[|a \<noteq> 0;  b \<noteq> 0|]
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   886
      ==> inverse a + inverse b = (a+b) * inverse a * inverse (b::'a::field)"
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   887
apply (simp add: left_distrib mult_assoc)
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   888
apply (simp add: mult_commute [of "inverse a"]) 
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   889
apply (simp add: mult_assoc [symmetric] add_commute)
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   890
done
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   891
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   892
lemma nonzero_mult_divide_cancel_left:
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   893
  assumes [simp]: "b\<noteq>0" and [simp]: "c\<noteq>0" 
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   894
    shows "(c*a)/(c*b) = a/(b::'a::field)"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   895
proof -
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   896
  have "(c*a)/(c*b) = c * a * (inverse b * inverse c)"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   897
    by (simp add: field_mult_eq_0_iff divide_inverse 
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   898
                  nonzero_inverse_mult_distrib)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   899
  also have "... =  a * inverse b * (inverse c * c)"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   900
    by (simp only: mult_ac)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   901
  also have "... =  a * inverse b"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   902
    by simp
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   903
    finally show ?thesis 
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   904
    by (simp add: divide_inverse)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   905
qed
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   906
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   907
lemma mult_divide_cancel_left:
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   908
     "c\<noteq>0 ==> (c*a) / (c*b) = a / (b::'a::{field,division_by_zero})"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   909
apply (case_tac "b = 0")
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   910
apply (simp_all add: nonzero_mult_divide_cancel_left)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   911
done
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   912
14321
55c688d2eefa new theorems
paulson
parents: 14305
diff changeset
   913
lemma nonzero_mult_divide_cancel_right:
55c688d2eefa new theorems
paulson
parents: 14305
diff changeset
   914
     "[|b\<noteq>0; c\<noteq>0|] ==> (a*c) / (b*c) = a/(b::'a::field)"
55c688d2eefa new theorems
paulson
parents: 14305
diff changeset
   915
by (simp add: mult_commute [of _ c] nonzero_mult_divide_cancel_left) 
55c688d2eefa new theorems
paulson
parents: 14305
diff changeset
   916
55c688d2eefa new theorems
paulson
parents: 14305
diff changeset
   917
lemma mult_divide_cancel_right:
55c688d2eefa new theorems
paulson
parents: 14305
diff changeset
   918
     "c\<noteq>0 ==> (a*c) / (b*c) = a / (b::'a::{field,division_by_zero})"
55c688d2eefa new theorems
paulson
parents: 14305
diff changeset
   919
apply (case_tac "b = 0")
55c688d2eefa new theorems
paulson
parents: 14305
diff changeset
   920
apply (simp_all add: nonzero_mult_divide_cancel_right)
55c688d2eefa new theorems
paulson
parents: 14305
diff changeset
   921
done
55c688d2eefa new theorems
paulson
parents: 14305
diff changeset
   922
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   923
(*For ExtractCommonTerm*)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   924
lemma mult_divide_cancel_eq_if:
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   925
     "(c*a) / (c*b) = 
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   926
      (if c=0 then 0 else a / (b::'a::{field,division_by_zero}))"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   927
  by (simp add: mult_divide_cancel_left)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   928
14284
f1abe67c448a re-organisation of Real/RealArith0.ML; more `Isar scripts
paulson
parents: 14277
diff changeset
   929
lemma divide_1 [simp]: "a/1 = (a::'a::field)"
f1abe67c448a re-organisation of Real/RealArith0.ML; more `Isar scripts
paulson
parents: 14277
diff changeset
   930
  by (simp add: divide_inverse [OF not_sym])
f1abe67c448a re-organisation of Real/RealArith0.ML; more `Isar scripts
paulson
parents: 14277
diff changeset
   931
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   932
lemma times_divide_eq_right [simp]:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   933
     "a * (b/c) = (a*b) / (c::'a::{field,division_by_zero})"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   934
by (simp add: divide_inverse_zero mult_assoc)
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   935
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   936
lemma times_divide_eq_left [simp]:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   937
     "(b/c) * a = (b*a) / (c::'a::{field,division_by_zero})"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   938
by (simp add: divide_inverse_zero mult_ac)
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   939
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   940
lemma divide_divide_eq_right [simp]:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   941
     "a / (b/c) = (a*c) / (b::'a::{field,division_by_zero})"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   942
by (simp add: divide_inverse_zero mult_ac)
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   943
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   944
lemma divide_divide_eq_left [simp]:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   945
     "(a / b) / (c::'a::{field,division_by_zero}) = a / (b*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   946
by (simp add: divide_inverse_zero mult_assoc)
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   947
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   948
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   949
subsection {* Division and Unary Minus *}
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   950
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   951
lemma nonzero_minus_divide_left: "b \<noteq> 0 ==> - (a/b) = (-a) / (b::'a::field)"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   952
by (simp add: divide_inverse minus_mult_left)
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   953
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   954
lemma nonzero_minus_divide_right: "b \<noteq> 0 ==> - (a/b) = a / -(b::'a::field)"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   955
by (simp add: divide_inverse nonzero_inverse_minus_eq minus_mult_right)
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   956
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   957
lemma nonzero_minus_divide_divide: "b \<noteq> 0 ==> (-a)/(-b) = a / (b::'a::field)"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   958
by (simp add: divide_inverse nonzero_inverse_minus_eq)
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   959
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   960
lemma minus_divide_left: "- (a/b) = (-a) / (b::'a::{field,division_by_zero})"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   961
apply (case_tac "b=0", simp) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   962
apply (simp add: nonzero_minus_divide_left) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   963
done
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   964
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   965
lemma minus_divide_right: "- (a/b) = a / -(b::'a::{field,division_by_zero})"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   966
apply (case_tac "b=0", simp) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   967
by (rule nonzero_minus_divide_right) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   968
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   969
text{*The effect is to extract signs from divisions*}
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   970
declare minus_divide_left  [symmetric, simp]
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   971
declare minus_divide_right [symmetric, simp]
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   972
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   973
lemma minus_divide_divide [simp]:
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   974
     "(-a)/(-b) = a / (b::'a::{field,division_by_zero})"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   975
apply (case_tac "b=0", simp) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   976
apply (simp add: nonzero_minus_divide_divide) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   977
done
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   978
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   979
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   980
subsection {* Ordered Fields *}
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   981
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   982
lemma positive_imp_inverse_positive: 
14269
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
   983
      assumes a_gt_0: "0 < a"  shows "0 < inverse (a::'a::ordered_field)"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   984
  proof -
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   985
  have "0 < a * inverse a" 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   986
    by (simp add: a_gt_0 [THEN order_less_imp_not_eq2] zero_less_one)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   987
  thus "0 < inverse a" 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   988
    by (simp add: a_gt_0 [THEN order_less_not_sym] zero_less_mult_iff)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   989
  qed
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   990
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   991
lemma negative_imp_inverse_negative:
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   992
     "a < 0 ==> inverse a < (0::'a::ordered_field)"
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   993
  by (insert positive_imp_inverse_positive [of "-a"], 
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   994
      simp add: nonzero_inverse_minus_eq order_less_imp_not_eq) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   995
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   996
lemma inverse_le_imp_le:
14269
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
   997
      assumes invle: "inverse a \<le> inverse b"
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
   998
	  and apos:  "0 < a"
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
   999
	 shows "b \<le> (a::'a::ordered_field)"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1000
  proof (rule classical)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1001
  assume "~ b \<le> a"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1002
  hence "a < b"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1003
    by (simp add: linorder_not_le)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1004
  hence bpos: "0 < b"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1005
    by (blast intro: apos order_less_trans)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1006
