14350
|
1 |
(* Title: HOL/Tools/refute.ML
|
|
2 |
ID: $Id$
|
|
3 |
Author: Tjark Weber
|
|
4 |
Copyright 2003-2004
|
|
5 |
|
|
6 |
Finite model generation for HOL formulae, using an external SAT solver.
|
|
7 |
*)
|
|
8 |
|
|
9 |
(* ------------------------------------------------------------------------- *)
|
|
10 |
(* Declares the 'REFUTE' signature as well as a structure 'Refute'. See *)
|
|
11 |
(* 'find_model' below for a description of the implemented algorithm, and *)
|
|
12 |
(* the Isabelle/Isar theories 'HOL/Refute.thy' and 'HOL/Main.thy' on how to *)
|
|
13 |
(* set things up. *)
|
|
14 |
(* ------------------------------------------------------------------------- *)
|
|
15 |
|
|
16 |
signature REFUTE =
|
|
17 |
sig
|
|
18 |
|
|
19 |
(* We use 'REFUTE' only for internal error conditions that should *)
|
|
20 |
(* never occur in the first place (i.e. errors caused by bugs in our *)
|
|
21 |
(* code). Otherwise (e.g. to indicate invalid input data) we use *)
|
|
22 |
(* 'error'. *)
|
|
23 |
|
|
24 |
exception REFUTE of string * string; (* ("in function", "cause") *)
|
|
25 |
|
|
26 |
val setup : (theory -> theory) list
|
|
27 |
|
|
28 |
val set_default_param : (string * string) -> theory -> theory
|
|
29 |
val get_default_param : theory -> string -> string option
|
|
30 |
val get_default_params : theory -> (string * string) list
|
|
31 |
|
|
32 |
val find_model : theory -> (string * string) list -> Term.term -> unit
|
|
33 |
|
|
34 |
val refute_term : theory -> (string * string) list -> Term.term -> unit
|
|
35 |
val refute_subgoal : theory -> (string * string) list -> Thm.thm -> int -> unit
|
|
36 |
end;
|
|
37 |
|
|
38 |
|
|
39 |
structure Refute : REFUTE =
|
|
40 |
struct
|
|
41 |
exception REFUTE of string * string;
|
|
42 |
|
|
43 |
exception EMPTY_DATATYPE;
|
|
44 |
|
|
45 |
structure RefuteDataArgs =
|
|
46 |
struct
|
|
47 |
val name = "Refute/refute";
|
|
48 |
type T = string Symtab.table;
|
|
49 |
val empty = Symtab.empty;
|
|
50 |
val copy = I;
|
|
51 |
val prep_ext = I;
|
|
52 |
val merge =
|
|
53 |
fn (symTable1, symTable2) =>
|
14351
|
54 |
(Symtab.merge (op=) (symTable1, symTable2));
|
14350
|
55 |
fun print sg symTable =
|
|
56 |
writeln
|
|
57 |
("'refute', default parameters:\n" ^
|
|
58 |
(space_implode "\n" (map (fn (name,value) => name ^ " = " ^ value) (Symtab.dest symTable))))
|
|
59 |
end;
|
|
60 |
|
|
61 |
structure RefuteData = TheoryDataFun(RefuteDataArgs);
|
|
62 |
|
|
63 |
|
|
64 |
(* ------------------------------------------------------------------------- *)
|
|
65 |
(* INTERFACE, PART 1: INITIALIZATION, PARAMETER MANAGEMENT *)
|
|
66 |
(* ------------------------------------------------------------------------- *)
|
|
67 |
|
|
68 |
(* ------------------------------------------------------------------------- *)
|
|
69 |
(* use 'setup Refute.setup' in an Isabelle theory to initialize the 'Refute' *)
|
|
70 |
(* structure *)
|
|
71 |
(* ------------------------------------------------------------------------- *)
|
|
72 |
|
|
73 |
val setup = [RefuteData.init];
|
|
74 |
|
|
75 |
(* ------------------------------------------------------------------------- *)
|
|
76 |
(* set_default_param: stores the '(name, value)' pair in RefuteData's symbol *)
|
|
77 |
(* table *)
|
|
78 |
(* ------------------------------------------------------------------------- *)
|
|
79 |
|
|
80 |
fun set_default_param (name, value) thy =
|
|
81 |
let
|
|
82 |
val symTable = RefuteData.get thy
|
|
83 |
in
|
|
84 |
case Symtab.lookup (symTable, name) of
|
|
85 |
None => RefuteData.put (Symtab.extend (symTable, [(name, value)])) thy
|
|
86 |
| Some _ => RefuteData.put (Symtab.update ((name, value), symTable)) thy
|
|
87 |
end;
|
|
88 |
|
|
89 |
(* ------------------------------------------------------------------------- *)
|
|
90 |
(* get_default_param: retrieves the value associated with 'name' from *)
|
|
91 |
(* RefuteData's symbol table *)
|
|
92 |
(* ------------------------------------------------------------------------- *)
|
|
93 |
|
|
94 |
fun get_default_param thy name = Symtab.lookup (RefuteData.get thy, name);
|
|
95 |
|
|
96 |
(* ------------------------------------------------------------------------- *)
|
|
97 |
(* get_default_params: returns a list of all '(name, value)' pairs that are *)
|
|
98 |
(* stored in RefuteData's symbol table *)
|
|
99 |
(* ------------------------------------------------------------------------- *)
|
|
100 |
|
|
101 |
fun get_default_params thy = Symtab.dest (RefuteData.get thy);
|
|
102 |
|
|
103 |
|
|
104 |
(* ------------------------------------------------------------------------- *)
|
|
105 |
(* PROPOSITIONAL FORMULAS *)
|
|
106 |
(* ------------------------------------------------------------------------- *)
|
|
107 |
|
|
108 |
(* ------------------------------------------------------------------------- *)
|
|
109 |
(* prop_formula: formulas of propositional logic, built from boolean *)
|
|
110 |
(* variables (referred to by index) and True/False using *)
|
|
111 |
(* not/or/and *)
|
|
112 |
(* ------------------------------------------------------------------------- *)
|
|
113 |
|
|
114 |
datatype prop_formula =
|
|
115 |
True
|
|
116 |
| False
|
|
117 |
| BoolVar of int
|
|
118 |
| Not of prop_formula
|
|
119 |
| Or of prop_formula * prop_formula
|
|
120 |
| And of prop_formula * prop_formula;
|
|
121 |
|
|
122 |
(* the following constructor functions make sure that True and False do *)
|
|
123 |
(* not occur within any of the other connectives (i.e. Not, Or, And) *)
|
|
124 |
|
|
125 |
(* prop_formula -> prop_formula *)
|
|
126 |
|
|
127 |
fun SNot True = False
|
|
128 |
| SNot False = True
|
|
129 |
| SNot fm = Not fm;
|
|
130 |
|
|
131 |
(* prop_formula * prop_formula -> prop_formula *)
|
|
132 |
|
|
133 |
fun SOr (True, _) = True
|
|
134 |
| SOr (_, True) = True
|
|
135 |
| SOr (False, fm) = fm
|
|
136 |
| SOr (fm, False) = fm
|
|
137 |
| SOr (fm1, fm2) = Or (fm1, fm2);
|
|
138 |
|
|
139 |
(* prop_formula * prop_formula -> prop_formula *)
|
|
140 |
|
|
141 |
fun SAnd (True, fm) = fm
|
|
142 |
| SAnd (fm, True) = fm
|
|
143 |
| SAnd (False, _) = False
|
|
144 |
| SAnd (_, False) = False
|
|
145 |
| SAnd (fm1, fm2) = And (fm1, fm2);
|
|
146 |
|
|
147 |
(* ------------------------------------------------------------------------- *)
|
|
148 |
(* list_disjunction: computes the disjunction of a list of propositional *)
|
|
149 |
(* formulas *)
|
|
150 |
(* ------------------------------------------------------------------------- *)
|
|
151 |
|
|
152 |
(* prop_formula list -> prop_formula *)
|
|
153 |
|
|
154 |
fun list_disjunction [] = False
|
|
155 |
| list_disjunction (x::xs) = SOr (x, list_disjunction xs);
|
|
156 |
|
|
157 |
(* ------------------------------------------------------------------------- *)
|
|
158 |
(* list_conjunction: computes the conjunction of a list of propositional *)
|
|
159 |
(* formulas *)
|
|
160 |
(* ------------------------------------------------------------------------- *)
|
|
161 |
|
|
162 |
(* prop_formula list -> prop_formula *)
|
|
163 |
|
|
164 |
fun list_conjunction [] = True
|
|
165 |
| list_conjunction (x::xs) = SAnd (x, list_conjunction xs);
|
|
166 |
|
|
167 |
(* ------------------------------------------------------------------------- *)
|
|
168 |
(* prop_formula_dot_product: [x1,...,xn] * [y1,...,yn] -> x1*y1+...+xn*yn *)
|
|
169 |
(* ------------------------------------------------------------------------- *)
|
|
170 |
|
|
171 |
(* prop_formula list * prop_formula list -> prop_formula *)
|
|
172 |
|
|
173 |
fun prop_formula_dot_product ([],[]) = False
|
|
174 |
| prop_formula_dot_product (x::xs,y::ys) = SOr (SAnd (x,y), prop_formula_dot_product (xs,ys))
|
|
175 |
| prop_formula_dot_product (_,_) = raise REFUTE ("prop_formula_dot_product", "lists are of different length");
|
|
176 |
|
|
177 |
(* ------------------------------------------------------------------------- *)
|
|
178 |
(* prop_formula_to_nnf: computes the negation normal form of a formula 'fm' *)
|
|
179 |
(* of propositional logic (i.e. only variables may be *)
|
|
180 |
(* negated, but not subformulas) *)
|
|
181 |
(* ------------------------------------------------------------------------- *)
|
|
182 |
|
|
183 |
(* prop_formula -> prop_formula *)
|
|
184 |
|
|
185 |
fun prop_formula_to_nnf fm =
|
|
186 |
case fm of
|
|
187 |
(* constants *)
|
|
188 |
True => True
|
|
189 |
| False => False
|
|
190 |
(* literals *)
|
|
191 |
| BoolVar i => BoolVar i
|
|
192 |
| Not (BoolVar i) => Not (BoolVar i)
|
|
193 |
(* double-negation elimination *)
|
|
194 |
| Not (Not fm) => prop_formula_to_nnf fm
|
|
195 |
(* pushing 'not' inside of 'or'/'and' using de Morgan's laws *)
|
|
196 |
| Not (Or (fm1,fm2)) => SAnd (prop_formula_to_nnf (SNot fm1),prop_formula_to_nnf (SNot fm2))
|
|
197 |
| Not (And (fm1,fm2)) => SOr (prop_formula_to_nnf (SNot fm1),prop_formula_to_nnf (SNot fm2))
|
|
198 |
(* 'or' and 'and' as outermost connectives are left untouched *)
|
|
199 |
| Or (fm1,fm2) => SOr (prop_formula_to_nnf fm1,prop_formula_to_nnf fm2)
|
|
200 |
| And (fm1,fm2) => SAnd (prop_formula_to_nnf fm1,prop_formula_to_nnf fm2)
|
|
201 |
(* 'not' + constant *)
|
|
202 |
| Not _ => raise REFUTE ("prop_formula_to_nnf", "'True'/'False' not allowed inside of 'Not'");
|
|
203 |
|
|
204 |
(* ------------------------------------------------------------------------- *)
|
|
205 |
(* prop_formula_nnf_to_cnf: computes the conjunctive normal form of a *)
|
|
206 |
(* formula 'fm' of propositional logic that is given in negation normal *)
|
|
207 |
(* form. Note that there may occur an exponential blowup of the *)
|
|
208 |
(* formula. *)
|
|
209 |
