| 33175 |      1 | (* Title:      Determinants
 | 
|  |      2 |    Author:     Amine Chaieb, University of Cambridge
 | 
|  |      3 | *)
 | 
|  |      4 | 
 | 
|  |      5 | header {* Traces, Determinant of square matrices and some properties *}
 | 
|  |      6 | 
 | 
|  |      7 | theory Determinants
 | 
|  |      8 | imports Euclidean_Space Permutations
 | 
|  |      9 | begin
 | 
|  |     10 | 
 | 
|  |     11 | subsection{* First some facts about products*}
 | 
|  |     12 | lemma setprod_insert_eq: "finite A \<Longrightarrow> setprod f (insert a A) = (if a \<in> A then setprod f A else f a * setprod f A)"
 | 
|  |     13 | apply clarsimp
 | 
|  |     14 | by(subgoal_tac "insert a A = A", auto)
 | 
|  |     15 | 
 | 
|  |     16 | lemma setprod_add_split:
 | 
|  |     17 |   assumes mn: "(m::nat) <= n + 1"
 | 
|  |     18 |   shows "setprod f {m.. n+p} = setprod f {m .. n} * setprod f {n+1..n+p}"
 | 
|  |     19 | proof-
 | 
|  |     20 |   let ?A = "{m .. n+p}"
 | 
|  |     21 |   let ?B = "{m .. n}"
 | 
|  |     22 |   let ?C = "{n+1..n+p}"
 | 
|  |     23 |   from mn have un: "?B \<union> ?C = ?A" by auto
 | 
|  |     24 |   from mn have dj: "?B \<inter> ?C = {}" by auto
 | 
|  |     25 |   have f: "finite ?B" "finite ?C" by simp_all
 | 
|  |     26 |   from setprod_Un_disjoint[OF f dj, of f, unfolded un] show ?thesis .
 | 
|  |     27 | qed
 | 
|  |     28 | 
 | 
|  |     29 | 
 | 
|  |     30 | lemma setprod_offset: "setprod f {(m::nat) + p .. n + p} = setprod (\<lambda>i. f (i + p)) {m..n}"
 | 
|  |     31 | apply (rule setprod_reindex_cong[where f="op + p"])
 | 
|  |     32 | apply (auto simp add: image_iff Bex_def inj_on_def)
 | 
|  |     33 | apply arith
 | 
|  |     34 | apply (rule ext)
 | 
|  |     35 | apply (simp add: add_commute)
 | 
|  |     36 | done
 | 
|  |     37 | 
 | 
|  |     38 | lemma setprod_singleton: "setprod f {x} = f x" by simp
 | 
|  |     39 | 
 | 
|  |     40 | lemma setprod_singleton_nat_seg: "setprod f {n..n} = f (n::'a::order)" by simp
 | 
|  |     41 | 
 | 
|  |     42 | lemma setprod_numseg: "setprod f {m..0} = (if m=0 then f 0 else 1)"
 | 
|  |     43 |   "setprod f {m .. Suc n} = (if m \<le> Suc n then f (Suc n) * setprod f {m..n}
 | 
|  |     44 |                              else setprod f {m..n})"
 | 
|  |     45 |   by (auto simp add: atLeastAtMostSuc_conv)
 | 
|  |     46 | 
 | 
|  |     47 | lemma setprod_le: assumes fS: "finite S" and fg: "\<forall>x\<in>S. f x \<ge> 0 \<and> f x \<le> (g x :: 'a::ordered_idom)"
 | 
|  |     48 |   shows "setprod f S \<le> setprod g S"
 | 
|  |     49 | using fS fg
 | 
|  |     50 | apply(induct S)
 | 
|  |     51 | apply simp
 | 
|  |     52 | apply auto
 | 
|  |     53 | apply (rule mult_mono)
 | 
|  |     54 | apply (auto intro: setprod_nonneg)
 | 
|  |     55 | done
 | 
|  |     56 | 
 | 
|  |     57 |   (* FIXME: In Finite_Set there is a useless further assumption *)
 | 
|  |     58 | lemma setprod_inversef: "finite A ==> setprod (inverse \<circ> f) A = (inverse (setprod f A) :: 'a:: {division_by_zero, field})"
 | 
|  |     59 |   apply (erule finite_induct)
 | 
|  |     60 |   apply (simp)
 | 
|  |     61 |   apply simp
 | 
|  |     62 |   done
 | 
|  |     63 | 
 | 
|  |     64 | lemma setprod_le_1: assumes fS: "finite S" and f: "\<forall>x\<in>S. f x \<ge> 0 \<and> f x \<le> (1::'a::ordered_idom)"
 | 
|  |     65 |   shows "setprod f S \<le> 1"
 | 
|  |     66 | using setprod_le[OF fS f] unfolding setprod_1 .