  hence "a * inverse a \<le> a * inverse b"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1007
    by (simp add: apos invle order_less_imp_le mult_left_mono)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1008
  hence "(a * inverse a) * b \<le> (a * inverse b) * b"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1009
    by (simp add: bpos order_less_imp_le mult_right_mono)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1010
  thus "b \<le> a"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1011
    by (simp add: mult_assoc apos bpos order_less_imp_not_eq2)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1012
  qed
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1013
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1014
lemma inverse_positive_imp_positive:
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1015
      assumes inv_gt_0: "0 < inverse a"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1016
          and [simp]:   "a \<noteq> 0"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1017
        shows "0 < (a::'a::ordered_field)"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1018
  proof -
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1019
  have "0 < inverse (inverse a)"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1020
    by (rule positive_imp_inverse_positive)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1021
  thus "0 < a"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1022
    by (simp add: nonzero_inverse_inverse_eq)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1023
  qed
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1024
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1025
lemma inverse_positive_iff_positive [simp]:
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1026
      "(0 < inverse a) = (0 < (a::'a::{ordered_field,division_by_zero}))"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1027
apply (case_tac "a = 0", simp)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1028
apply (blast intro: inverse_positive_imp_positive positive_imp_inverse_positive)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1029
done
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1030
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1031
lemma inverse_negative_imp_negative:
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1032
      assumes inv_less_0: "inverse a < 0"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1033
          and [simp]:   "a \<noteq> 0"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1034
        shows "a < (0::'a::ordered_field)"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1035
  proof -
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1036
  have "inverse (inverse a) < 0"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1037
    by (rule negative_imp_inverse_negative)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1038
  thus "a < 0"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1039
    by (simp add: nonzero_inverse_inverse_eq)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1040
  qed
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1041
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1042
lemma inverse_negative_iff_negative [simp]:
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1043
      "(inverse a < 0) = (a < (0::'a::{ordered_field,division_by_zero}))"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1044
apply (case_tac "a = 0", simp)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1045
apply (blast intro: inverse_negative_imp_negative negative_imp_inverse_negative)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1046
done
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1047
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1048
lemma inverse_nonnegative_iff_nonnegative [simp]:
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1049
      "(0 \<le> inverse a) = (0 \<le> (a::'a::{ordered_field,division_by_zero}))"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1050
by (simp add: linorder_not_less [symmetric])
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1051
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1052
lemma inverse_nonpositive_iff_nonpositive [simp]:
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1053
      "(inverse a \<le> 0) = (a \<le> (0::'a::{ordered_field,division_by_zero}))"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1054
by (simp add: linorder_not_less [symmetric])
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1055
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1056
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1057
subsection{*Anti-Monotonicity of @{term inverse}*}
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1058
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1059
lemma less_imp_inverse_less:
14269
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
  1060
      assumes less: "a < b"
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
  1061
	  and apos:  "0 < a"
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
  1062
	shows "inverse b < inverse (a::'a::ordered_field)"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1063
  proof (rule ccontr)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1064
  assume "~ inverse b < inverse a"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1065
  hence "inverse a \<le> inverse b"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1066
    by (simp add: linorder_not_less)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1067
  hence "~ (a < b)"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1068
    by (simp add: linorder_not_less inverse_le_imp_le [OF _ apos])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1069
  thus False
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1070
    by (rule notE [OF _ less])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1071
  qed
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1072
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1073
lemma inverse_less_imp_less:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1074
   "[|inverse a < inverse b; 0 < a|] ==> b < (a::'a::ordered_field)"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1075
apply (simp add: order_less_le [of "inverse a"] order_less_le [of "b"])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1076
apply (force dest!: inverse_le_imp_le nonzero_inverse_eq_imp_eq) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1077
done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1078
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1079
text{*Both premises are essential. Consider -1 and 1.*}
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1080
lemma inverse_less_iff_less [simp]:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1081
     "[|0 < a; 0 < b|] 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1082
      ==> (inverse a < inverse b) = (b < (a::'a::ordered_field))"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1083
by (blast intro: less_imp_inverse_less dest: inverse_less_imp_less) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1084
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1085
lemma le_imp_inverse_le:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1086
   "[|a \<le> b; 0 < a|] ==> inverse b \<le> inverse (a::'a::ordered_field)"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1087
  by (force simp add: order_le_less less_imp_inverse_less)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1088
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1089
lemma inverse_le_iff_le [simp]:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1090
     "[|0 < a; 0 < b|] 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1091
      ==> (inverse a \<le> inverse b) = (b \<le> (a::'a::ordered_field))"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1092
by (blast intro: le_imp_inverse_le dest: inverse_le_imp_le) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1093
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1094
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1095
text{*These results refer to both operands being negative.  The opposite-sign
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1096
case is trivial, since inverse preserves signs.*}
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1097
lemma inverse_le_imp_le_neg:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1098
   "[|inverse a \<le> inverse b; b < 0|] ==> b \<le> (a::'a::ordered_field)"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1099
  apply (rule classical) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1100
  apply (subgoal_tac "a < 0") 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1101
   prefer 2 apply (force simp add: linorder_not_le intro: order_less_trans) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1102
  apply (insert inverse_le_imp_le [of "-b" "-a"])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1103
  apply (simp add: order_less_imp_not_eq nonzero_inverse_minus_eq) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1104
  done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1105
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1106
lemma less_imp_inverse_less_neg:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1107
   "[|a < b; b < 0|] ==> inverse b < inverse (a::'a::ordered_field)"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1108
  apply (subgoal_tac "a < 0") 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1109
   prefer 2 apply (blast intro: order_less_trans) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1110
  apply (insert less_imp_inverse_less [of "-b" "-a"])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1111
  apply (simp add: order_less_imp_not_eq nonzero_inverse_minus_eq) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1112
  done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1113
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1114
lemma inverse_less_imp_less_neg:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1115
   "[|inverse a < inverse b; b < 0|] ==> b < (a::'a::ordered_field)"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1116
  apply (rule classical) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1117
  apply (subgoal_tac "a < 0") 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1118
   prefer 2
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1119
   apply (force simp add: linorder_not_less intro: order_le_less_trans) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1120
  apply (insert inverse_less_imp_less [of "-b" "-a"])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1121
  apply (simp add: order_less_imp_not_eq nonzero_inverse_minus_eq) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1122
  done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1123
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1124
lemma inverse_less_iff_less_neg [simp]:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1125
     "[|a < 0; b < 0|] 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1126
      ==> (inverse a < inverse b) = (b < (a::'a::ordered_field))"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1127
  apply (insert inverse_less_iff_less [of "-b" "-a"])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1128
  apply (simp del: inverse_less_iff_less 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1129