(* ------------------------------------------------------------------------- *)
|
|
210 |
|
|
211 |
(* prop_formula -> prop_formula *)
|
|
212 |
|
|
213 |
fun prop_formula_nnf_to_cnf fm =
|
|
214 |
case fm of
|
|
215 |
(* constants *)
|
|
216 |
True => True
|
|
217 |
| False => False
|
|
218 |
(* literals *)
|
|
219 |
| BoolVar i => BoolVar i
|
|
220 |
| Not (BoolVar i) => Not (BoolVar i)
|
|
221 |
(* pushing 'or' inside of 'and' using distributive laws *)
|
|
222 |
| Or (fm1,fm2) =>
|
|
223 |
let
|
|
224 |
val fm1' = prop_formula_nnf_to_cnf fm1
|
|
225 |
val fm2' = prop_formula_nnf_to_cnf fm2
|
|
226 |
in
|
|
227 |
case fm1' of
|
|
228 |
And (fm11,fm12) => prop_formula_nnf_to_cnf (SAnd (SOr(fm11,fm2'),SOr(fm12,fm2')))
|
|
229 |
| _ =>
|
|
230 |
(case fm2' of
|
|
231 |
And (fm21,fm22) => prop_formula_nnf_to_cnf (SAnd (SOr(fm1',fm21),SOr(fm1',fm22)))
|
|
232 |
(* neither subformula contains 'and' *)
|
|
233 |
| _ => fm)
|
|
234 |
end
|
|
235 |
(* 'and' as outermost connective is left untouched *)
|
|
236 |
| And (fm1,fm2) => SAnd (prop_formula_nnf_to_cnf fm1, prop_formula_nnf_to_cnf fm2)
|
|
237 |
(* error *)
|
|
238 |
| _ => raise REFUTE ("prop_formula_nnf_to_cnf", "formula is not in negation normal form");
|
|
239 |
|
|
240 |
(* ------------------------------------------------------------------------- *)
|
|
241 |
(* max: computes the maximum of two integer values 'i' and 'j' *)
|
|
242 |
(* ------------------------------------------------------------------------- *)
|
|
243 |
|
|
244 |
(* int * int -> int *)
|
|
245 |
|
|
246 |
fun max (i,j) =
|
|
247 |
if (i>j) then i else j;
|
|
248 |
|
|
249 |
(* ------------------------------------------------------------------------- *)
|
|
250 |
(* max_var_index: computes the maximal variable index occuring in 'fm', *)
|
|
251 |
(* where 'fm' is a formula of propositional logic *)
|
|
252 |
(* ------------------------------------------------------------------------- *)
|
|
253 |
|
|
254 |
(* prop_formula -> int *)
|
|
255 |
|
|
256 |
fun max_var_index fm =
|
|
257 |
case fm of
|
|
258 |
True => 0
|
|
259 |
| False => 0
|
|
260 |
| BoolVar i => i
|
|
261 |
| Not fm1 => max_var_index fm1
|
|
262 |
| And (fm1,fm2) => max (max_var_index fm1, max_var_index fm2)
|
|
263 |
| Or (fm1,fm2) => max (max_var_index fm1, max_var_index fm2);
|
|
264 |
|
|
265 |
(* ------------------------------------------------------------------------- *)
|
|
266 |
(* prop_formula_nnf_to_def_cnf: computes the definitional conjunctive normal *)
|
|
267 |
(* form of a formula 'fm' of propositional logic that is given in *)
|
|
268 |
(* negation normal form. To avoid an exponential blowup of the *)
|
|
269 |
(* formula, auxiliary variables may be introduced. The result formula *)
|
|
270 |
(* is SAT-equivalent to 'fm' (i.e. it is satisfiable if and only if *)
|
|
271 |
(* 'fm' is satisfiable). *)
|
|
272 |
(* ------------------------------------------------------------------------- *)
|
|
273 |
|
|
274 |
(* prop_formula -> prop_formula *)
|
|
275 |
|
|
276 |
fun prop_formula_nnf_to_def_cnf fm =
|
|
277 |
let
|
|
278 |
(* prop_formula * int -> prop_formula * int *)
|
|
279 |
fun prop_formula_nnf_to_def_cnf_new (fm,new) =
|
|
280 |
(* 'new' specifies the next index that is available to introduce an auxiliary variable *)
|
|
281 |
case fm of
|
|
282 |
(* constants *)
|
|
283 |
True => (True, new)
|
|
284 |
| False => (False, new)
|
|
285 |
(* literals *)
|
|
286 |
| BoolVar i => (BoolVar i, new)
|
|
287 |
| Not (BoolVar i) => (Not (BoolVar i), new)
|
|
288 |
(* pushing 'or' inside of 'and' using distributive laws *)
|
|
289 |
| Or (fm1,fm2) =>
|
|
290 |
let
|
|
291 |
val fm1' = prop_formula_nnf_to_def_cnf_new (fm1, new)
|
|
292 |
val fm2' = prop_formula_nnf_to_def_cnf_new (fm2, snd fm1')
|
|
293 |
in
|
|
294 |
case fst fm1' of
|
|
295 |
And (fm11,fm12) =>
|
|
296 |
let
|
|
297 |
val aux = BoolVar (snd fm2')
|
|
298 |
in
|
|
299 |
(* '(fm11 AND fm12) OR fm2' is SAT-equivalent to '(fm11 OR aux) AND (fm12 OR aux) AND (fm2 OR NOT aux)' *)
|
|
300 |
prop_formula_nnf_to_def_cnf_new (SAnd (SAnd (SOr (fm11,aux), SOr (fm12,aux)), SOr(fst fm2', Not aux)), (snd fm2')+1)
|
|
301 |
end
|
|
302 |
| _ =>
|
|
303 |
(case fst fm2' of
|
|
304 |
And (fm21,fm22) =>
|
|
305 |
let
|
|
306 |
val aux = BoolVar (snd fm2')
|
|
307 |
in
|
|
308 |
(* 'fm1 OR (fm21 AND fm22)' is SAT-equivalent to '(fm1 OR NOT aux) AND (fm21 OR aux) AND (fm22 OR NOT aux)' *)
|
|
309 |
prop_formula_nnf_to_def_cnf_new (SAnd (SOr (fst fm1', Not aux), SAnd (SOr (fm21,aux), SOr (fm22,aux))), (snd fm2')+1)
|
|
310 |
end
|
|
311 |
(* neither subformula contains 'and' *)
|
|
312 |
| _ => (fm, new))
|
|
313 |
end
|
|
314 |
(* 'and' as outermost connective is left untouched *)
|
|
315 |
| And (fm1,fm2) =>
|
|
316 |
let
|
|
317 |
val fm1' = prop_formula_nnf_to_def_cnf_new (fm1, new)
|
|
318 |
val fm2' = prop_formula_nnf_to_def_cnf_new (fm2, snd fm1')
|
|
319 |
in
|
|
320 |
(SAnd (fst fm1', fst fm2'), snd fm2')
|
|
321 |
end
|
|
322 |
(* error *)
|
|
323 |
| _ => raise REFUTE ("prop_formula_nnf_to_def_cnf", "formula is not in negation normal form")
|
|
324 |
in
|
|
325 |
fst (prop_formula_nnf_to_def_cnf_new (fm, (max_var_index fm)+1))
|
|
326 |
end;
|
|
327 |
|
|
328 |
(* ------------------------------------------------------------------------- *)
|
|
329 |
(* prop_formula_to_cnf: computes the conjunctive normal form of a formula *)
|
|
330 |
(* 'fm' of propositional logic *)
|
|
331 |
(* ------------------------------------------------------------------------- *)
|
|
332 |
|
|
333 |
(* prop_formula -> prop_formula *)
|
|
334 |
|
|
335 |
fun prop_formula_to_cnf fm =
|
|
336 |
prop_formula_nnf_to_cnf (prop_formula_to_nnf fm);
|
|
337 |
|
|
338 |
(* ------------------------------------------------------------------------- *)
|
|
339 |
(* prop_formula_to_def_cnf: computes the definitional conjunctive normal *)
|
|
340 |
(* form of a formula 'fm' of propositional logic, introducing auxiliary *)
|
|
341 |
(* variables if necessary to avoid an exponential blowup of the formula *)
|
|
342 |
(* ------------------------------------------------------------------------- *)
|
|
343 |
|
|
344 |
(* prop_formula -> prop_formula *)
|
|
345 |
|
|
346 |
fun prop_formula_to_def_cnf fm =
|
|
347 |
prop_formula_nnf_to_def_cnf (prop_formula_to_nnf fm);
|
|
348 |
|
|
349 |
(* ------------------------------------------------------------------------- *)
|
|
350 |
(* prop_formula_to_dimacs_cnf_format: serializes a formula of propositional *)
|
|
351 |
(* logic to a file in DIMACS CNF format (see "Satisfiability Suggested *)
|
|
352 |
(* Format", May 8 1993, Section 2.1) *)
|
|
353 |
(* fm : formula to be serialized. Note: 'fm' must not contain a variable *)
|
|
354 |
(* index less than 1. *)
|
|
355 |
(* def : If true, translate 'fm' into definitional CNF. Otherwise translate *)
|
|
356 |
(* 'fm' into CNF. *)
|
|
357 |
(* path: path of the file to be created *)
|
|
358 |
(* ------------------------------------------------------------------------- *)
|
|
359 |
|
|
360 |
(* prop_formula -> bool -> Path.T -> unit *)
|
|
361 |
|
|
362 |
fun prop_formula_to_dimacs_cnf_format fm def path =
|
|
363 |
let
|
|
364 |
(* prop_formula *)
|
|
365 |
val cnf =
|
|
366 |
if def then
|
|
367 |
prop_formula_to_def_cnf fm
|
|
368 |
else
|
|
369 |
prop_formula_to_cnf fm
|
|
370 |
val fm' =
|
|
371 |
case cnf of
|
|
372 |
True => Or (BoolVar 1, Not (BoolVar 1))
|
|
373 |
| False => And (BoolVar 1, Not (BoolVar 1))
|
|
374 |
| _ => cnf (* either 'cnf'=True/False, or 'cnf' does not contain True/False at all *)
|
|
375 |
(* prop_formula -> int *)
|
|
376 |
fun cnf_number_of_clauses (And (fm1,fm2)) =
|
|
377 |
(cnf_number_of_clauses fm1) + (cnf_number_of_clauses fm2)
|
|
378 |
| cnf_number_of_clauses _ =
|
|
379 |
1
|
|
380 |
(* prop_formula -> string *)
|
|
381 |
fun cnf_prop_formula_to_string (BoolVar i) =
|
|
382 |
if (i<1) then
|
|
383 |
raise REFUTE ("prop_formula_to_dimacs_cnf_format", "formula contains a variable index less than 1")
|
|
384 |
else
|
|
385 |
(string_of_int i)
|
|
386 |
| cnf_prop_formula_to_string (Not fm1) =
|
|
387 |
"-" ^ (cnf_prop_formula_to_string fm1)
|
|
388 |
| cnf_prop_formula_to_string (Or (fm1,fm2)) =
|
|
389 |
(cnf_prop_formula_to_string fm1) ^ " " ^ (cnf_prop_formula_to_string fm2)
|
|
390 |
| cnf_prop_formula_to_string (And (fm1,fm2)) =
|
|
391 |
(cnf_prop_formula_to_string fm1) ^ " 0\n" ^ (cnf_prop_formula_to_string fm2)
|
|
392 |
| cnf_prop_formula_to_string _ =
|
|
393 |
raise REFUTE ("prop_formula_to_dimacs_cnf_format", "formula contains True/False")
|
|
394 |
in
|
|
395 |
File.write path ("c This file was generated by prop_formula_to_dimacs_cnf_format\n"
|
|
396 |
^ "c (c) Tjark Weber\n"
|
|
397 |
^ "p cnf " ^ (string_of_int (max_var_index fm')) ^ " " ^ (string_of_int (cnf_number_of_clauses fm')) ^ "\n"
|
|
398 |
^ (cnf_prop_formula_to_string fm') ^ "\n")
|
|
399 |
end;
|
|
400 |
|
|
401 |
(* ------------------------------------------------------------------------- *)
|
|
402 |
(* prop_formula_to_dimacs_sat_format: serializes a formula of propositional *)
|
|
403 |
(* logic to a file in DIMACS SAT format (see "Satisfiability Suggested *)
|
|
404 |
(* Format", May 8 1993, Section 2.2) *)
|
|
405 |
(* fm : formula to be serialized. Note: 'fm' must not contain a variable *)
|
|
406 |
(* index less than 1. *)
|
|
407 |
(* path: path of the file to be created *)
|
|
408 |
(* ------------------------------------------------------------------------- *)
|
|
409 |
|
|
410 |
(* prop_formula -> Path.T -> unit *)
|
|
411 |
|
|
412 |
fun prop_formula_to_dimacs_sat_format fm path =
|
|
413 |
let
|
|
414 |
fun prop_formula_to_string True =
|
|
415 |
"*()"
|
|
416 |
| prop_formula_to_string False =
|
|
417 |
"+()"
|
|
418 |
| prop_formula_to_string (BoolVar i) =
|
|
419 |
if (i<1) then
|
|
420 |
raise REFUTE ("prop_formula_to_dimacs_sat_format", "formula contains a variable index less than 1")
|
|
421 |
else
|
|
422 |
(string_of_int i)
|
|
423 |
| prop_formula_to_string (Not fm1) =
|
|
424 |
"-(" ^ (prop_formula_to_string fm1) ^ ")"
|
|
425 |
| prop_formula_to_string (Or (fm1,fm2)) =
|
|
426 |
"+(" ^ (prop_formula_to_string fm1) ^ " " ^ (prop_formula_to_string fm2) ^ ")"
|
|
427 |
| prop_formula_to_string (And (fm1,fm2)) =
|
|
428 |
"*(" ^ (prop_formula_to_string fm1) ^ " " ^ (prop_formula_to_string fm2) ^ ")"
|
|
429 |
in
|
|
430 |
File.write path ("c This file was generated by prop_formula_to_dimacs_sat_format\n"
|
|
431 |
^ "c (c) Tjark Weber\n"
|
|
432 |
^ "p sat " ^ (string_of_int (max (max_var_index fm, 1))) ^ "\n"
|
|
433 |
^ "(" ^ (prop_formula_to_string fm) ^ ")\n")
|
|
434 |
end;
|
|
435 |
|
|
436 |
(* ------------------------------------------------------------------------- *)
|
|
437 |
(* prop_formula_sat_solver: try to find a satisfying assignment for the *)
|
|
438 |
(* boolean variables in a propositional formula, using an external SAT *)
|
|
439 |
(* solver. If the SAT solver did not find an assignment, 'None' is *)
|
|
440 |
(* returned. Otherwise 'Some (list of integers)' is returned, where *)
|
|
441 |
(* i>0 means that the boolean variable i is set to TRUE, and i<0 means *)
|
|
442 |
(* that the boolean variable i is set to FALSE. Note that if *)
|
|
443 |
(* 'satformat' is 'defcnf', then the assignment returned may contain *)
|
|
444 |
(* auxiliary variables that were not present in the original formula *)
|
|
445 |
(* 'fm'. *)
|
|
446 |
(* fm : formula that is passed to the SAT solver *)
|
|
447 |
(* satpath : path of the file used to store the propositional formula, *)
|
|
448 |
(* i.e. the input to the SAT solver *)
|
|
449 |
(* satformat : format of the SAT solver's input file. Must be either "cnf", *)
|
|
450 |
(* "defcnf", or "sat". *)
|
|
451 |
(* resultpath: path of the file containing the SAT solver's output *)
|
|
452 |
(* success : part of the line in the SAT solver's output that is followed *)
|
|
453 |
(* by a line consisting of a list of integers representing the *)
|
|
454 |
(* satisfying assignment *)
|
|
455 |
(* command : system command used to execute the SAT solver *)
|
|
456 |
(* ------------------------------------------------------------------------- *)
|
|
457 |
|
|
458 |
(* prop_formula -> Path.T -> string -> Path.T -> string -> string -> int list option *)
|
|
459 |
|
|
460 |
fun prop_formula_sat_solver fm satpath satformat resultpath success command =
|
|
461 |
if File.exists satpath then
|
|
462 |
error ("file '" ^ (Path.pack satpath) ^ "' exists, please delete (will not overwrite)")
|
|
463 |
else if File.exists resultpath then
|
|
464 |
error ("file '" ^ (Path.pack resultpath) ^ "' exists, please delete (will not overwrite)")
|
|
465 |
else
|
|
466 |
(
|
|
467 |
(* serialize the formula 'fm' to a file *)
|
|
468 |
if satformat="cnf" then
|
|
469 |
prop_formula_to_dimacs_cnf_format fm false satpath
|
|
470 |
else if satformat="defcnf" then
|
|
471 |
prop_formula_to_dimacs_cnf_format fm true satpath
|
|
472 |
else if satformat="sat" then
|
|
473 |
prop_formula_to_dimacs_sat_format fm satpath
|
|
474 |
else
|
|
475 |
error ("invalid argument: satformat='" ^ satformat ^ "' (must be either 'cnf', 'defcnf', or 'sat')");
|
|
476 |
(* execute SAT solver *)
|
|
477 |
if (system command)<>0 then
|
|
478 |
(
|
|
479 |
(* error executing SAT solver *)
|
|
480 |
File.rm satpath;
|
|
481 |
File.rm resultpath;
|
|
482 |
error ("system command '" ^ command ^ "' failed (make sure a SAT solver is installed)")
|
|
483 |
)
|
|
484 |
else
|
|
485 |
(
|
|
486 |
(* read assignment from the result file *)
|
|
487 |
File.rm satpath;
|
|
488 |
let
|
|
489 |
(* 'a option -> 'a Library.option *)
|
|
490 |
fun option (SOME a) =
|
|
491 |
Some a
|
|
492 |
| option NONE =
|
|
493 |
None
|
|
494 |
(* string -> int list *)
|
|
495 |
fun string_to_int_list s =
|
14351
|
496 |
mapfilter (option o Int.fromString) (space_explode " " s)
|
14350
|
497 |
(* string -> string -> bool *)
|
|
498 |
fun is_substring s1 s2 =
|
|
499 |
let
|
|
500 |
val length1 = String.size s1
|
|
501 |
val length2 = String.size s2
|
|
502 |
in
|
|
503 |
if length2 < length1 then
|
|
504 |
false
|
|
505 |
else if s1 = String.substring (s2, 0, length1) then
|
|
506 |
true
|
|
507 |
else is_substring s1 (String.substring (s2, 1, length2-1))
|
|
508 |
end
|
|
509 |
(* string list -> int list option *)
|
|
510 |
fun extract_solution [] =
|
|
511 |
None
|
|
512 |
| extract_solution (line::lines) =
|
|
513 |
if is_substring success line then
|
|
514 |
(* the next line must be a list of integers *)
|
|
515 |
Some (string_to_int_list (hd lines))
|
|
516 |
else
|
|
517 |
extract_solution lines
|
|
518 |
val sat_result = File.read resultpath
|
|
519 |
in
|
|
520 |
File.rm resultpath;
|
|
521 |
extract_solution (split_lines sat_result)
|
|
522 |
end
|
|
523 |
)
|
|
524 |
);
|
|
525 |
|
|
526 |
|
|
527 |
(* ------------------------------------------------------------------------- *)
|
|
528 |
(* TREES *)
|
|
529 |
(* ------------------------------------------------------------------------- *)
|
|
530 |
|
|
531 |
(* ------------------------------------------------------------------------- *)
|
|
532 |
(* tree: implements an arbitrarily (but finitely) branching tree as a list *)
|
|
533 |
(* of (lists of ...) elements *)
|
|
534 |
(* ------------------------------------------------------------------------- *)
|
|
535 |
|
|
536 |
datatype 'a tree =
|
|
537 |
Leaf of 'a
|
|
538 |
| Node of ('a tree) list;
|
|
539 |
|
|
540 |
type prop_tree =
|
|
541 |
prop_formula list tree;
|
|
542 |
|
|
543 |
(* ('a -> 'b) -> 'a tree -> 'b tree *)
|
|
544 |
|
|
545 |
fun tree_map f tr =
|
|
546 |
case tr of
|
|
547 |
Leaf x => Leaf (f x)
|
|
548 |
| Node xs => Node (map (tree_map f) xs);
|
|
549 |
|
|
550 |
(* ('a * 'b -> 'a) -> 'a * ('b tree) -> 'a *)
|
|
551 |
|
|
552 |
fun tree_foldl f =
|
|
553 |
let
|
|
554 |
fun itl (e, Leaf x) = f(e,x)
|
|
555 |
| itl (e, Node xs) = foldl (tree_foldl f) (e,xs)
|
|
556 |
in
|
|
557 |
itl
|
|
558 |
end;
|
|
559 |
|
|
560 |
(* 'a tree * 'b tree -> ('a * 'b) tree *)
|
|
561 |
|
|
562 |
fun tree_pair (t1,t2) =
|
|
563 |
case t1 of
|
|
564 |
Leaf x =>
|
|
565 |
(case t2 of
|
|
566 |
Leaf y => Leaf (x,y)
|
|
567 |
| Node _ => raise REFUTE ("tree_pair", "trees are of different height (second tree is higher)"))
|
|
568 |
| Node xs =>
|
|
569 |
(case t2 of
|
|
570 |
(* '~~' will raise an exception if the number of branches in both trees is different at the current node *)
|
|
571 |
Node ys => Node (map tree_pair (xs ~~ ys))
|
|
572 |
| Leaf _ => raise REFUTE ("tree_pair", "trees are of different height (first tree is higher)"));
|
|
573 |
|
|
574 |
(* ------------------------------------------------------------------------- *)
|
|
575 |
(* prop_tree_to_true: returns a propositional formula that is true iff the *)
|
|
576 |
(* tree denotes the boolean value TRUE *)
|
|
577 |
(* ------------------------------------------------------------------------- *)
|
|
578 |
|
|
579 |
(* prop_tree -> prop_formula *)
|
|
580 |
|
|
581 |
(* a term of type 'bool' is represented as a 2-element leaf, where *)
|
|
582 |
(* the term is true iff the leaf's first element is true *)
|
|
583 |
|
|
584 |
fun prop_tree_to_true (Leaf [fm,_]) =
|
|
585 |
fm
|
|
586 |
| prop_tree_to_true _ =
|
|
587 |
raise REFUTE ("prop_tree_to_true", "tree is not a 2-element leaf");
|
|
588 |
|
|
589 |
(* ------------------------------------------------------------------------- *)
|
|
590 |
(* prop_tree_to_false: returns a propositional formula that is true iff the *)
|
|
591 |
(* tree denotes the boolean value FALSE *)
|
|
592 |
(* ------------------------------------------------------------------------- *)
|
|
593 |
|
|
594 |
(* prop_tree -> prop_formula *)
|
|
595 |
|
|
596 |
(* a term of type 'bool' is represented as a 2-element leaf, where *)
|
|
597 |
(* the term is false iff the leaf's second element is true *)
|
|
598 |
|
|
599 |
fun prop_tree_to_false (Leaf [_,fm]) =
|
|
600 |
fm
|
|
601 |
| prop_tree_to_false _ =
|
|
602 |
raise REFUTE ("prop_tree_to_false", "tree is not a 2-element leaf");
|
|
603 |
|
|
604 |
(* ------------------------------------------------------------------------- *)
|
|
605 |
(* restrict_to_single_element: returns a propositional formula which is true *)
|
|
606 |
(* iff the tree 'tr' describes a single element of its corresponding *)
|
|
607 |
(* type, i.e. iff at each leaf, one and only one formula is true *)
|
|
608 |
(* ------------------------------------------------------------------------- *)
|
|
609 |
|
|
610 |
(* prop_tree -> prop_formula *)
|
|
611 |
|
|
612 |
fun restrict_to_single_element tr =
|
|
613 |
let
|
|
614 |
(* prop_formula list -> prop_formula *)
|
|
615 |
fun allfalse [] = True
|
|
616 |
| allfalse (x::xs) = SAnd (SNot x, allfalse xs)
|
|
617 |
(* prop_formula list -> prop_formula *)
|
|
618 |
fun exactly1true [] = False
|
|
619 |
| exactly1true (x::xs) = SOr (SAnd (x, allfalse xs), SAnd (SNot x, exactly1true xs))
|
|
620 |
in
|
|
621 |
case tr of
|
|
622 |
Leaf [BoolVar _, Not (BoolVar _)] => True (* optimization for boolean variables *)
|
|
623 |
| Leaf xs => exactly1true xs
|
|
624 |
| Node trees => list_conjunction (map restrict_to_single_element trees)
|
|
625 |
end;
|
|
626 |
|
|
627 |
(* ------------------------------------------------------------------------- *)
|
|
628 |
(* HOL FORMULAS *)
|
|
629 |
(* ------------------------------------------------------------------------- *)