	      add: order_less_imp_not_eq nonzero_inverse_minus_eq) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1130
  done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1131
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1132
lemma le_imp_inverse_le_neg:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1133
   "[|a \<le> b; b < 0|] ==> inverse b \<le> inverse (a::'a::ordered_field)"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1134
  by (force simp add: order_le_less less_imp_inverse_less_neg)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1135
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1136
lemma inverse_le_iff_le_neg [simp]:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1137
     "[|a < 0; b < 0|] 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1138
      ==> (inverse a \<le> inverse b) = (b \<le> (a::'a::ordered_field))"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1139
by (blast intro: le_imp_inverse_le_neg dest: inverse_le_imp_le_neg) 
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
  1140
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1141
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1142
subsection{*Division and Signs*}
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1143
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1144
lemma zero_less_divide_iff:
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1145
     "((0::'a::{ordered_field,division_by_zero}) < a/b) = (0 < a & 0 < b | a < 0 & b < 0)"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1146
by (simp add: divide_inverse_zero zero_less_mult_iff)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1147
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1148
lemma divide_less_0_iff:
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1149
     "(a/b < (0::'a::{ordered_field,division_by_zero})) = 
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1150
      (0 < a & b < 0 | a < 0 & 0 < b)"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1151
by (simp add: divide_inverse_zero mult_less_0_iff)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1152
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1153
lemma zero_le_divide_iff:
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1154
     "((0::'a::{ordered_field,division_by_zero}) \<le> a/b) =
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1155
      (0 \<le> a & 0 \<le> b | a \<le> 0 & b \<le> 0)"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1156
by (simp add: divide_inverse_zero zero_le_mult_iff)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1157
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1158
lemma divide_le_0_iff:
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1159
     "(a/b \<le> (0::'a::{ordered_field,division_by_zero})) =
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1160
      (0 \<le> a & b \<le> 0 | a \<le> 0 & 0 \<le> b)"
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1161
by (simp add: divide_inverse_zero mult_le_0_iff)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1162
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1163
lemma divide_eq_0_iff [simp]:
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1164
     "(a/b = 0) = (a=0 | b=(0::'a::{field,division_by_zero}))"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1165
by (simp add: divide_inverse_zero field_mult_eq_0_iff)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1166
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1167
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1168
subsection{*Simplification of Inequalities Involving Literal Divisors*}
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1169
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1170
lemma pos_le_divide_eq: "0 < (c::'a::ordered_field) ==> (a \<le> b/c) = (a*c \<le> b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1171
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1172
  assume less: "0<c"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1173
  hence "(a \<le> b/c) = (a*c \<le> (b/c)*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1174
    by (simp add: mult_le_cancel_right order_less_not_sym [OF less])
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1175
  also have "... = (a*c \<le> b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1176
    by (simp add: order_less_imp_not_eq2 [OF less] divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1177
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1178
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1179
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1180
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1181
lemma neg_le_divide_eq: "c < (0::'a::ordered_field) ==> (a \<le> b/c) = (b \<le> a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1182
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1183
  assume less: "c<0"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1184
  hence "(a \<le> b/c) = ((b/c)*c \<le> a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1185
    by (simp add: mult_le_cancel_right order_less_not_sym [OF less])
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1186
  also have "... = (b \<le> a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1187
    by (simp add: order_less_imp_not_eq [OF less] divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1188
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1189
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1190
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1191
lemma le_divide_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1192
  "(a \<le> b/c) = 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1193
   (if 0 < c then a*c \<le> b
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1194
             else if c < 0 then b \<le> a*c
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1195
             else  a \<le> (0::'a::{ordered_field,division_by_zero}))"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1196
apply (case_tac "c=0", simp) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1197
apply (force simp add: pos_le_divide_eq neg_le_divide_eq linorder_neq_iff) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1198
done
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1199
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1200
lemma pos_divide_le_eq: "0 < (c::'a::ordered_field) ==> (b/c \<le> a) = (b \<le> a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1201
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1202
  assume less: "0<c"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1203
  hence "(b/c \<le> a) = ((b/c)*c \<le> a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1204
    by (simp add: mult_le_cancel_right order_less_not_sym [OF less])
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1205
  also have "... = (b \<le> a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1206
    by (simp add: order_less_imp_not_eq2 [OF less] divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1207
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1208
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1209
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1210
lemma neg_divide_le_eq: "c < (0::'a::ordered_field) ==> (b/c \<le> a) = (a*c \<le> b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1211
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1212
  assume less: "c<0"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1213
  hence "(b/c \<le> a) = (a*c \<le> (b/c)*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1214
    by (simp add: mult_le_cancel_right order_less_not_sym [OF less])
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1215
  also have "... = (a*c \<le> b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1216
    by (simp add: order_less_imp_not_eq [OF less] divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1217
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1218
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1219
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1220
lemma divide_le_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1221
  "(b/c \<le> a) = 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1222
   (if 0 < c then b \<le> a*c
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1223
             else if c < 0 then a*c \<le> b
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1224
             else 0 \<le> (a::'a::{ordered_field,division_by_zero}))"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1225
apply (case_tac "c=0", simp) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1226
apply (force simp add: pos_divide_le_eq neg_divide_le_eq linorder_neq_iff) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1227
done
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1228
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1229
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1230
lemma pos_less_divide_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1231
     "0 < (c::'a::ordered_field) ==> (a < b/c) = (a*c < b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1232
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1233
  assume less: "0<c"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1234
  hence "(a < b/c) = (a*c < (b/c)*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1235
    by (simp add: mult_less_cancel_right order_less_not_sym [OF less])
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1236
  also have "... = (a*c < b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1237
    by (simp add: order_less_imp_not_eq2 [OF less] divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1238
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1239
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1240
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1241
lemma neg_less_divide_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1242
 "c < (0::'a::ordered_field) ==> (a < b/c) = (b < a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1243
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1244
  assume less: "c<0"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1245
  hence "(a < b/c) = ((b/c)*c < a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1246
    by (simp add: mult_less_cancel_right order_less_not_sym [OF less])
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1247
  also have "... = (b < a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1248
    by (simp add: order_less_imp_not_eq [OF less] divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1249
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1250
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1251
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1252
lemma less_divide_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1253
  "(a < b/c) = 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1254
   (if 0 < c then a*c < b
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1255
             else if c < 0 then b < a*c
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1256
             else  a < (0::'a::{ordered_field,division_by_zero}))"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1257
apply (case_tac "c=0", simp) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1258
apply (force simp add: pos_less_divide_eq neg_less_divide_eq linorder_neq_iff) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1259
done