|
|
630 |
|
|
631 |
(* ------------------------------------------------------------------------- *)
|
|
632 |
(* absvar: form an abstraction over a schematic variable *)
|
|
633 |
(* ------------------------------------------------------------------------- *)
|
|
634 |
|
|
635 |
(* Term.indexname * Term.typ * Term.term -> Term.term *)
|
|
636 |
|
|
637 |
(* this function is similar to Term.absfree, but for schematic *)
|
|
638 |
(* variables (rather than free variables) *)
|
|
639 |
fun absvar ((x,i),T,body) =
|
|
640 |
Abs(x, T, abstract_over (Var((x,i),T), body));
|
|
641 |
|
|
642 |
(* ------------------------------------------------------------------------- *)
|
|
643 |
(* list_all_var: quantification over a list of schematic variables *)
|
|
644 |
(* ------------------------------------------------------------------------- *)
|
|
645 |
|
|
646 |
(* (Term.indexname * Term.typ) list * Term.term -> Term.term *)
|
|
647 |
|
|
648 |
(* this function is similar to Term.list_all_free, but for schematic *)
|
|
649 |
(* variables (rather than free variables) *)
|
|
650 |
fun list_all_var ([], t) =
|
|
651 |
t
|
|
652 |
| list_all_var ((idx,T)::vars, t) =
|
|
653 |
(all T) $ (absvar(idx, T, list_all_var(vars,t)));
|
|
654 |
|
|
655 |
(* ------------------------------------------------------------------------- *)
|
|
656 |
(* close_vars: close up a formula over all schematic variables by *)
|
|
657 |
(* quantification (note that the result term may still contain *)
|
|
658 |
(* (non-schematic) free variables) *)
|
|
659 |
(* ------------------------------------------------------------------------- *)
|
|
660 |
|
|
661 |
(* Term.term -> Term.term *)
|
|
662 |
|
|
663 |
(* this function is similar to Logic.close_form, but for schematic *)
|
|
664 |
(* variables (rather than free variables) *)
|
|
665 |
fun close_vars A =
|
|
666 |
list_all_var (sort_wrt (fst o fst) (map dest_Var (term_vars A)), A);
|
|
667 |
|
|
668 |
(* ------------------------------------------------------------------------- *)
|
|
669 |
(* make_universes: given a list 'xs' of "types" and a universe size 'size', *)
|
|
670 |
(* this function returns all possible partitions of the universe into *)
|
|
671 |
(* the "types" in 'xs' such that no "type" is empty. If 'size' is less *)
|
|
672 |
(* than 'length xs', the returned list of partitions is empty. *)
|
|
673 |
(* Otherwise, if the list 'xs' is empty, then the returned list of *)
|
|
674 |
(* partitions contains only the empty list, regardless of 'size'. *)
|
|
675 |
(* ------------------------------------------------------------------------- *)
|
|
676 |
|
|
677 |
(* 'a list -> int -> ('a * int) list list *)
|
|
678 |
|
|
679 |
fun make_universes xs size =
|
|
680 |
let
|
|
681 |
(* 'a list -> int -> int -> ('a * int) list list *)
|
|
682 |
fun make_partitions_loop (x::xs) 0 total =
|
|
683 |
map (fn us => ((x,0)::us)) (make_partitions xs total)
|
|
684 |
| make_partitions_loop (x::xs) first total =
|
|
685 |
(map (fn us => ((x,first)::us)) (make_partitions xs (total-first))) @ (make_partitions_loop (x::xs) (first-1) total)
|
|
686 |
| make_partitions_loop _ _ _ =
|
|
687 |
raise REFUTE ("make_universes::make_partitions_loop", "empty list")
|
|
688 |
and
|
|
689 |
(* 'a list -> int -> ('a * int) list list *)
|
|
690 |
make_partitions [x] size =
|
|
691 |
(* we must use all remaining elements on the type 'x', so there is only one partition *)
|
|
692 |
[[(x,size)]]
|
|
693 |
| make_partitions (x::xs) 0 =
|
|
694 |
(* there are no elements left in the universe, so there is only one partition *)
|
|
695 |
[map (fn t => (t,0)) (x::xs)]
|
|
696 |
| make_partitions (x::xs) size =
|
|
697 |
(* we assign either size, size-1, ..., 1 or 0 elements to 'x'; the remaining elements are partitioned recursively *)
|
|
698 |
make_partitions_loop (x::xs) size size
|
|
699 |
| make_partitions _ _ =
|
|
700 |
raise REFUTE ("make_universes::make_partitions", "empty list")
|
|
701 |
val len = length xs
|
|
702 |
in
|
|
703 |
if size<len then
|
|
704 |
(* the universe isn't big enough to make every type non-empty *)
|
|
705 |
[]
|
|
706 |
else if xs=[] then
|
|
707 |
(* no types: return one universe, regardless of the size *)
|
|
708 |
[[]]
|
|
709 |
else
|
|
710 |
(* partition into possibly empty types, then add 1 element to each type *)
|
|
711 |
map (fn us => map (fn (x,i) => (x,i+1)) us) (make_partitions xs (size-len))
|
|
712 |
end;
|
|
713 |
|
|
714 |
(* ------------------------------------------------------------------------- *)
|
|
715 |
(* sum: computes the sum of a list of integers; sum [] = 0 *)
|
|
716 |
(* ------------------------------------------------------------------------- *)
|
|
717 |
|
|
718 |
(* int list -> int *)
|
|
719 |
|
14351
|
720 |
fun sum xs = foldl op+ (0, xs);
|
14350
|
721 |
|
|
722 |
(* ------------------------------------------------------------------------- *)
|
|
723 |
(* product: computes the product of a list of integers; product [] = 1 *)
|
|
724 |
(* ------------------------------------------------------------------------- *)
|
|
725 |
|
|
726 |
(* int list -> int *)
|
|
727 |
|
14351
|
728 |
fun product xs = foldl op* (1, xs);
|
14350
|
729 |
|
|
730 |
(* ------------------------------------------------------------------------- *)
|
|
731 |
(* power: power(a,b) computes a^b, for a>=0, b>=0 *)
|
|
732 |
(* ------------------------------------------------------------------------- *)
|
|
733 |
|
|
734 |
(* int * int -> int *)
|
|
735 |
|
|
736 |
fun power (a,0) = 1
|
|
737 |
| power (a,1) = a
|
|
738 |
| power (a,b) = let val ab = power(a,b div 2) in ab * ab * power(a,b mod 2) end;
|
|
739 |
|
|
740 |
(* ------------------------------------------------------------------------- *)
|
|
741 |
(* size_of_type: returns the size of a type, where 'us' specifies the size *)
|
|
742 |
(* of each basic type (i.e. each type variable), and 'cdepth' specifies *)
|
|
743 |
(* the maximal constructor depth for inductive datatypes *)
|
|
744 |
(* ------------------------------------------------------------------------- *)
|
|
745 |
|
|
746 |
(* Term.typ -> (Term.typ * int) list -> theory -> int -> int *)
|
|
747 |
|
|
748 |
fun size_of_type T us thy cdepth =
|
|
749 |
let
|
|
750 |
(* Term.typ -> (Term.typ * int) -> int *)
|
|
751 |
fun lookup_size T [] =
|
|
752 |
raise REFUTE ("size_of_type", "no size specified for type variable '" ^ (Sign.string_of_typ (sign_of thy) T) ^ "'")
|
|
753 |
| lookup_size T ((typ,size)::pairs) =
|
|
754 |
if T=typ then size else lookup_size T pairs
|
|
755 |
in
|
|
756 |
case T of
|
|
757 |
Type ("prop", []) => 2
|
|
758 |
| Type ("bool", []) => 2
|
|
759 |
| Type ("Product_Type.unit", []) => 1
|
|
760 |
| Type ("+", [T1,T2]) => (size_of_type T1 us thy cdepth) + (size_of_type T2 us thy cdepth)
|
|
761 |
| Type ("*", [T1,T2]) => (size_of_type T1 us thy cdepth) * (size_of_type T2 us thy cdepth)
|
|
762 |
| Type ("fun", [T1,T2]) => power (size_of_type T2 us thy cdepth, size_of_type T1 us thy cdepth)
|
|
763 |
| Type ("set", [T1]) => size_of_type (Type ("fun", [T1, HOLogic.boolT])) us thy cdepth
|
|
764 |
| Type (s, Ts) =>
|
|
765 |
(case DatatypePackage.datatype_info thy s of
|
|
766 |
Some info => (* inductive datatype *)
|
|
767 |
if cdepth>0 then
|
|
768 |
let
|
|
769 |
val index = #index info
|
|
770 |
val descr = #descr info
|
|
771 |
val (_, dtyps, constrs) = the (assoc (descr, index))
|
|
772 |
val Typs = dtyps ~~ Ts
|
|
773 |
(* DatatypeAux.dtyp -> Term.typ *)
|
|
774 |
fun typ_of_dtyp (DatatypeAux.DtTFree a) =
|
|
775 |
the (assoc (Typs, DatatypeAux.DtTFree a))
|
|
776 |
| typ_of_dtyp (DatatypeAux.DtRec i) =
|
|
777 |
let
|
|
778 |
val (s, ds, _) = the (assoc (descr, i))
|
|
779 |
in
|
|
780 |
Type (s, map typ_of_dtyp ds)
|
|
781 |
end
|
|
782 |
| typ_of_dtyp (DatatypeAux.DtType (s, ds)) =
|
|
783 |
Type (s, map typ_of_dtyp ds)
|
|
784 |
in
|
|
785 |
sum (map (fn (_,ds) => product (map (fn d => size_of_type (typ_of_dtyp d) us thy (cdepth-1)) ds)) constrs)
|
|
786 |
end
|
|
787 |
else 0
|
|
788 |
| None => error ("size_of_type: type contains an unknown type constructor: '" ^ s ^ "'"))
|
|
789 |
| TFree _ => lookup_size T us
|
|
790 |
| TVar _ => lookup_size T us
|
|
791 |
end;
|
|
792 |
|
|
793 |
(* ------------------------------------------------------------------------- *)
|
|
794 |
(* type_to_prop_tree: creates a tree of boolean variables that denotes an *)
|
|
795 |
(* element of the type 'T'. The height and branching factor of the *)
|
|
796 |
(* tree depend on the size and "structure" of 'T'. *)
|
|
797 |
(* 'us' : a "universe" specifying the number of elements for each basic type *)
|
|
798 |
(* (i.e. each type variable) in 'T' *)
|
|
799 |
(* 'cdepth': maximum constructor depth to be used for inductive datatypes *)
|
|
800 |
(* 'idx': the next index to be used for a boolean variable *)
|
|
801 |
(* ------------------------------------------------------------------------- *)
|
|
802 |
|
|
803 |
(* Term.typ -> (Term.typ * int) list -> theory -> int -> int -> prop_tree * int *)
|
|
804 |
|
|
805 |
fun type_to_prop_tree T us thy cdepth idx =
|
|
806 |
let
|
|
807 |
(* int -> Term.typ -> int -> prop_tree list * int *)
|
|
808 |
fun type_to_prop_tree_list 1 T' idx' =
|
|
809 |
let val (tr, newidx) = type_to_prop_tree T' us thy cdepth idx' in
|
|
810 |
([tr], newidx)
|
|
811 |
end
|
|
812 |
| type_to_prop_tree_list n T' idx' =
|
|
813 |
let val (tr, newidx) = type_to_prop_tree T' us thy cdepth idx' in
|
|
814 |
let val (trees, lastidx) = type_to_prop_tree_list (n-1) T' newidx in
|
|
815 |
(tr::trees, lastidx)
|
|
816 |
end
|
|
817 |
end
|
|
818 |
in
|
|
819 |
case T of
|
|
820 |
Type ("prop", []) =>