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1260
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1261
lemma pos_divide_less_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1262
     "0 < (c::'a::ordered_field) ==> (b/c < a) = (b < a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1263
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1264
  assume less: "0<c"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1265
  hence "(b/c < a) = ((b/c)*c < a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1266
    by (simp add: mult_less_cancel_right order_less_not_sym [OF less])
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1267
  also have "... = (b < a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1268
    by (simp add: order_less_imp_not_eq2 [OF less] divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1269
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1270
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1271
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1272
lemma neg_divide_less_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1273
 "c < (0::'a::ordered_field) ==> (b/c < a) = (a*c < b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1274
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1275
  assume less: "c<0"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1276
  hence "(b/c < a) = (a*c < (b/c)*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1277
    by (simp add: mult_less_cancel_right order_less_not_sym [OF less])
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1278
  also have "... = (a*c < b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1279
    by (simp add: order_less_imp_not_eq [OF less] divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1280
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1281
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1282
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1283
lemma divide_less_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1284
  "(b/c < a) = 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1285
   (if 0 < c then b < a*c
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1286
             else if c < 0 then a*c < b
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1287
             else 0 < (a::'a::{ordered_field,division_by_zero}))"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1288
apply (case_tac "c=0", simp) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1289
apply (force simp add: pos_divide_less_eq neg_divide_less_eq linorder_neq_iff) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1290
done
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1291
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1292
lemma nonzero_eq_divide_eq: "c\<noteq>0 ==> ((a::'a::field) = b/c) = (a*c = b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1293
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1294
  assume [simp]: "c\<noteq>0"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1295
  have "(a = b/c) = (a*c = (b/c)*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1296
    by (simp add: field_mult_cancel_right)
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1297
  also have "... = (a*c = b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1298
    by (simp add: divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1299
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1300
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1301
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1302
lemma eq_divide_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1303
  "((a::'a::{field,division_by_zero}) = b/c) = (if c\<noteq>0 then a*c = b else a=0)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1304
by (simp add: nonzero_eq_divide_eq) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1305
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1306
lemma nonzero_divide_eq_eq: "c\<noteq>0 ==> (b/c = (a::'a::field)) = (b = a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1307
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1308
  assume [simp]: "c\<noteq>0"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1309
  have "(b/c = a) = ((b/c)*c = a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1310
    by (simp add: field_mult_cancel_right)
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1311
  also have "... = (b = a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1312
    by (simp add: divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1313
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1314
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1315
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1316
lemma divide_eq_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1317
  "(b/c = (a::'a::{field,division_by_zero})) = (if c\<noteq>0 then b = a*c else a=0)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1318
by (force simp add: nonzero_divide_eq_eq) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1319
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1320
subsection{*Cancellation Laws for Division*}
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1321
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1322
lemma divide_cancel_right [simp]:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1323
     "(a/c = b/c) = (c = 0 | a = (b::'a::{field,division_by_zero}))"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1324
apply (case_tac "c=0", simp) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1325
apply (simp add: divide_inverse_zero field_mult_cancel_right) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1326
done
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1327
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1328
lemma divide_cancel_left [simp]:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1329
     "(c/a = c/b) = (c = 0 | a = (b::'a::{field,division_by_zero}))" 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1330
apply (case_tac "c=0", simp) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1331
apply (simp add: divide_inverse_zero field_mult_cancel_left) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1332
done
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1333
14353
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1334
subsection {* Division and the Number One *}
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1335
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1336
text{*Simplify expressions equated with 1*}
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1337
lemma divide_eq_1_iff [simp]:
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1338
     "(a/b = 1) = (b \<noteq> 0 & a = (b::'a::{field,division_by_zero}))"
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1339
apply (case_tac "b=0", simp) 
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1340
apply (simp add: right_inverse_eq) 
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1341
done
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1342
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1343
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1344
lemma one_eq_divide_iff [simp]:
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1345
     "(1 = a/b) = (b \<noteq> 0 & a = (b::'a::{field,division_by_zero}))"
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1346
by (simp add: eq_commute [of 1])  
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1347
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1348
lemma zero_eq_1_divide_iff [simp]:
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1349
     "((0::'a::{ordered_field,division_by_zero}) = 1/a) = (a = 0)"
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1350
apply (case_tac "a=0", simp) 
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1351
apply (auto simp add: nonzero_eq_divide_eq) 
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1352
done
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1353
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1354
lemma one_divide_eq_0_iff [simp]:
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1355
     "(1/a = (0::'a::{ordered_field,division_by_zero})) = (a = 0)"
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1356
apply (case_tac "a=0", simp) 
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1357
apply (insert zero_neq_one [THEN not_sym]) 
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1358
apply (auto simp add: nonzero_divide_eq_eq) 
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1359
done
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1360
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1361
text{*Simplify expressions such as @{text "0 < 1/x"} to @{text "0 < x"}*}
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1362
declare zero_less_divide_iff [of "1", simp]
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1363
declare divide_less_0_iff [of "1", simp]
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1364
declare zero_le_divide_iff [of "1", simp]
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1365
declare divide_le_0_iff [of "1", simp]
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1366
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1367
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1368
subsection {* Ordering Rules for Division *}
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1369
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1370
lemma divide_strict_right_mono:
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1371
     "[|a < b; 0 < c|] ==> a / c < b / (c::'a::ordered_field)"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1372
by (simp add: order_less_imp_not_eq2 divide_inverse mult_strict_right_mono 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1373
              positive_imp_inverse_positive) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1374
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1375
lemma divide_right_mono:
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1376
     "[|a \<le> b; 0 \<le> c|] ==> a/c \<le> b/(c::'a::{ordered_field,division_by_zero})"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1377
  by (force simp add: divide_strict_right_mono order_le_less) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1378
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1379
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1380
text{*The last premise ensures that @{term a} and @{term b} 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1381
      have the same sign*}
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1382
lemma divide_strict_left_mono:
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1383
       "[|b < a; 0 < c; 0 < a*b|] ==> c / a < c / (b::'a::ordered_field)"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1384
by (force simp add: zero_less_mult_iff divide_inverse mult_strict_left_mono 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1385
      order_less_imp_not_eq order_less_imp_not_eq2  
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1386
      less_imp_inverse_less less_imp_inverse_less_neg) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1387
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1388
lemma divide_left_mono:
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1389
     "[|b \<le> a; 0 \<le> c; 0 < a*b|] ==> c / a \<le> c / (b::'a::ordered_field)"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1390