|
|
821 |
(Leaf [BoolVar idx, Not (BoolVar idx)], idx+1)
|
|
822 |
| Type ("bool", []) =>
|
|
823 |
(Leaf [BoolVar idx, Not (BoolVar idx)], idx+1)
|
|
824 |
| Type ("Product_Type.unit", []) =>
|
|
825 |
(Leaf [True], idx)
|
|
826 |
| Type ("+", [T1,T2]) =>
|
|
827 |
let
|
|
828 |
val s1 = size_of_type T1 us thy cdepth
|
|
829 |
val s2 = size_of_type T2 us thy cdepth
|
|
830 |
val s = s1 + s2
|
|
831 |
in
|
|
832 |
if s1=0 orelse s2=0 then (* could use 'andalso' instead? *)
|
|
833 |
raise EMPTY_DATATYPE
|
|
834 |
else
|
|
835 |
error "sum types (+) not implemented yet (TODO)"
|
|
836 |
end
|
|
837 |
| Type ("*", [T1,T2]) =>
|
|
838 |
let
|
|
839 |
val s1 = size_of_type T1 us thy cdepth
|
|
840 |
val s2 = size_of_type T2 us thy cdepth
|
|
841 |
val s = s1 * s2
|
|
842 |
in
|
|
843 |
if s1=0 orelse s2=0 then
|
|
844 |
raise EMPTY_DATATYPE
|
|
845 |
else
|
|
846 |
error "product types (*) not implemented yet (TODO)"
|
|
847 |
end
|
|
848 |
| Type ("fun", [T1,T2]) =>
|
|
849 |
(* we create 'size_of_type T1' different copies of the tree for 'T2', *)
|
|
850 |
(* which are then combined into a single new tree *)
|
|
851 |
let
|
|
852 |
val s = size_of_type T1 us thy cdepth
|
|
853 |
in
|
|
854 |
if s=0 then
|
|
855 |
raise EMPTY_DATATYPE
|
|
856 |
else
|
|
857 |
let val (trees, newidx) = type_to_prop_tree_list s T2 idx in
|
|
858 |
(Node trees, newidx)
|
|
859 |
end
|
|
860 |
end
|
|
861 |
| Type ("set", [T1]) =>
|
|
862 |
type_to_prop_tree (Type ("fun", [T1, HOLogic.boolT])) us thy cdepth idx
|
|
863 |
| Type (s, _) =>
|
|
864 |
(case DatatypePackage.constrs_of thy s of
|
|
865 |
Some _ => (* inductive datatype *)
|
|
866 |
let
|
|
867 |
val s = size_of_type T us thy cdepth
|
|
868 |
in
|
|
869 |
if s=0 then
|
|
870 |
raise EMPTY_DATATYPE
|
|
871 |
else
|
|
872 |
(Leaf (map (fn i => BoolVar i) (idx upto (idx+s-1))), idx+s)
|
|
873 |
end
|
|
874 |
| None => error ("type_to_prop_tree: type contains an unknown type constructor: '" ^ s ^ "'"))
|
|
875 |
| TFree _ =>
|
|
876 |
let val s = size_of_type T us thy cdepth in
|
|
877 |
(Leaf (map (fn i => BoolVar i) (idx upto (idx+s-1))), idx+s)
|
|
878 |
end
|
|
879 |
| TVar _ =>
|
|
880 |
let val s = size_of_type T us thy cdepth in
|
|
881 |
(Leaf (map (fn i => BoolVar i) (idx upto (idx+s-1))), idx+s)
|
|
882 |
end
|
|
883 |
end;
|
|
884 |
|
|
885 |
(* ------------------------------------------------------------------------- *)
|
|
886 |
(* type_to_constants: creates a list of prop_trees with constants (True, *)
|
|
887 |
(* False) rather than boolean variables, one for every element in the *)
|
|
888 |
(* type 'T'; c.f. type_to_prop_tree *)
|
|
889 |
(* ------------------------------------------------------------------------- *)
|
|
890 |
|
|
891 |
(* Term.typ -> (Term.typ * int) list -> theory -> int -> prop_tree list *)
|
|
892 |
|
|
893 |
fun type_to_constants T us thy cdepth =
|
|
894 |
let
|
|
895 |
(* returns a list with all unit vectors of length n *)
|
|
896 |
(* int -> prop_tree list *)
|
|
897 |
fun unit_vectors n =
|
|
898 |
let
|
|
899 |
(* returns the k-th unit vector of length n *)
|
|
900 |
(* int * int -> prop_tree *)
|
|
901 |
fun unit_vector (k,n) =
|
|
902 |
Leaf ((replicate (k-1) False) @ (True :: (replicate (n-k) False)))
|
|
903 |
(* int -> prop_tree list -> prop_tree list *)
|
|
904 |
fun unit_vectors_acc k vs =
|
|
905 |
if k>n then [] else (unit_vector (k,n))::(unit_vectors_acc (k+1) vs)
|
|
906 |
in
|
|
907 |
unit_vectors_acc 1 []
|
|
908 |
end
|
|
909 |
(* concatenates 'x' with every list in 'xss', returning a new list of lists *)
|
|
910 |
(* 'a -> 'a list list -> 'a list list *)
|
|
911 |
fun cons_list x xss =
|
|
912 |
map (fn xs => x::xs) xss
|
|
913 |
(* returns a list of lists, each one consisting of n (possibly identical) elements from 'xs' *)
|
|
914 |
(* int -> 'a list -> 'a list list *)
|
|
915 |
fun pick_all 1 xs =
|
|
916 |
map (fn x => [x]) xs
|
|
917 |
| pick_all n xs =
|
|
918 |
let val rec_pick = pick_all (n-1) xs in
|
|
919 |
foldl (fn (acc,x) => (cons_list x rec_pick) @ acc) ([],xs)
|
|
920 |
end
|
|
921 |
in
|
|
922 |
case T of
|
|
923 |
Type ("prop", []) => unit_vectors 2
|
|
924 |
| Type ("bool", []) => unit_vectors 2
|
|
925 |
| Type ("Product_Type.unit", []) => unit_vectors 1
|
|
926 |
| Type ("+", [T1,T2]) =>
|
|
927 |
let
|
|
928 |
val s1 = size_of_type T1 us thy cdepth
|
|
929 |
val s2 = size_of_type T2 us thy cdepth
|
|
930 |
in
|
|
931 |
if s1=0 orelse s2=0 then (* could use 'andalso' instead? *)
|
|
932 |
raise EMPTY_DATATYPE
|
|
933 |
else
|
|
934 |
error "sum types (+) not implemented yet (TODO)"
|
|
935 |
end
|
|
936 |
| Type ("*", [T1,T2]) =>
|
|
937 |
let
|
|
938 |
val s1 = size_of_type T1 us thy cdepth
|
|
939 |
val s2 = size_of_type T2 us thy cdepth
|
|
940 |
in
|
|
941 |
if s1=0 orelse s2=0 then
|
|
942 |
raise EMPTY_DATATYPE
|
|
943 |
else
|
|
944 |
error "product types (*) not implemented yet (TODO)"
|
|
945 |
end
|
|
946 |
| Type ("fun", [T1,T2]) =>
|
|
947 |
let
|
|
948 |
val s = size_of_type T1 us thy cdepth
|
|
949 |
in
|
|
950 |
if s=0 then
|
|
951 |
raise EMPTY_DATATYPE
|
|
952 |
else
|
|
953 |
map (fn xs => Node xs) (pick_all s (type_to_constants T2 us thy cdepth))
|
|
954 |
end
|
|
955 |
| Type ("set", [T1]) => type_to_constants (Type ("fun", [T1, HOLogic.boolT])) us thy cdepth
|
|
956 |
| Type (s, _) =>
|
|
957 |
(case DatatypePackage.constrs_of thy s of
|
|
958 |
Some _ => (* inductive datatype *)
|
|
959 |
let
|
|
960 |
val s = size_of_type T us thy cdepth
|
|
961 |
in
|
|
962 |
if s=0 then
|
|
963 |
raise EMPTY_DATATYPE
|
|
964 |
else
|
|
965 |
unit_vectors s
|
|
966 |
end
|
|
967 |
| None => error ("type_to_constants: type contains an unknown type constructor: '" ^ s ^ "'"))
|
|
968 |
| TFree _ => unit_vectors (size_of_type T us thy cdepth)
|
|
969 |
| TVar _ => unit_vectors (size_of_type T us thy cdepth)
|
|
970 |
end;
|
|
971 |
|
|
972 |
(* ------------------------------------------------------------------------- *)
|
|
973 |
(* prop_tree_equal: returns a propositional formula that is true iff 'tr1' *)
|
|
974 |
(* and 'tr2' both denote the same element *)
|
|
975 |
(* ------------------------------------------------------------------------- *)
|
|
976 |
|
|
977 |
(* prop_tree * prop_tree -> prop_formula *)
|
|
978 |
|
|
979 |
fun prop_tree_equal (tr1,tr2) =
|
|
980 |
case tr1 of
|
|
981 |
Leaf x =>
|
|
982 |
(case tr2 of
|
|
983 |
Leaf y => prop_formula_dot_product (x,y)
|
|
984 |
| _ => raise REFUTE ("prop_tree_equal", "second tree is higher"))
|
|
985 |
| Node xs =>
|
|
986 |
(case tr2 of
|
|
987 |
Leaf _ => raise REFUTE ("prop_tree_equal", "first tree is higher")
|
|
988 |
(* extensionality: two functions are equal iff they are equal for every element *)
|
|
989 |
| Node ys => list_conjunction (map prop_tree_equal (xs ~~ ys)));
|
|
990 |
|
|
991 |
(* ------------------------------------------------------------------------- *)
|
|
992 |
(* prop_tree_apply: returns a tree that denotes the element obtained by *)
|
|
993 |
(* applying the function which is denoted by the tree 't1' to the *)
|
|
994 |
(* element which is denoted by the tree 't2' *)
|
|
995 |
(* ------------------------------------------------------------------------- *)
|
|
996 |
|
|
997 |
(* prop_tree * prop_tree -> prop_tree *)
|
|
998 |
|
|
999 |
fun prop_tree_apply (tr1,tr2) =
|
|
1000 |
let
|
|
1001 |
(* prop_tree * prop_tree -> prop_tree *)
|
|
1002 |
fun prop_tree_disjunction (tr1,tr2) =
|
|
1003 |
tree_map (fn (xs,ys) => map (fn (x,y) => SOr(x,y)) (xs ~~ ys)) (tree_pair (tr1,tr2))
|
|
1004 |
(* prop_formula * prop_tree -> prop_tree *)
|
|
1005 |
fun prop_formula_times_prop_tree (fm,tr) =
|
|
1006 |
tree_map (map (fn x => SAnd (fm,x))) tr
|
|
1007 |
(* prop_formula list * prop_tree list -> prop_tree *)
|
|
1008 |
fun prop_formula_list_dot_product_prop_tree_list ([fm],[tr]) =
|
|
1009 |
prop_formula_times_prop_tree (fm,tr)
|
|
1010 |
| prop_formula_list_dot_product_prop_tree_list (fm::fms,tr::trees) =
|
|
1011 |
prop_tree_disjunction (prop_formula_times_prop_tree (fm,tr), prop_formula_list_dot_product_prop_tree_list (fms,trees))
|
|
1012 |
| prop_formula_list_dot_product_prop_tree_list (_,_) =
|
|
1013 |
raise REFUTE ("prop_tree_apply::prop_formula_list_dot_product_prop_tree_list", "empty list")
|
|
1014 |
(* concatenates 'x' with every list in 'xss', returning a new list of lists *)
|
|
1015 |
(* 'a -> 'a list list -> 'a list list *)
|
|
1016 |
fun cons_list x xss =
|
|
1017 |
map (fn xs => x::xs) xss
|
|
1018 |
(* returns a list of lists, each one consisting of one element from each element of 'xss' *)
|
|
1019 |
(* 'a list list -> 'a list list *)
|
|
1020 |
fun pick_all [xs] =
|
|
1021 |
map (fn x => [x]) xs
|
|
1022 |
| pick_all (xs::xss) =
|
|
1023 |
let val rec_pick = pick_all xss in
|
|
1024 |
foldl (fn (acc,x) => (cons_list x rec_pick) @ acc) ([],xs)
|
|
1025 |
end
|
|
1026 |
| pick_all _ =
|
|
1027 |
raise REFUTE ("prop_tree_apply::pick_all", "empty list")
|
|
1028 |
(* prop_tree -> prop_formula list *)
|
|
1029 |
fun prop_tree_to_prop_formula_list (Leaf xs) =
|
|
1030 |
xs
|
|
1031 |
| prop_tree_to_prop_formula_list (Node trees) =
|
|
1032 |
map list_conjunction (pick_all (map prop_tree_to_prop_formula_list trees))
|
|
1033 |
in
|
|
1034 |
case tr1 of
|
|
1035 |
Leaf _ =>
|
|
1036 |
raise REFUTE ("prop_tree_apply", "first tree is a leaf")
|
|
1037 |
| Node xs =>
|
|
1038 |
prop_formula_list_dot_product_prop_tree_list (prop_tree_to_prop_formula_list tr2, xs)
|
|
1039 |
end
|
|
1040 |
|
|
1041 |
(* ------------------------------------------------------------------------- *)
|
|
1042 |
(* term_to_prop_tree: translates a HOL term 't' into a tree of propositional *)
|
|
1043 |