  apply (subgoal_tac "a \<noteq> 0 & b \<noteq> 0") 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1391
   prefer 2 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1392
   apply (force simp add: zero_less_mult_iff order_less_imp_not_eq) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1393
  apply (case_tac "c=0", simp add: divide_inverse)
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1394
  apply (force simp add: divide_strict_left_mono order_le_less) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1395
  done
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1396
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1397
lemma divide_strict_left_mono_neg:
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1398
     "[|a < b; c < 0; 0 < a*b|] ==> c / a < c / (b::'a::ordered_field)"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1399
  apply (subgoal_tac "a \<noteq> 0 & b \<noteq> 0") 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1400
   prefer 2 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1401
   apply (force simp add: zero_less_mult_iff order_less_imp_not_eq) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1402
  apply (drule divide_strict_left_mono [of _ _ "-c"]) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1403
   apply (simp_all add: mult_commute nonzero_minus_divide_left [symmetric]) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1404
  done
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1405
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1406
lemma divide_strict_right_mono_neg:
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1407
     "[|b < a; c < 0|] ==> a / c < b / (c::'a::ordered_field)"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1408
apply (drule divide_strict_right_mono [of _ _ "-c"], simp) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1409
apply (simp add: order_less_imp_not_eq nonzero_minus_divide_right [symmetric]) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1410
done
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1411
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1412
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1413
subsection {* Ordered Fields are Dense *}
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1414
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1415
lemma zero_less_two: "0 < (1+1::'a::ordered_field)"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1416
proof -
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1417
  have "0 + 0 <  (1+1::'a::ordered_field)"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1418
    by (blast intro: zero_less_one add_strict_mono) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1419
  thus ?thesis by simp
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1420
qed
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1421
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1422
lemma less_half_sum: "a < b ==> a < (a+b) / (1+1::'a::ordered_field)"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1423
by (simp add: zero_less_two pos_less_divide_eq right_distrib) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1424
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1425
lemma gt_half_sum: "a < b ==> (a+b)/(1+1::'a::ordered_field) < b"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1426
by (simp add: zero_less_two pos_divide_less_eq right_distrib) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1427
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1428
lemma dense: "a < b ==> \<exists>r::'a::ordered_field. a < r & r < b"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1429
by (blast intro!: less_half_sum gt_half_sum)
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1430
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1431
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1432
subsection {* Absolute Value *}
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1433
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1434
lemma abs_zero [simp]: "abs 0 = (0::'a::ordered_ring)"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1435
by (simp add: abs_if)
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1436
14294
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1437
lemma abs_one [simp]: "abs 1 = (1::'a::ordered_ring)"
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1438
  by (simp add: abs_if zero_less_one [THEN order_less_not_sym]) 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1439
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1440
lemma abs_mult: "abs (a * b) = abs a * abs (b::'a::ordered_ring)" 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1441
apply (case_tac "a=0 | b=0", force) 
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1442
apply (auto elim: order_less_asym
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1443
            simp add: abs_if mult_less_0_iff linorder_neq_iff
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1444
                  minus_mult_left [symmetric] minus_mult_right [symmetric])  
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1445
done
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1446
14348
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
  1447
lemma abs_mult_self: "abs a * abs a = a * (a::'a::ordered_ring)"
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
  1448
by (simp add: abs_if) 
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
  1449
14294
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1450
lemma abs_eq_0 [simp]: "(abs a = 0) = (a = (0::'a::ordered_ring))"
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1451
by (simp add: abs_if)
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1452
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1453
lemma zero_less_abs_iff [simp]: "(0 < abs a) = (a \<noteq> (0::'a::ordered_ring))"
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1454
by (simp add: abs_if linorder_neq_iff)
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1455
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1456
lemma abs_not_less_zero [simp]: "~ abs a < (0::'a::ordered_ring)"
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1457
by (simp add: abs_if  order_less_not_sym [of a 0])
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1458
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1459
lemma abs_le_zero_iff [simp]: "(abs a \<le> (0::'a::ordered_ring)) = (a = 0)" 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1460
by (simp add: order_le_less) 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1461
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1462
lemma abs_minus_cancel [simp]: "abs (-a) = abs(a::'a::ordered_ring)"
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1463
apply (auto simp add: abs_if linorder_not_less order_less_not_sym [of 0 a])  
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1464
apply (drule order_antisym, assumption, simp) 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1465
done
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1466
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1467
lemma abs_ge_zero [simp]: "(0::'a::ordered_ring) \<le> abs a"
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1468
apply (simp add: abs_if order_less_imp_le)
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1469
apply (simp add: linorder_not_less) 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1470
done
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1471
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1472
lemma abs_idempotent [simp]: "abs (abs a) = abs (a::'a::ordered_ring)"
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1473
  by (force elim: order_less_asym simp add: abs_if)
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1474
14305
f17ca9f6dc8c tidying first part of HyperArith0.ML, using generic lemmas
paulson
parents: 14295
diff changeset
  1475
lemma abs_zero_iff [simp]: "(abs a = 0) = (a = (0::'a::ordered_ring))"
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1476
by (simp add: abs_if)
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1477
14294
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1478
lemma abs_ge_self: "a \<le> abs (a::'a::ordered_ring)"
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1479
apply (simp add: abs_if)
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1480
apply (simp add: order_less_imp_le order_trans [of _ 0])
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1481
done
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1482
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1483
lemma abs_ge_minus_self: "-a \<le> abs (a::'a::ordered_ring)"
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1484
by (insert abs_ge_self [of "-a"], simp)
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1485
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1486
lemma nonzero_abs_inverse:
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1487
     "a \<noteq> 0 ==> abs (inverse (a::'a::ordered_field)) = inverse (abs a)"
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1488
apply (auto simp add: linorder_neq_iff abs_if nonzero_inverse_minus_eq 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1489
                      negative_imp_inverse_negative)
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1490
apply (blast intro: positive_imp_inverse_positive elim: order_less_asym) 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1491
done
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1492
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1493
lemma abs_inverse [simp]:
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1494
     "abs (inverse (a::'a::{ordered_field,division_by_zero})) = 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1495
      inverse (abs a)"
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1496
apply (case_tac "a=0", simp) 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1497
apply (simp add: nonzero_abs_inverse) 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1498
done
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1499
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1500
lemma nonzero_abs_divide:
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1501
     "b \<noteq> 0 ==> abs (a / (b::'a::ordered_field)) = abs a / abs b"
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1502
by (simp add: divide_inverse abs_mult nonzero_abs_inverse) 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1503
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1504
lemma abs_divide:
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1505
     "abs (a / (b::'a::{ordered_field,division_by_zero})) = abs a / abs b"
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1506
apply (case_tac "b=0", simp) 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1507
apply (simp add: nonzero_abs_divide) 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1508
done
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1509
14295
7f115e5c5de4 more general lemmas for Ring_and_Field
paulson
parents: 14294
diff changeset
  1510
lemma abs_leI: "[|a \<le> b; -a \<le> b|] ==> abs a \<le> (b::'a::ordered_ring)"
7f115e5c5de4 more general lemmas for Ring_and_Field
paulson
parents: 14294
diff changeset
  1511
by (simp add: abs_if)
7f115e5c5de4 more general lemmas for Ring_and_Field
paulson
parents: 14294
diff changeset
  1512
7f115e5c5de4 more general lemmas for Ring_and_Field
paulson
parents: 14294
diff changeset