(* formulas; 'us' specifies the number of elements for each type *)
|
|
1044 |
(* variable in 't'; 'cdepth' specifies the maximal constructor depth *)
|
|
1045 |
(* for inductive datatypes. Also returns the lowest index that was not *)
|
|
1046 |
(* used for a boolean variable, and a substitution of terms (free/ *)
|
|
1047 |
(* schematic variables) by prop_trees. *)
|
|
1048 |
(* ------------------------------------------------------------------------- *)
|
|
1049 |
|
|
1050 |
(* Term.term -> (Term.typ * int) list -> theory -> int -> prop_tree * (int * (Term.term * prop_tree) list) *)
|
|
1051 |
|
|
1052 |
fun term_to_prop_tree t us thy cdepth =
|
|
1053 |
let
|
|
1054 |
(* Term.term -> int * (Term.term * prop_tree) list -> prop_tree * (int * (Term.term * prop_tree) list) *)
|
|
1055 |
fun variable_to_prop_tree_subst t' (idx,subs) =
|
|
1056 |
case assoc (subs,t') of
|
|
1057 |
Some tr =>
|
|
1058 |
(* return the previously associated tree; the substitution remains unchanged *)
|
|
1059 |
(tr, (idx,subs))
|
|
1060 |
| None =>
|
|
1061 |
(* generate a new tree; update the index; extend the substitution *)
|
|
1062 |
let
|
|
1063 |
val T = case t' of
|
|
1064 |
Free (_,T) => T
|
|
1065 |
| Var (_,T) => T
|
|
1066 |
| _ => raise REFUTE ("variable_to_prop_tree_subst", "term is not a (free or schematic) variable")
|
|
1067 |
val (tr,newidx) = type_to_prop_tree T us thy cdepth idx
|
|
1068 |
in
|
|
1069 |
(tr, (newidx, (t',tr)::subs))
|
|
1070 |
end
|
|
1071 |
(* Term.term -> int * (Term.term * prop_tree) list -> prop_tree list -> prop_tree * (int * (Term.term * prop_tree) list) *)
|
|
1072 |
fun term_to_prop_tree_subst t' (idx,subs) bsubs =
|
|
1073 |
case t' of
|
|
1074 |
(* meta-logical constants *)
|
|
1075 |
Const ("Goal", _) $ t1 =>
|
|
1076 |
term_to_prop_tree_subst t1 (idx,subs) bsubs
|
|
1077 |
| Const ("all", _) $ t1 =>
|
|
1078 |
let
|
|
1079 |
val (tree1,(i1,s1)) = term_to_prop_tree_subst t1 (idx,subs) bsubs
|
|
1080 |
in
|
|
1081 |
case tree1 of
|
|
1082 |
Node xs =>
|
|
1083 |
let
|
|
1084 |
val fmTrue = list_conjunction (map prop_tree_to_true xs)
|
|
1085 |
val fmFalse = list_disjunction (map prop_tree_to_false xs)
|
|
1086 |
in
|
|
1087 |
(Leaf [fmTrue, fmFalse], (i1,s1))
|
|
1088 |
end
|
|
1089 |
| _ =>
|
|
1090 |
raise REFUTE ("term_to_prop_tree_subst", "'all' is not followed by a function")
|
|
1091 |
end
|
|
1092 |
| Const ("==", _) $ t1 $ t2 =>
|
|
1093 |
let
|
|
1094 |
val (tree1,(i1,s1)) = term_to_prop_tree_subst t1 (idx,subs) bsubs
|
|
1095 |
val (tree2,(i2,s2)) = term_to_prop_tree_subst t2 (i1,s1) bsubs
|
|
1096 |
val fmTrue = prop_tree_equal (tree1,tree2)
|
|
1097 |
val fmFalse = SNot fmTrue
|
|
1098 |
in
|
|
1099 |
(Leaf [fmTrue, fmFalse], (i2,s2))
|
|
1100 |
end
|
|
1101 |
| Const ("==>", _) $ t1 $ t2 =>
|
|
1102 |
let
|
|
1103 |
val (tree1,(i1,s1)) = term_to_prop_tree_subst t1 (idx,subs) bsubs
|
|
1104 |
val (tree2,(i2,s2)) = term_to_prop_tree_subst t2 (i1,s1) bsubs
|
|
1105 |
val fmTrue = SOr (prop_tree_to_false tree1, prop_tree_to_true tree2)
|
|
1106 |
val fmFalse = SAnd (prop_tree_to_true tree1, prop_tree_to_false tree2)
|
|
1107 |
in
|
|
1108 |
(Leaf [fmTrue, fmFalse], (i2,s2))
|
|
1109 |
end
|
|
1110 |
(* HOL constants *)
|
|
1111 |
| Const ("Trueprop", _) $ t1 =>
|
|
1112 |
term_to_prop_tree_subst t1 (idx,subs) bsubs
|
|
1113 |
| Const ("Not", _) $ t1 =>
|
|
1114 |
let
|
|
1115 |
val (tree1,(i1,s1)) = term_to_prop_tree_subst t1 (idx,subs) bsubs
|
|
1116 |
val fmTrue = prop_tree_to_false tree1
|
|
1117 |
val fmFalse = prop_tree_to_true tree1
|
|
1118 |
in
|
|
1119 |
(Leaf [fmTrue, fmFalse], (i1,s1))
|
|
1120 |
end
|
|
1121 |
| Const ("True", _) =>
|
|
1122 |
(Leaf [True, False], (idx,subs))
|
|
1123 |
| Const ("False", _) =>
|
|
1124 |
(Leaf [False, True], (idx,subs))
|
|
1125 |
| Const ("All", _) $ t1 =>
|
|
1126 |
let
|
|
1127 |
val (tree1,(i1,s1)) = term_to_prop_tree_subst t1 (idx,subs) bsubs
|
|
1128 |
in
|
|
1129 |
case tree1 of
|
|
1130 |
Node xs =>
|
|
1131 |
let
|
|
1132 |
val fmTrue = list_conjunction (map prop_tree_to_true xs)
|
|
1133 |
val fmFalse = list_disjunction (map prop_tree_to_false xs)
|
|
1134 |
in
|
|
1135 |
(Leaf [fmTrue, fmFalse], (i1,s1))
|
|
1136 |
end
|
|
1137 |
| _ =>
|
|
1138 |
raise REFUTE ("term_to_prop_tree_subst", "'All' is not followed by a function")
|
|
1139 |
end
|
|
1140 |
| Const ("Ex", _) $ t1 =>
|
|
1141 |
let
|
|
1142 |
val (tree1,(i1,s1)) = term_to_prop_tree_subst t1 (idx,subs) bsubs
|
|
1143 |
in
|
|
1144 |
case tree1 of
|
|
1145 |
Node xs =>
|
|
1146 |
let
|
|
1147 |
val fmTrue = list_disjunction (map prop_tree_to_true xs)
|
|
1148 |
val fmFalse = list_conjunction (map prop_tree_to_false xs)
|
|
1149 |
in
|
|
1150 |
(Leaf [fmTrue, fmFalse], (i1,s1))
|
|
1151 |
end
|
|
1152 |
| _ =>
|
|
1153 |
raise REFUTE ("term_to_prop_tree_subst", "'Ex' is not followed by a function")
|
|
1154 |
end
|
|
1155 |
| Const ("Ex1", Type ("fun", [Type ("fun", [T, Type ("bool",[])]), Type ("bool",[])])) $ t1 =>
|
|
1156 |
(* 'Ex1 t1' is equivalent to 'Ex Abs(x,T,t1' x & All Abs(y,T,t1'' y --> x=y))' *)
|
|
1157 |
let
|
|
1158 |
val t1' = Term.incr_bv (1, 0, t1)
|
|
1159 |
val t1'' = Term.incr_bv (2, 0, t1)
|
|
1160 |
val t_equal = (HOLogic.eq_const T) $ (Bound 1) $ (Bound 0)
|
|
1161 |
val t_unique = (HOLogic.all_const T) $ Abs("y",T,HOLogic.mk_imp (t1'' $ (Bound 0),t_equal))
|
|
1162 |
val t_ex1 = (HOLogic.exists_const T) $ Abs("x",T,HOLogic.mk_conj (t1' $ (Bound 0),t_unique))
|
|
1163 |
in
|
|
1164 |
term_to_prop_tree_subst t_ex1 (idx,subs) bsubs
|
|
1165 |
end
|
|
1166 |
| Const ("op =", _) $ t1 $ t2 =>
|
|
1167 |
let
|
|
1168 |
val (tree1,(i1,s1)) = term_to_prop_tree_subst t1 (idx,subs) bsubs
|
|
1169 |
val (tree2,(i2,s2)) = term_to_prop_tree_subst t2 (i1,s1) bsubs
|
|
1170 |
val fmTrue = prop_tree_equal (tree1,tree2)
|
|
1171 |
val fmFalse = SNot fmTrue
|
|
1172 |
in
|
|
1173 |
(Leaf [fmTrue, fmFalse], (i2,s2))
|
|
1174 |
end
|
|
1175 |
| Const ("op &", _) $ t1 $ t2 =>
|
|
1176 |
let
|
|
1177 |
val (tree1,(i1,s1)) = term_to_prop_tree_subst t1 (idx,subs) bsubs
|
|
1178 |
val (tree2,(i2,s2)) = term_to_prop_tree_subst t2 (i1,s1) bsubs
|
|
1179 |
val fmTrue = SAnd (prop_tree_to_true tree1, prop_tree_to_true tree2)
|
|
1180 |
val fmFalse = SOr (prop_tree_to_false tree1, prop_tree_to_false tree2)
|
|
1181 |
in
|
|
1182 |
(Leaf [fmTrue, fmFalse], (i2,s2))
|
|
1183 |
end
|
|
1184 |
| Const ("op |", _) $ t1 $ t2 =>
|
|
1185 |
let
|
|
1186 |
val (tree1,(i1,s1)) = term_to_prop_tree_subst t1 (idx,subs) bsubs
|
|
1187 |
val (tree2,(i2,s2)) = term_to_prop_tree_subst t2 (i1,s1) bsubs
|
|
1188 |
val fmTrue = SOr (prop_tree_to_true tree1, prop_tree_to_true tree2)
|
|
1189 |
val fmFalse = SAnd (prop_tree_to_false tree1, prop_tree_to_false tree2)
|
|
1190 |
in
|
|
1191 |
(Leaf [fmTrue, fmFalse], (i2,s2))
|
|
1192 |
end
|
|
1193 |
| Const ("op -->", _) $ t1 $ t2 =>
|
|
1194 |
let
|
|
1195 |
val (tree1,(i1,s1)) = term_to_prop_tree_subst t1 (idx,subs) bsubs
|
|
1196 |
val (tree2,(i2,s2)) = term_to_prop_tree_subst t2 (i1,s1) bsubs
|
|
1197 |
val fmTrue = SOr (prop_tree_to_false tree1, prop_tree_to_true tree2)
|
|
1198 |
val fmFalse = SAnd (prop_tree_to_true tree1, prop_tree_to_false tree2)
|
|
1199 |
in
|
|
1200 |
(Leaf [fmTrue, fmFalse], (i2,s2))
|
|
1201 |
end
|
|
1202 |
(* set constants *)
|
|
1203 |
| Const ("Collect", _) $ t1 =>
|
|
1204 |
term_to_prop_tree_subst t1 (idx,subs) bsubs
|
|
1205 |
| Const ("op :", _) $ t1 $ t2 =>
|
|
1206 |
term_to_prop_tree_subst (t2 $ t1) (idx,subs) bsubs
|
|
1207 |
(* datatype constants *)
|
|
1208 |
| Const ("Product_Type.Unity", _) =>
|
|
1209 |
(Leaf [True], (idx,subs))
|
|
1210 |
(* unknown constants *)
|
|
1211 |
| Const (c, _) =>
|
|
1212 |
error ("term contains an unknown constant: '" ^ c ^ "'")
|
|
1213 |
(* abstractions *)
|
|
1214 |
| Abs (_,T,body) =>
|
|
1215 |
let
|
|
1216 |
val constants = type_to_constants T us thy cdepth
|
|
1217 |
val (trees, substs) = split_list (map (fn c => term_to_prop_tree_subst body (idx,subs) (c::bsubs)) constants)
|
|
1218 |
in
|
|
1219 |
(* the substitutions in 'substs' are all identical *)
|
|
1220 |
(Node trees, hd substs)
|
|
1221 |
end
|
|
1222 |
(* (free/schematic) variables *)
|
|
1223 |
| Free _ =>
|
|
1224 |
variable_to_prop_tree_subst t' (idx,subs)
|
|
1225 |
| Var _ =>
|
|
1226 |
variable_to_prop_tree_subst t' (idx,subs)
|
|
1227 |
(* bound variables *)
|
|
1228 |
| Bound i =>
|
|
1229 |
if (length bsubs) <= i then
|
|
1230 |
raise REFUTE ("term_to_prop_tree_subst", "term contains a loose bound variable (with index " ^ (string_of_int i) ^ ")")
|
|
1231 |
else
|
|
1232 |
(nth_elem (i,bsubs), (idx,subs))
|
|
1233 |
(* application *)
|
|
1234 |
| t1 $ t2 =>
|
|
1235 |
let
|
|
1236 |
val (tree1,(i1,s1)) = term_to_prop_tree_subst t1 (idx,subs) bsubs
|
|
1237 |
val (tree2,(i2,s2)) = term_to_prop_tree_subst t2 (i1,s1) bsubs
|
|
1238 |
in
|
|
1239 |
(prop_tree_apply (tree1,tree2), (i2,s2))
|
|
1240 |
end
|
|
1241 |
in
|
|
1242 |
term_to_prop_tree_subst t (1,[]) []
|
|
1243 |
end;
|
|
1244 |
|
|
1245 |
(* ------------------------------------------------------------------------- *)
|
|
1246 |
(* term_to_prop_formula: translates a HOL formula 't' into a propositional *)
|
|
1247 |
(* formula that is satisfiable if and only if 't' has a model of "size" *)
|
|
1248 |
(* 'us' (where 'us' specifies the number of elements for each free type *)
|
|
1249 |
(* variable in 't') and maximal constructor depth 'cdepth'. *)
|
|
1250 |
(* ------------------------------------------------------------------------- *)
|
|
1251 |
|
|
1252 |
(* TODO: shouldn't 'us' also specify the number of elements for schematic type variables? (if so, modify the comment above) *)
|
|
1253 |
|
|
1254 |
(* Term.term -> (Term.typ * int) list -> theory -> int -> prop_formula * (int * (Term.term * prop_tree) list) *)
|
|
1255 |
|
|
1256 |
fun term_to_prop_formula t us thy cdepth =
|
|
1257 |
let
|
|
1258 |
val (tr, (idx,subs)) = term_to_prop_tree t us thy cdepth
|
|
1259 |
val fm = prop_tree_to_true tr
|
|
1260 |
in
|
|
1261 |
if subs=[] then
|
|
1262 |
(fm, (idx,subs))
|
|
1263 |
else
|
|
1264 |
(* make sure every tree that is substituted for a term describes a single element *)
|
|
1265 |
(SAnd (list_conjunction (map (fn (_,tr) => restrict_to_single_element tr) subs), fm), (idx,subs))
|
|
1266 |
end;
|
|
1267 |
|
|
1268 |
|
|
1269 |
(* ------------------------------------------------------------------------- *)
|
|
1270 |
(* INTERFACE, PART 2: FINDING A MODEL *)
|
|
1271 |
(* ------------------------------------------------------------------------- *)
|
|
1272 |
|
|
1273 |
(* ------------------------------------------------------------------------- *)
|
|
1274 |
(* string_of_universe: prints a universe, i.e. an assignment of sizes for *)
|
|
1275 |
(* types *)
|
|
1276 |
(* thy: the current theory *)
|
|
1277 |
(* us : a list containing types together with their size *)
|
|
1278 |
(* ------------------------------------------------------------------------- *)
|
|
1279 |
|
|
1280 |
(* theory -> (Term.typ * int) list -> string *)
|
|
1281 |
|
|
1282 |
fun string_of_universe thy [] =
|
|
1283 |
"empty universe (no type variables in term)"
|
|
1284 |
| string_of_universe thy us =
|
|
1285 |
space_implode ", " (map (fn (T,i) => (Sign.string_of_typ (sign_of thy) T) ^ ": " ^ (string_of_int i)) us);
|
|
1286 |
|
|
1287 |
(* ------------------------------------------------------------------------- *)
|
|
1288 |
(* string_of_model: prints a model, given by a substitution 'subs' of trees *)
|
|
1289 |
(* of propositional variables and an assignment 'ass' of truth values *)
|
|
1290 |
(* for these variables. *)
|
|
1291 |
(* thy : the current theory *)
|
|
1292 |
(* us : universe, specifies the "size" of each type (i.e. type variable) *)
|
|
1293 |
(* cdepth: maximal constructor depth for inductive datatypes *)
|
|
1294 |
(* subs : substitution of trees of propositional formulas (for variables) *)
|
|
1295 |
(* ass : assignment of truth values for boolean variables; see function *)
|
|
1296 |
(* 'truth_value' below for its meaning *)
|
|
1297 |
(* ------------------------------------------------------------------------- *)
|
|
1298 |
|
|
1299 |
(* theory -> (Term.typ * int) list -> int -> (Term.term * prop_formula tree) list -> int list -> string *)
|
|
1300 |
|
|
1301 |
fun string_of_model thy us cdepth [] ass =
|
|
1302 |
"empty interpretation (no free variables in term)"
|
|
1303 |
| string_of_model thy us cdepth subs ass =
|
|
1304 |
let
|
|
1305 |
(* Sign.sg *)
|
|
1306 |
val sg = sign_of thy
|
|
1307 |
(* int -> bool *)
|
|
1308 |
fun truth_value i =
|
|
1309 |
if i mem ass then true
|
|
1310 |
else if ~i mem ass then false
|
|
1311 |
else error ("SAT solver assignment does not specify a value for variable " ^ (string_of_int i))
|
|
1312 |
(* string -> string *)
|
|
1313 |
fun strip_leading_quote str =
|
|
1314 |
if nth_elem_string(0,str)="'" then
|
|
1315 |
String.substring (str, 1, size str - 1)
|
|
1316 |
else
|
|
1317 |
str;
|
|
1318 |
(* prop_formula list -> int *)
|
|
1319 |
fun true_index xs =
|
|
1320 |
(* returns the (0-based) index of the first true formula in xs *)
|
|
1321 |
let fun true_index_acc [] _ =
|
|
1322 |
raise REFUTE ("string_of_model::true_index", "no variable was set to true")
|
|
1323 |
| true_index_acc (x::xs) n =
|
|
1324 |
case x of
|
|
1325 |
BoolVar i =>
|
|
1326 |
if truth_value i then n else true_index_acc xs (n+1)
|
|
1327 |
| True =>
|
|
1328 |
n
|
|
1329 |
| False =>
|
|
1330 |
true_index_acc xs (n+1)
|
|
1331 |
| _ =>
|
|
1332 |
raise REFUTE ("string_of_model::true_index", "formula is not a boolean variable/true/false")
|
|
1333 |
in
|
|
1334 |
true_index_acc xs 0
|
|
1335 |
end
|
|
1336 |
(* Term.typ -> int -> prop_tree -> string *)
|
|
1337 |
(* prop *)
|
|
1338 |
fun string_of_prop_tree (Type ("prop",[])) cdepth (Leaf [BoolVar i, Not (BoolVar _)]) =
|
|
1339 |
if truth_value i then "true" else "false"
|
|
1340 |
| string_of_prop_tree (Type ("prop",[])) cdepth (Leaf [True, False]) =
|
|
1341 |
"true"
|
|
1342 |
| string_of_prop_tree (Type ("prop",[])) cdepth (Leaf [False, True]) =
|
|
1343 |
"false"
|
|
1344 |
(* bool *)
|
|
1345 |
| string_of_prop_tree (Type ("bool",[])) cdepth (Leaf [BoolVar i, Not (BoolVar _)]) =
|
|
1346 |
if truth_value i then "true" else "false"
|
|
1347 |
| string_of_prop_tree (Type ("bool",[])) cdepth (Leaf [True, False]) =
|
|
1348 |
"true"
|
|
1349 |
| string_of_prop_tree (Type ("bool",[])) cdepth (Leaf [False, True]) =
|
|
1350 |
"false"
|
|
1351 |
(* unit *)
|
|
1352 |
| string_of_prop_tree (Type ("Product_Type.unit",[])) cdepth (Leaf [True]) =
|
|
1353 |
"()"
|
|
1354 |
| string_of_prop_tree (Type (s,Ts)) cdepth (Leaf xs) =
|
|
1355 |
(case DatatypePackage.datatype_info thy s of
|
|
1356 |
Some info => (* inductive datatype *)
|
|
1357 |
let
|
|
1358 |
val index = #index info
|
|
1359 |
val descr = #descr info
|
|
1360 |
val (_, dtyps, constrs) = the (assoc (descr, index))
|
|
1361 |
val Typs = dtyps ~~ Ts
|
|
1362 |
(* string -> string *)
|
|
1363 |
fun unqualify s =
|
|
1364 |
implode (snd (take_suffix (fn c => c <> ".") (explode s)))
|
|
1365 |
(* DatatypeAux.dtyp -> Term.typ *)
|
|
1366 |
fun typ_of_dtyp (DatatypeAux.DtTFree a) =
|
|
1367 |
the (assoc (Typs, DatatypeAux.DtTFree a))
|
|
1368 |
| typ_of_dtyp (DatatypeAux.DtRec i) =
|
|
1369 |
let
|
|
1370 |
val (s, ds, _) = the (assoc (descr, i))
|
|
1371 |
in
|
|
1372 |
Type (s, map typ_of_dtyp ds)
|
|
1373 |
end
|
|
1374 |
| typ_of_dtyp (DatatypeAux.DtType (s, ds)) =
|
|
1375 |
Type (s, map typ_of_dtyp ds)
|
|
1376 |
(* DatatypeAux.dtyp list -> int -> string *)
|
|
1377 |
fun string_of_inductive_type_cargs [] n =
|
|
1378 |
if n<>0 then
|
|
1379 |
raise REFUTE ("string_of_model", "internal error computing the element index for an inductive type")
|
|
1380 |
else
|
|
1381 |
""
|
|
1382 |
| string_of_inductive_type_cargs (d::ds) n =
|
|
1383 |
let
|
|
1384 |
val size_ds = product (map (fn d => size_of_type (typ_of_dtyp d) us thy (cdepth-1)) ds)
|
|
1385 |
in
|
|
1386 |
" " ^ (string_of_prop_tree (typ_of_dtyp d) (cdepth-1) (nth_elem (n div size_ds, type_to_constants (typ_of_dtyp d) us thy (cdepth-1)))) ^ (string_of_inductive_type_cargs ds (n mod size_ds))
|
|
1387 |
end
|
|
1388 |
(* (string * DatatypeAux.dtyp list) list -> int -> string *)
|
|
1389 |
fun string_of_inductive_type_constrs [] n =
|
|
1390 |
raise REFUTE ("string_of_model", "inductive type has fewer elements than needed")
|
|
1391 |
| string_of_inductive_type_constrs ((s,ds)::cs) n =
|
|
1392 |
let
|
|
1393 |
val size = product (map (fn d => size_of_type (typ_of_dtyp d) us thy (cdepth-1)) ds)
|
|
1394 |
in
|
|
1395 |
if n < size then
|
|
1396 |
(unqualify s) ^ (string_of_inductive_type_cargs ds n)
|
|
1397 |
else
|
|
1398 |
string_of_inductive_type_constrs cs (n - size)
|
|
1399 |
end
|
|
1400 |
in
|
|
1401 |
string_of_inductive_type_constrs constrs (true_index xs)
|
|
1402 |
end
|
|
1403 |
| None =>
|
|
1404 |
raise REFUTE ("string_of_model", "type contains an unknown type constructor: '" ^ s ^ "'"))
|
|
1405 |
(* type variable *)
|
|
1406 |
| string_of_prop_tree (TFree (s,_)) cdepth (Leaf xs) =
|
|
1407 |
(strip_leading_quote s) ^ (string_of_int (true_index xs))
|
|
1408 |
| string_of_prop_tree (TVar ((s,_),_)) cdepth (Leaf xs) =
|
|
1409 |
(strip_leading_quote s) ^ (string_of_int (true_index xs))
|
|
1410 |
(* function or set type *)
|
|
1411 |
| string_of_prop_tree T cdepth (Node xs) =
|
|
1412 |
case T of
|
|
1413 |
Type ("fun", [T1,T2]) =>
|
|
1414 |
let
|
|
1415 |
val strings = foldl (fn (ss,(c,x)) => ss @ [(string_of_prop_tree T1 cdepth c) ^ "\\<mapsto>" ^ (string_of_prop_tree T2 cdepth x)]) ([], (type_to_constants T1 us thy cdepth) ~~ xs)
|
|
1416 |
in
|
|
1417 |
"(" ^ (space_implode ", " strings) ^ ")"
|
|
1418 |
end
|
|
1419 |
| Type ("set", [T1]) =>
|
|
1420 |
let
|
|
1421 |
val strings = foldl (fn (ss,(c,x)) => if (string_of_prop_tree (Type ("bool",[])) cdepth x)="true" then ss @ [string_of_prop_tree T1 cdepth c] else ss) ([], (type_to_constants T1 us thy cdepth) ~~ xs)
|
|
1422 |
in
|
|
1423 |
"{" ^ (space_implode ", " strings) ^ "}"
|
|
1424 |
end
|
|
1425 |
| _ => raise REFUTE ("string_of_model::string_of_prop_tree", "not a function/set type")
|
|
1426 |
(* Term.term * prop_formula tree -> string *)
|
|
1427 |
fun string_of_term_assignment (t,tr) =
|
|
1428 |
let
|
|
1429 |
val T = case t of
|
|
1430 |
Free (_,T) => T
|
|
1431 |
| Var (_,T) => T
|
|
1432 |
| _ => raise REFUTE ("string_of_model::string_of_term_assignment", "term is not a (free or schematic) variable")
|
|
1433 |
in
|
|
1434 |
(Sign.string_of_term sg t) ^ " = " ^ (string_of_prop_tree T cdepth tr)
|
|
1435 |
end
|
|
1436 |
in
|
|
1437 |
space_implode "\n" (map string_of_term_assignment subs)
|
|
1438 |
end;
|
|
1439 |
|
|
1440 |
(* ------------------------------------------------------------------------- *)
|
|
1441 |
(* find_model: repeatedly calls 'prop_formula_sat_solver' with appropriate *)
|
|
1442 |
(* parameters, and displays the results to the user *)
|
|
1443 |
(* params : list of '(name, value)' pairs used to override default *)
|
|
1444 |
(* parameters *)
|
|
1445 |
(* *)
|
|
1446 |
(* This is a brief description of the algorithm implemented: *)
|
|
1447 |
(* *)
|
|
1448 |
(* 1. Let k = max ('minsize',1). *)
|
|
1449 |
(* 2. Let the universe have k elements. Find all possible partitions of *)
|
|
1450 |