  1513
lemma le_minus_self_iff: "(a \<le> -a) = (a \<le> (0::'a::ordered_ring))"
7f115e5c5de4 more general lemmas for Ring_and_Field
paulson
parents: 14294
diff changeset
  1514
proof 
7f115e5c5de4 more general lemmas for Ring_and_Field
paulson
parents: 14294
diff changeset
  1515
  assume ale: "a \<le> -a"
7f115e5c5de4 more general lemmas for Ring_and_Field
paulson
parents: 14294
diff changeset
  1516
  show "a\<le>0"
7f115e5c5de4 more general lemmas for Ring_and_Field
paulson
parents: 14294
diff changeset
  1517
    apply (rule classical) 
7f115e5c5de4 more general lemmas for Ring_and_Field
paulson
parents: 14294
diff changeset
  1518
    apply (simp add: linorder_not_le) 
7f115e5c5de4 more general lemmas for Ring_and_Field
paulson
parents: 14294
diff changeset
  1519
    apply (blast intro: ale order_trans order_less_imp_le
7f115e5c5de4 more general lemmas for Ring_and_Field
paulson
parents: 14294
diff changeset
  1520
                        neg_0_le_iff_le [THEN iffD1]) 
7f115e5c5de4 more general lemmas for Ring_and_Field
paulson
parents: 14294
diff changeset
  1521
    done
7f115e5c5de4 more general lemmas for Ring_and_Field
paulson
parents: 14294
diff changeset
  1522
next
7f115e5c5de4 more general lemmas for Ring_and_Field
paulson
parents: 14294
diff changeset
  1523
  assume "a\<le>0"
7f115e5c5de4 more general lemmas for Ring_and_Field
paulson
parents: 14294
diff changeset
  1524
  hence "0 \<le> -a" by (simp only: neg_0_le_iff_le)
7f115e5c5de4 more general lemmas for Ring_and_Field
paulson
parents: 14294
diff changeset
  1525
  thus "a \<le> -a"  by (blast intro: prems order_trans) 
7f115e5c5de4 more general lemmas for Ring_and_Field
paulson
parents: 14294
diff changeset
  1526
qed
7f115e5c5de4 more general lemmas for Ring_and_Field
paulson
parents: 14294
diff changeset
  1527
7f115e5c5de4 more general lemmas for Ring_and_Field
paulson
parents: 14294
diff changeset
  1528
lemma minus_le_self_iff: "(-a \<le> a) = (0 \<le> (a::'a::ordered_ring))"
7f115e5c5de4 more general lemmas for Ring_and_Field
paulson
parents: 14294
diff changeset
  1529
by (insert le_minus_self_iff [of "-a"], simp)
7f115e5c5de4 more general lemmas for Ring_and_Field
paulson
parents: 14294
diff changeset
  1530
7f115e5c5de4 more general lemmas for Ring_and_Field
paulson
parents: 14294
diff changeset
  1531
lemma eq_minus_self_iff: "(a = -a) = (a = (0::'a::ordered_ring))"
7f115e5c5de4 more general lemmas for Ring_and_Field
paulson
parents: 14294
diff changeset
  1532
by (force simp add: order_eq_iff le_minus_self_iff minus_le_self_iff)
7f115e5c5de4 more general lemmas for Ring_and_Field
paulson
parents: 14294
diff changeset
  1533
7f115e5c5de4 more general lemmas for Ring_and_Field
paulson
parents: 14294
diff changeset
  1534
lemma less_minus_self_iff: "(a < -a) = (a < (0::'a::ordered_ring))"
7f115e5c5de4 more general lemmas for Ring_and_Field
paulson
parents: 14294
diff changeset
  1535
by (simp add: order_less_le le_minus_self_iff eq_minus_self_iff)
7f115e5c5de4 more general lemmas for Ring_and_Field
paulson
parents: 14294
diff changeset
  1536
7f115e5c5de4 more general lemmas for Ring_and_Field
paulson
parents: 14294
diff changeset
  1537
lemma abs_le_D1: "abs a \<le> b ==> a \<le> (b::'a::ordered_ring)"
7f115e5c5de4 more general lemmas for Ring_and_Field
paulson
parents: 14294
diff changeset
  1538
apply (simp add: abs_if split: split_if_asm)
7f115e5c5de4 more general lemmas for Ring_and_Field
paulson
parents: 14294
diff changeset
  1539
apply (rule order_trans [of _ "-a"]) 
7f115e5c5de4 more general lemmas for Ring_and_Field
paulson
parents: 14294
diff changeset
  1540
 apply (simp add: less_minus_self_iff order_less_imp_le, assumption)
7f115e5c5de4 more general lemmas for Ring_and_Field
paulson
parents: 14294
diff changeset
  1541
done
7f115e5c5de4 more general lemmas for Ring_and_Field
paulson
parents: 14294
diff changeset
  1542
7f115e5c5de4 more general lemmas for Ring_and_Field
paulson
parents: 14294
diff changeset
  1543
lemma abs_le_D2: "abs a \<le> b ==> -a \<le> (b::'a::ordered_ring)"
7f115e5c5de4 more general lemmas for Ring_and_Field
paulson
parents: 14294
diff changeset
  1544
by (insert abs_le_D1 [of "-a"], simp)
7f115e5c5de4 more general lemmas for Ring_and_Field
paulson
parents: 14294
diff changeset
  1545
7f115e5c5de4 more general lemmas for Ring_and_Field
paulson
parents: 14294
diff changeset
  1546
lemma abs_le_iff: "(abs a \<le> b) = (a \<le> b & -a \<le> (b::'a::ordered_ring))"
7f115e5c5de4 more general lemmas for Ring_and_Field
paulson
parents: 14294
diff changeset
  1547
by (blast intro: abs_leI dest: abs_le_D1 abs_le_D2)
7f115e5c5de4 more general lemmas for Ring_and_Field
paulson
parents: 14294
diff changeset
  1548
7f115e5c5de4 more general lemmas for Ring_and_Field
paulson
parents: 14294
diff changeset
  1549
lemma abs_less_iff: "(abs a < b) = (a < b & -a < (b::'a::ordered_ring))" 
7f115e5c5de4 more general lemmas for Ring_and_Field
paulson
parents: 14294
diff changeset
  1550
apply (simp add: order_less_le abs_le_iff)  
7f115e5c5de4 more general lemmas for Ring_and_Field
paulson
parents: 14294
diff changeset
  1551
apply (auto simp add: abs_if minus_le_self_iff eq_minus_self_iff) 
7f115e5c5de4 more general lemmas for Ring_and_Field
paulson
parents: 14294
diff changeset
  1552
 apply (simp add:  linorder_not_less [symmetric]) 
7f115e5c5de4 more general lemmas for Ring_and_Field
paulson
parents: 14294
diff changeset
  1553
apply (simp add: le_minus_self_iff linorder_neq_iff) 
7f115e5c5de4 more general lemmas for Ring_and_Field
paulson
parents: 14294
diff changeset
  1554
apply (simp add:  linorder_not_less [symmetric]) 
7f115e5c5de4 more general lemmas for Ring_and_Field
paulson
parents: 14294
diff changeset
  1555
done
7f115e5c5de4 more general lemmas for Ring_and_Field
paulson
parents: 14294
diff changeset
  1556
14294
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1557
lemma abs_triangle_ineq: "abs (a+b) \<le> abs a + abs (b::'a::ordered_ring)"
14295
7f115e5c5de4 more general lemmas for Ring_and_Field
paulson
parents: 14294
diff changeset
  1558
by (force simp add: abs_le_iff abs_ge_self abs_ge_minus_self add_mono)
14294
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1559
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1560
lemma abs_mult_less:
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1561
     "[| abs a < c; abs b < d |] ==> abs a * abs b < c*(d::'a::ordered_ring)"
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1562
proof -
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1563
  assume ac: "abs a < c"
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1564
  hence cpos: "0<c" by (blast intro: order_le_less_trans abs_ge_zero)
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1565
  assume "abs b < d"
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1566
  thus ?thesis by (simp add: ac cpos mult_strict_mono) 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1567
qed
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1568
14331
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1569
ML
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1570
{*
14334
6137d24eef79 tweaking of lemmas in RealDef, RealOrd
paulson
parents: 14331
diff changeset
  1571
val add_assoc = thm"add_assoc";
6137d24eef79 tweaking of lemmas in RealDef, RealOrd
paulson
parents: 14331
diff changeset
  1572
val add_commute = thm"add_commute";
6137d24eef79 tweaking of lemmas in RealDef, RealOrd
paulson
parents: 14331
diff changeset
  1573
val mult_assoc = thm"mult_assoc";
6137d24eef79 tweaking of lemmas in RealDef, RealOrd
paulson
parents: 14331
diff changeset
  1574
val mult_commute = thm"mult_commute";
6137d24eef79 tweaking of lemmas in RealDef, RealOrd
paulson
parents: 14331
diff changeset
  1575
val zero_neq_one = thm"zero_neq_one";
6137d24eef79 tweaking of lemmas in RealDef, RealOrd
paulson
parents: 14331
diff changeset
  1576
val diff_minus = thm"diff_minus";
6137d24eef79 tweaking of lemmas in RealDef, RealOrd
paulson
parents: 14331
diff changeset
  1577
val abs_if = thm"abs_if";
6137d24eef79 tweaking of lemmas in RealDef, RealOrd
paulson
parents: 14331
diff changeset
  1578
val divide_inverse = thm"divide_inverse";
6137d24eef79 tweaking of lemmas in RealDef, RealOrd
paulson
parents: 14331
diff changeset
  1579
val inverse_zero = thm"inverse_zero";
6137d24eef79 tweaking of lemmas in RealDef, RealOrd
paulson
parents: 14331
diff changeset
  1580
val divide_zero = thm"divide_zero";
6137d24eef79 tweaking of lemmas in RealDef, RealOrd
paulson
parents: 14331
diff changeset
  1581
val add_0 = thm"add_0";
14331
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1582
val add_0_right = thm"add_0_right";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1583
val add_left_commute = thm"add_left_commute";
14334
6137d24eef79 tweaking of lemmas in RealDef, RealOrd
paulson
parents: 14331
diff changeset
  1584
val left_minus = thm"left_minus";
14331
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1585
val right_minus = thm"right_minus";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1586
val right_minus_eq = thm"right_minus_eq";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1587
val add_left_cancel = thm"add_left_cancel";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1588
val add_right_cancel = thm"add_right_cancel";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1589
val minus_minus = thm"minus_minus";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1590
val equals_zero_I = thm"equals_zero_I";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1591
val minus_zero = thm"minus_zero";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1592
val diff_self = thm"diff_self";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1593
val diff_0 = thm"diff_0";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1594
val diff_0_right = thm"diff_0_right";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1595
val diff_minus_eq_add = thm"diff_minus_eq_add";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1596
val neg_equal_iff_equal = thm"neg_equal_iff_equal";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1597
val neg_equal_0_iff_equal = thm"neg_equal_0_iff_equal";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1598
val neg_0_equal_iff_equal = thm"neg_0_equal_iff_equal";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1599
val equation_minus_iff = thm"equation_minus_iff";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1600
val minus_equation_iff = thm"minus_equation_iff";
14334
6137d24eef79 tweaking of lemmas in RealDef, RealOrd
paulson
parents: 14331
diff changeset
  1601
val mult_1 = thm"mult_1";
14331
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1602
val mult_1_right = thm"mult_1_right";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1603
val mult_left_commute = thm"mult_left_commute";
14353
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1604
val mult_zero_left = thm"mult_zero_left";
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1605
val mult_zero_right = thm"mult_zero_right";
14334
6137d24eef79 tweaking of lemmas in RealDef, RealOrd
paulson
parents: 14331
diff changeset
  1606
val left_distrib = thm "left_distrib";
14331
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1607
val right_distrib = thm"right_distrib";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1608
val combine_common_factor = thm"combine_common_factor";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1609
val minus_add_distrib = thm"minus_add_distrib";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1610
val minus_mult_left = thm"minus_mult_left";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1611
val minus_mult_right = thm"minus_mult_right";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1612
val minus_mult_minus = thm"minus_mult_minus";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1613
val right_diff_distrib = thm"right_diff_distrib";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1614
val left_diff_distrib = thm"left_diff_distrib";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1615
val minus_diff_eq = thm"minus_diff_eq";
14334
6137d24eef79 tweaking of lemmas in RealDef, RealOrd
paulson
parents: 14331
diff changeset
  1616
val add_left_mono = thm"add_left_mono";
14331
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1617
val add_right_mono = thm"add_right_mono";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1618
val add_mono = thm"add_mono";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1619
val add_strict_left_mono = thm"add_strict_left_mono";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1620
val add_strict_right_mono = thm"add_strict_right_mono";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1621
val add_strict_mono = thm"add_strict_mono";
14341
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
  1622
val add_less_le_mono = thm"add_less_le_mono";
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
  1623
val add_le_less_mono = thm"add_le_less_mono";
14331
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1624
val add_less_imp_less_left = thm"add_less_imp_less_left";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1625
val add_less_imp_less_right = thm"add_less_imp_less_right";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1626
val add_less_cancel_left = thm"add_less_cancel_left";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1627
val add_less_cancel_right = thm"add_less_cancel_right";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1628
val add_le_cancel_left = thm"add_le_cancel_left";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1629
val add_le_cancel_right = thm"add_le_cancel_right";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1630
val add_le_imp_le_left = thm"add_le_imp_le_left";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1631
val add_le_imp_le_right = thm"add_le_imp_le_right";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1632
val le_imp_neg_le = thm"le_imp_neg_le";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1633
val neg_le_iff_le = thm"neg_le_iff_le";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1634
val neg_le_0_iff_le = thm"neg_le_0_iff_le";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1635
val neg_0_le_iff_le = thm"neg_0_le_iff_le";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1636
val neg_less_iff_less = thm"neg_less_iff_less";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1637
val neg_less_0_iff_less = thm"neg_less_0_iff_less";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1638
val neg_0_less_iff_less = thm"neg_0_less_iff_less";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1639
val less_minus_iff = thm"less_minus_iff";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1640
val minus_less_iff = thm"minus_less_iff";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1641
val le_minus_iff = thm"le_minus_iff";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1642
val minus_le_iff = thm"minus_le_iff";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1643
val add_diff_eq = thm"add_diff_eq";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1644
val diff_add_eq = thm"diff_add_eq";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1645
val diff_eq_eq = thm"diff_eq_eq";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1646
val eq_diff_eq = thm"eq_diff_eq";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1647
val diff_diff_eq = thm"diff_diff_eq";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1648
val diff_diff_eq2 = thm"diff_diff_eq2";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1649
val less_iff_diff_less_0 = thm"less_iff_diff_less_0";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1650
val diff_less_eq = thm"diff_less_eq";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1651
val less_diff_eq = thm"less_diff_eq";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1652
val diff_le_eq = thm"diff_le_eq";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1653
val le_diff_eq = thm"le_diff_eq";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1654
val eq_iff_diff_eq_0 = thm"eq_iff_diff_eq_0";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1655
val le_iff_diff_le_0 = thm"le_iff_diff_le_0";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1656
val eq_add_iff1 = thm"eq_add_iff1";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1657
val eq_add_iff2 = thm"eq_add_iff2";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1658
val less_add_iff1 = thm"less_add_iff1";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1659
val less_add_iff2 = thm"less_add_iff2";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1660
val le_add_iff1 = thm"le_add_iff1";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1661
val le_add_iff2 = thm"le_add_iff2";
14334
6137d24eef79 tweaking of lemmas in RealDef, RealOrd
paulson
parents: 14331
diff changeset
  1662
val mult_strict_left_mono = thm"mult_strict_left_mono";
14331
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1663
val mult_strict_right_mono = thm"mult_strict_right_mono";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1664
val mult_left_mono = thm"mult_left_mono";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1665
val mult_right_mono = thm"mult_right_mono";
14348
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
  1666
val mult_left_le_imp_le = thm"mult_left_le_imp_le";
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
  1667
val mult_right_le_imp_le = thm"mult_right_le_imp_le";
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
  1668
val mult_left_less_imp_less = thm"mult_left_less_imp_less";
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
  1669
val mult_right_less_imp_less = thm"mult_right_less_imp_less";
14331
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1670
val mult_strict_left_mono_neg = thm"mult_strict_left_mono_neg";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1671
val mult_strict_right_mono_neg = thm"mult_strict_right_mono_neg";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1672
val mult_pos = thm"mult_pos";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1673
val mult_pos_neg = thm"mult_pos_neg";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1674
val mult_neg = thm"mult_neg";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1675
val zero_less_mult_pos = thm"zero_less_mult_pos";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1676
val zero_less_mult_iff = thm"zero_less_mult_iff";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1677
val mult_eq_0_iff = thm"mult_eq_0_iff";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1678
val zero_le_mult_iff = thm"zero_le_mult_iff";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1679
val mult_less_0_iff = thm"mult_less_0_iff";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1680
val mult_le_0_iff = thm"mult_le_0_iff";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1681
val zero_le_square = thm"zero_le_square";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1682
val zero_less_one = thm"zero_less_one";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1683
val zero_le_one = thm"zero_le_one";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1684
val mult_left_mono_neg = thm"mult_left_mono_neg";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1685
val mult_right_mono_neg = thm"mult_right_mono_neg";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1686
val mult_strict_mono = thm"mult_strict_mono";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1687
val mult_strict_mono' = thm"mult_strict_mono'";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1688
val mult_mono = thm"mult_mono";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1689
val mult_less_cancel_right = thm"mult_less_cancel_right";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1690
val mult_less_cancel_left = thm"mult_less_cancel_left";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1691
val mult_le_cancel_right = thm"mult_le_cancel_right";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1692
val mult_le_cancel_left = thm"mult_le_cancel_left";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1693
val mult_less_imp_less_left = thm"mult_less_imp_less_left";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1694
val mult_less_imp_less_right = thm"mult_less_imp_less_right";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1695
val mult_cancel_right = thm"mult_cancel_right";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1696
val mult_cancel_left = thm"mult_cancel_left";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1697
val left_inverse = thm "left_inverse";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1698
val right_inverse = thm"right_inverse";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1699
val right_inverse_eq = thm"right_inverse_eq";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1700
val nonzero_inverse_eq_divide = thm"nonzero_inverse_eq_divide";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1701
val divide_self = thm"divide_self";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1702
val divide_inverse_zero = thm"divide_inverse_zero";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1703
val divide_zero_left = thm"divide_zero_left";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1704
val inverse_eq_divide = thm"inverse_eq_divide";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1705
val nonzero_add_divide_distrib = thm"nonzero_add_divide_distrib";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1706
val add_divide_distrib = thm"add_divide_distrib";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1707
val field_mult_eq_0_iff = thm"field_mult_eq_0_iff";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1708
val field_mult_cancel_right = thm"field_mult_cancel_right";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1709
val field_mult_cancel_left = thm"field_mult_cancel_left";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1710
val nonzero_imp_inverse_nonzero = thm"nonzero_imp_inverse_nonzero";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1711
val inverse_zero_imp_zero = thm"inverse_zero_imp_zero";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1712
val inverse_nonzero_imp_nonzero = thm"inverse_nonzero_imp_nonzero";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1713
val inverse_nonzero_iff_nonzero = thm"inverse_nonzero_iff_nonzero";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1714
val nonzero_inverse_minus_eq = thm"nonzero_inverse_minus_eq";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1715
val inverse_minus_eq = thm"inverse_minus_eq";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1716
val nonzero_inverse_eq_imp_eq = thm"nonzero_inverse_eq_imp_eq";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1717
val inverse_eq_imp_eq = thm"inverse_eq_imp_eq";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1718
val inverse_eq_iff_eq = thm"inverse_eq_iff_eq";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1719