(* these elements into the basic types occuring in 't' such that no basic *)
|
|
1451 |
(* type is empty. *)
|
|
1452 |
(* 3. Translate 't' into a propositional formula p s.t. 't' has a model wrt. *)
|
|
1453 |
(* the partition chosen in step (2.) if (actually, if and only if) p is *)
|
|
1454 |
(* satisfiable. To do this, replace quantification by conjunction/ *)
|
|
1455 |
(* disjunction over all elements of the type being quantified over. (If *)
|
|
1456 |
(* p contains more than 'maxvars' boolean variables, terminate.) *)
|
|
1457 |
(* 4. Serialize p to a file, and try to find a satisfying assignment for p *)
|
|
1458 |
(* by invoking an external SAT solver. *)
|
|
1459 |
(* 5. If the SAT solver finds a satisfying assignment for p, translate this *)
|
|
1460 |
(* assignment back into a model for 't'. Present this model to the user, *)
|
|
1461 |
(* then terminate. *)
|
|
1462 |
(* 6. As long as there is another partition left, pick it and go back to *)
|
|
1463 |
(* step (3.). *)
|
|
1464 |
(* 7. Increase k by 1. As long as k does not exceed 'maxsize', go back to *)
|
|
1465 |
(* step (2.). *)
|
|
1466 |
(* *)
|
|
1467 |
(* The following parameters are currently supported (and required!): *)
|
|
1468 |
(* *)
|
|
1469 |
(* Name Type Description *)
|
|
1470 |
(* *)
|
|
1471 |
(* "minsize" int Only search for models with size at least *)
|
|
1472 |
(* 'minsize'. *)
|
|
1473 |
(* "maxsize" int If >0, only search for models with size at most *)
|
|
1474 |
(* 'maxsize'. *)
|
|
1475 |
(* "maxvars" int If >0, use at most 'maxvars' boolean variables *)
|
|
1476 |
(* when transforming the term into a propositional *)
|
|
1477 |
(* formula. *)
|
|
1478 |
(* "satfile" string Name of the file used to store the propositional *)
|
|
1479 |
(* formula, i.e. the input to the SAT solver. *)
|
|
1480 |
(* "satformat" string Format of the SAT solver's input file. Must be *)
|
|
1481 |
(* either "cnf", "defcnf", or "sat". Since "sat" is *)
|
|
1482 |
(* not supported by most SAT solvers, and "cnf" can *)
|
|
1483 |
(* cause exponential blowup of the formula, "defcnf" *)
|
|
1484 |
(* is recommended. *)
|
|
1485 |
(* "resultfile" string Name of the file containing the SAT solver's *)
|
|
1486 |
(* output. *)
|
|
1487 |
(* "success" string Part of the line in the SAT solver's output that *)
|
|
1488 |
(* precedes a list of integers representing the *)
|
|
1489 |
(* satisfying assignment. *)
|
|
1490 |
(* "command" string System command used to execute the SAT solver. *)
|
|
1491 |
(* Note that you if you change 'satfile' or *)
|
|
1492 |
(* 'resultfile', you will also need to change *)
|
|
1493 |
(* 'command'. *)
|
|
1494 |
(* *)
|
|
1495 |
(* See the Isabelle/Isar theory 'Refute.thy' for reasonable default values. *)
|
|
1496 |
(* ------------------------------------------------------------------------- *)
|
|
1497 |
|
|
1498 |
(* theory -> (string * string) list -> Term.term -> unit *)
|
|
1499 |
|
|
1500 |
fun find_model thy params t =
|
|
1501 |
let
|
|
1502 |
(* (string * string) list * (string * string) list -> (string * string) list *)
|
|
1503 |
fun add_params (parms, []) =
|
|
1504 |
parms
|
|
1505 |
| add_params (parms, defparm::defparms) =
|
|
1506 |
add_params (gen_ins (fn (a, b) => (fst a) = (fst b)) (defparm, parms), defparms)
|
|
1507 |
(* (string * string) list * string -> int *)
|
|
1508 |
fun read_int (parms, name) =
|
|
1509 |
case assoc_string (parms, name) of
|
14351
|
1510 |
Some s => (case Int.fromString s of
|
14350
|
1511 |
SOME i => i
|
|
1512 |
| NONE => error ("parameter '" ^ name ^ "' (value is '" ^ s ^ "') must be an integer value"))
|
|
1513 |
| None => error ("parameter '" ^ name ^ "' must be assigned a value")
|
|
1514 |
(* (string * string) list * string -> string *)
|
|
1515 |
fun read_string (parms, name) =
|
|
1516 |
case assoc_string (parms, name) of
|
|
1517 |
Some s => s
|
|
1518 |
| None => error ("parameter '" ^ name ^ "' must be assigned a value")
|
|
1519 |
(* (string * string) list *)
|
|
1520 |
val allparams = add_params (params, get_default_params thy)
|
|
1521 |
(* int *)
|
|
1522 |
val minsize = read_int (allparams, "minsize")
|
|
1523 |
val maxsize = read_int (allparams, "maxsize")
|
|
1524 |
val maxvars = read_int (allparams, "maxvars")
|
|
1525 |
(* string *)
|
|
1526 |
val satfile = read_string (allparams, "satfile")
|
|
1527 |
val satformat = read_string (allparams, "satformat")
|
|
1528 |
val resultfile = read_string (allparams, "resultfile")
|
|
1529 |
val success = read_string (allparams, "success")
|
|
1530 |
val command = read_string (allparams, "command")
|
|
1531 |
(* misc *)
|
|
1532 |
val satpath = Path.unpack satfile
|
|
1533 |
val resultpath = Path.unpack resultfile
|
|
1534 |
val sg = sign_of thy
|
|
1535 |
(* Term.typ list *)
|
|
1536 |
val tvars = map (fn (i,s) => TVar(i,s)) (term_tvars t)
|
|
1537 |
val tfrees = map (fn (x,s) => TFree(x,s)) (term_tfrees t)
|
|
1538 |
(* universe -> int -> bool *)
|
|
1539 |
fun find_model_universe u cdepth =
|
|
1540 |
let
|
|
1541 |
(* given the universe 'u' and constructor depth 'cdepth', translate *)
|
|
1542 |
(* the term 't' into a propositional formula 'fm' *)
|
|
1543 |
val (fm,(idx,subs)) = term_to_prop_formula t u thy cdepth
|
|
1544 |
val usedvars = idx-1
|
|
1545 |
in
|
|
1546 |
(* 'maxvars=0' means "use as many variables as necessary" *)
|
|
1547 |
if usedvars>maxvars andalso maxvars<>0 then
|
|
1548 |
(
|
|
1549 |
(* too many variables used: terminate *)
|
|
1550 |
writeln ("\nSearch terminated: " ^ (string_of_int usedvars) ^ " boolean variables used (only " ^ (string_of_int maxvars) ^ " allowed).");
|
|
1551 |
true
|
|
1552 |
)
|
|
1553 |
else
|
|
1554 |
(* pass the formula 'fm' to an external SAT solver *)
|
|
1555 |
case prop_formula_sat_solver fm satpath satformat resultpath success command of
|
|
1556 |
None =>
|
|
1557 |
(* no model found *)
|
|
1558 |
false
|
|
1559 |
| Some assignment =>
|
|
1560 |
(* model found: terminate *)
|
|
1561 |
(
|
|
1562 |
writeln ("\nModel found:\n" ^ (string_of_universe thy u) ^ "\n" ^ (string_of_model thy u cdepth subs assignment));
|
|
1563 |
true
|
|
1564 |
)
|
|
1565 |
end
|
|
1566 |
(* universe list -> int -> bool *)
|
|
1567 |
fun find_model_universes [] cdepth =
|
|
1568 |
(
|
|
1569 |
std_output "\n";
|
|
1570 |
false
|
|
1571 |
)
|
|
1572 |
| find_model_universes (u::us) cdepth =
|
|
1573 |
(
|
|
1574 |
std_output ".";
|
|
1575 |
((if find_model_universe u cdepth then
|
|
1576 |
(* terminate *)
|
|
1577 |
true
|
|
1578 |
else
|
|
1579 |
(* continue search with the next universe *)
|
|
1580 |
find_model_universes us cdepth)
|
|
1581 |
handle EMPTY_DATATYPE => (std_output "[empty inductive type (constructor depth too small)]\n"; false))
|
|
1582 |
)
|
|
1583 |
(* int * int -> unit *)
|
|
1584 |
fun find_model_from_to (min,max) =
|
|
1585 |
(* 'max=0' means "search for arbitrary large models" *)
|
|
1586 |
if min>max andalso max<>0 then
|
|
1587 |
writeln ("Search terminated: no model found.")
|
|
1588 |
else
|
|
1589 |
(
|
|
1590 |
std_output ("Searching for a model of size " ^ (string_of_int min));
|
|
1591 |
if find_model_universes (make_universes tfrees min) min then
|
|
1592 |
(* terminate *)
|
|
1593 |
()
|
|
1594 |
else
|
|
1595 |
(* continue search with increased size *)
|
|
1596 |
find_model_from_to (min+1, max)
|
|
1597 |
)
|
|
1598 |
in
|
|
1599 |
writeln ("Trying to find a model of: " ^ (Sign.string_of_term sg t));
|
|
1600 |
if tvars<>[] then
|
|
1601 |
(* TODO: deal with schematic type variables in a better way, if possible *)
|
|
1602 |
error "term contains schematic type variables"
|
|
1603 |
else
|
|
1604 |
(
|
|
1605 |
if minsize<1 then
|
|
1606 |
writeln ("'minsize' is less than 1; starting search with size 1.")
|
|
1607 |
else
|
|
1608 |
();
|
|
1609 |
if maxsize<max (minsize,1) andalso maxsize<>0 then
|
|
1610 |
writeln ("'maxsize' is less than 'minsize': no model found.")
|
|
1611 |
else
|
|
1612 |
find_model_from_to (max (minsize,1), maxsize)
|
|
1613 |
)
|
|
1614 |
end;
|
|
1615 |
|
|
1616 |
(* ------------------------------------------------------------------------- *)
|
|
1617 |
(* refute_term: calls 'find_model' on the negation of a term *)
|
|
1618 |
(* params : list of '(name, value)' pairs used to override default *)
|
|
1619 |
(* parameters *)
|
|
1620 |
(* ------------------------------------------------------------------------- *)
|
|
1621 |
|
|
1622 |
(* theory -> (string * string) list -> Term.term -> unit *)
|
|
1623 |
|
|
1624 |
fun refute_term thy params t =
|
|
1625 |
let
|
|
1626 |
(* TODO: schematic type variables? *)
|
|
1627 |
val negation = close_vars (HOLogic.Not $ t)
|
|
1628 |
(* If 't' is of type 'propT' (rather than 'boolT'), applying *)
|
|
1629 |
(* 'HOLogic.Not' is not type-correct. However, this isn't *)
|
|
1630 |
(* really a problem as long as 'find_model' still interprets *)
|
|
1631 |
(* the resulting term correctly, without checking its type. *)
|
|
1632 |
in
|
|
1633 |
find_model thy params negation
|
|
1634 |
end;
|
|
1635 |
|
|
1636 |
(* ------------------------------------------------------------------------- *)
|
|
1637 |
(* refute_subgoal: calls 'refute_term' on a specific subgoal *)
|
|
1638 |
(* params : list of '(name, value)' pairs used to override default *)
|
|
1639 |
(* parameters *)
|
|
1640 |
(* subgoal : 0-based index specifying the subgoal number *)
|
|
1641 |
(* ------------------------------------------------------------------------- *)
|
|
1642 |
|
|
1643 |
(* theory -> (string * string) list -> Thm.thm -> int -> unit *)
|
|
1644 |
|
|
1645 |
fun refute_subgoal thy params thm subgoal =
|
|
1646 |
refute_term thy params (nth_elem (subgoal, prems_of thm));
|
|
1647 |
|
|
1648 |
end
|