val nonzero_inverse_inverse_eq = thm"nonzero_inverse_inverse_eq";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1720
val inverse_inverse_eq = thm"inverse_inverse_eq";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1721
val inverse_1 = thm"inverse_1";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1722
val nonzero_inverse_mult_distrib = thm"nonzero_inverse_mult_distrib";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1723
val inverse_mult_distrib = thm"inverse_mult_distrib";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1724
val inverse_add = thm"inverse_add";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1725
val nonzero_mult_divide_cancel_left = thm"nonzero_mult_divide_cancel_left";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1726
val mult_divide_cancel_left = thm"mult_divide_cancel_left";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1727
val nonzero_mult_divide_cancel_right = thm"nonzero_mult_divide_cancel_right";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1728
val mult_divide_cancel_right = thm"mult_divide_cancel_right";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1729
val mult_divide_cancel_eq_if = thm"mult_divide_cancel_eq_if";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1730
val divide_1 = thm"divide_1";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1731
val times_divide_eq_right = thm"times_divide_eq_right";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1732
val times_divide_eq_left = thm"times_divide_eq_left";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1733
val divide_divide_eq_right = thm"divide_divide_eq_right";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1734
val divide_divide_eq_left = thm"divide_divide_eq_left";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1735
val nonzero_minus_divide_left = thm"nonzero_minus_divide_left";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1736
val nonzero_minus_divide_right = thm"nonzero_minus_divide_right";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1737
val nonzero_minus_divide_divide = thm"nonzero_minus_divide_divide";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1738
val minus_divide_left = thm"minus_divide_left";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1739
val minus_divide_right = thm"minus_divide_right";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1740
val minus_divide_divide = thm"minus_divide_divide";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1741
val positive_imp_inverse_positive = thm"positive_imp_inverse_positive";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1742
val negative_imp_inverse_negative = thm"negative_imp_inverse_negative";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1743
val inverse_le_imp_le = thm"inverse_le_imp_le";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1744
val inverse_positive_imp_positive = thm"inverse_positive_imp_positive";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1745
val inverse_positive_iff_positive = thm"inverse_positive_iff_positive";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1746
val inverse_negative_imp_negative = thm"inverse_negative_imp_negative";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1747
val inverse_negative_iff_negative = thm"inverse_negative_iff_negative";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1748
val inverse_nonnegative_iff_nonnegative = thm"inverse_nonnegative_iff_nonnegative";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1749
val inverse_nonpositive_iff_nonpositive = thm"inverse_nonpositive_iff_nonpositive";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1750
val less_imp_inverse_less = thm"less_imp_inverse_less";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1751
val inverse_less_imp_less = thm"inverse_less_imp_less";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1752
val inverse_less_iff_less = thm"inverse_less_iff_less";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1753
val le_imp_inverse_le = thm"le_imp_inverse_le";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1754
val inverse_le_iff_le = thm"inverse_le_iff_le";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1755
val inverse_le_imp_le_neg = thm"inverse_le_imp_le_neg";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1756
val less_imp_inverse_less_neg = thm"less_imp_inverse_less_neg";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1757
val inverse_less_imp_less_neg = thm"inverse_less_imp_less_neg";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1758
val inverse_less_iff_less_neg = thm"inverse_less_iff_less_neg";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1759
val le_imp_inverse_le_neg = thm"le_imp_inverse_le_neg";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1760
val inverse_le_iff_le_neg = thm"inverse_le_iff_le_neg";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1761
val zero_less_divide_iff = thm"zero_less_divide_iff";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1762
val divide_less_0_iff = thm"divide_less_0_iff";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1763
val zero_le_divide_iff = thm"zero_le_divide_iff";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1764
val divide_le_0_iff = thm"divide_le_0_iff";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1765
val divide_eq_0_iff = thm"divide_eq_0_iff";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1766
val pos_le_divide_eq = thm"pos_le_divide_eq";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1767
val neg_le_divide_eq = thm"neg_le_divide_eq";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1768
val le_divide_eq = thm"le_divide_eq";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1769
val pos_divide_le_eq = thm"pos_divide_le_eq";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1770
val neg_divide_le_eq = thm"neg_divide_le_eq";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1771
val divide_le_eq = thm"divide_le_eq";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1772
val pos_less_divide_eq = thm"pos_less_divide_eq";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1773
val neg_less_divide_eq = thm"neg_less_divide_eq";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1774
val less_divide_eq = thm"less_divide_eq";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1775
val pos_divide_less_eq = thm"pos_divide_less_eq";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1776
val neg_divide_less_eq = thm"neg_divide_less_eq";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1777
val divide_less_eq = thm"divide_less_eq";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1778
val nonzero_eq_divide_eq = thm"nonzero_eq_divide_eq";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1779
val eq_divide_eq = thm"eq_divide_eq";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1780
val nonzero_divide_eq_eq = thm"nonzero_divide_eq_eq";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1781
val divide_eq_eq = thm"divide_eq_eq";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1782
val divide_cancel_right = thm"divide_cancel_right";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1783
val divide_cancel_left = thm"divide_cancel_left";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1784
val divide_strict_right_mono = thm"divide_strict_right_mono";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1785
val divide_right_mono = thm"divide_right_mono";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1786
val divide_strict_left_mono = thm"divide_strict_left_mono";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1787
val divide_left_mono = thm"divide_left_mono";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1788
val divide_strict_left_mono_neg = thm"divide_strict_left_mono_neg";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1789
val divide_strict_right_mono_neg = thm"divide_strict_right_mono_neg";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1790
val zero_less_two = thm"zero_less_two";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1791
val less_half_sum = thm"less_half_sum";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1792
val gt_half_sum = thm"gt_half_sum";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1793
val dense = thm"dense";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1794
val abs_zero = thm"abs_zero";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1795
val abs_one = thm"abs_one";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1796
val abs_mult = thm"abs_mult";
14348
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
  1797
val abs_mult_self = thm"abs_mult_self";
14331
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1798
val abs_eq_0 = thm"abs_eq_0";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1799
val zero_less_abs_iff = thm"zero_less_abs_iff";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1800
val abs_not_less_zero = thm"abs_not_less_zero";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1801
val abs_le_zero_iff = thm"abs_le_zero_iff";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1802
val abs_minus_cancel = thm"abs_minus_cancel";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1803
val abs_ge_zero = thm"abs_ge_zero";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1804
val abs_idempotent = thm"abs_idempotent";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1805
val abs_zero_iff = thm"abs_zero_iff";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1806
val abs_ge_self = thm"abs_ge_self";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1807
val abs_ge_minus_self = thm"abs_ge_minus_self";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1808
val nonzero_abs_inverse = thm"nonzero_abs_inverse";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1809
val abs_inverse = thm"abs_inverse";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1810
val nonzero_abs_divide = thm"nonzero_abs_divide";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1811
val abs_divide = thm"abs_divide";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1812
val abs_leI = thm"abs_leI";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1813
val le_minus_self_iff = thm"le_minus_self_iff";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1814
val minus_le_self_iff = thm"minus_le_self_iff";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1815
val eq_minus_self_iff = thm"eq_minus_self_iff";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1816
val less_minus_self_iff = thm"less_minus_self_iff";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1817
val abs_le_D1 = thm"abs_le_D1";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1818
val abs_le_D2 = thm"abs_le_D2";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1819
val abs_le_iff = thm"abs_le_iff";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1820
val abs_less_iff = thm"abs_less_iff";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1821
val abs_triangle_ineq = thm"abs_triangle_ineq";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1822
val abs_mult_less = thm"abs_mult_less";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1823
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1824
val compare_rls = thms"compare_rls";
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1825
*}
8dbbb7cf3637 re-organized numeric lemmas
paulson
parents: 14321
diff changeset
  1826
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1827
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
  1828
end