 | 
|  |     67 | 
 | 
|  |     68 | subsection{* Trace *}
 | 
|  |     69 | 
 | 
|  |     70 | definition trace :: "'a::semiring_1^'n^'n \<Rightarrow> 'a" where
 | 
|  |     71 |   "trace A = setsum (\<lambda>i. ((A$i)$i)) (UNIV::'n set)"
 | 
|  |     72 | 
 | 
|  |     73 | lemma trace_0: "trace(mat 0) = 0"
 | 
|  |     74 |   by (simp add: trace_def mat_def)
 | 
|  |     75 | 
 | 
|  |     76 | lemma trace_I: "trace(mat 1 :: 'a::semiring_1^'n^'n) = of_nat(CARD('n))"
 | 
|  |     77 |   by (simp add: trace_def mat_def)
 | 
|  |     78 | 
 | 
|  |     79 | lemma trace_add: "trace ((A::'a::comm_semiring_1^'n^'n) + B) = trace A + trace B"
 | 
|  |     80 |   by (simp add: trace_def setsum_addf)
 | 
|  |     81 | 
 | 
|  |     82 | lemma trace_sub: "trace ((A::'a::comm_ring_1^'n^'n) - B) = trace A - trace B"
 | 
|  |     83 |   by (simp add: trace_def setsum_subtractf)
 | 
|  |     84 | 
 | 
|  |     85 | lemma trace_mul_sym:"trace ((A::'a::comm_semiring_1^'n^'n) ** B) = trace (B**A)"
 | 
|  |     86 |   apply (simp add: trace_def matrix_matrix_mult_def)
 | 
|  |     87 |   apply (subst setsum_commute)
 | 
|  |     88 |   by (simp add: mult_commute)
 | 
|  |     89 | 
 | 
|  |     90 | (* ------------------------------------------------------------------------- *)
 | 
|  |     91 | (* Definition of determinant.                                                *)
 | 
|  |     92 | (* ------------------------------------------------------------------------- *)
 | 
|  |     93 | 
 | 
|  |     94 | definition det:: "'a::comm_ring_1^'n^'n \<Rightarrow> 'a" where
 | 
|  |     95 |   "det A = setsum (\<lambda>p. of_int (sign p) * setprod (\<lambda>i. A$i$p i) (UNIV :: 'n set)) {p. p permutes (UNIV :: 'n set)}"
 | 
|  |     96 | 
 | 
|  |     97 | (* ------------------------------------------------------------------------- *)
 | 
|  |     98 | (* A few general lemmas we need below.                                       *)
 | 
|  |     99 | (* ------------------------------------------------------------------------- *)
 | 
|  |    100 | 
 | 
|  |    101 | lemma setprod_permute:
 | 
|  |    102 |   assumes p: "p permutes S"
 | 
|  |    103 |   shows "setprod f S = setprod (f o p) S"
 | 
|  |    104 | proof-
 | 
|  |    105 |   {assume "\<not> finite S" hence ?thesis by simp}
 | 
|  |    106 |   moreover
 | 
|  |    107 |   {assume fS: "finite S"
 | 
|  |    108 |     then have ?thesis
 | 
|  |    109 |       apply (simp add: setprod_def cong del:strong_setprod_cong)
 | 
|  |    110 |       apply (rule ab_semigroup_mult.fold_image_permute)
 | 
|  |    111 |       apply (auto simp add: p)
 | 
|  |    112 |       apply unfold_locales
 | 
|  |    113 |       done}
 | 
|  |    114 |   ultimately show ?thesis by blast
 | 
|  |    115 | qed
 | 
|  |    116 | 
 | 
|  |    117 | lemma setproduct_permute_nat_interval: "p permutes {m::nat .. n} ==> setprod f {m..n} = setprod (f o p) {m..n}"
 | 
|  |    118 |   by (blast intro!: setprod_permute)
 | 
|  |    119 | 
 | 
|  |    120 | (* ------------------------------------------------------------------------- *)
 | 
|  |    121 | (* Basic determinant properties.                                             *)
 | 
|  |    122 | (* ------------------------------------------------------------------------- *)
 | 
|  |    123 | 
 | 
|  |    124 | lemma det_transp: "det (transp A) = det (A::'a::comm_ring_1 ^'n^'n::finite)"
 | 
|  |    125 | proof-
 | 
|  |    126 |   let ?di = "\<lambda>A i j. A$i$j"
 | 
|  |    127 |   let ?U = "(UNIV :: 'n set)"
 | 
|  |    128 |   have fU: "finite ?U" by simp
 | 
|  |    129 |   {fix p assume p: "p \<in> {p. p permutes ?U}"
 | 
|  |    130 |     from p have pU: "p permutes ?U" by blast
 | 
|  |    131 |     have sth: "sign (inv p) = sign p"
 | 
|  |    132 |       by (metis sign_inverse fU p mem_def Collect_def permutation_permutes)
 | 
|  |    133 |     from permutes_inj[OF pU]
 | 
|  |    134 |     have pi: "inj_on p ?U" by (blast intro: subset_inj_on)
 | 
|  |    135 |     from permutes_image[OF pU]
 | 
|  |    136 |     have "setprod (\<lambda>i. ?di (transp A) i (inv p i)) ?U = setprod (\<lambda>i. ?di (transp A) i (inv p i)) (p ` ?U)" by simp
 | 
|  |    137 |     also have "\<dots> = setprod ((\<lambda>i. ?di (transp A) i (inv p i)) o p) ?U"
 | 
|  |    138 |       unfolding setprod_reindex[OF pi] ..
 | 
|  |    139 |     also have "\<dots> = setprod (\<lambda>i. ?di A i (p i)) ?U"
 | 
|  |    140 |     proof-
 | 
|  |    141 |       {fix i assume i: "i \<in> ?U"
 | 
|  |    142 |         from i permutes_inv_o[OF pU] permutes_in_image[OF pU]
 | 
|  |    143 |         have "((\<lambda>i. ?di (transp A) i (inv p i)) o p) i = ?di A i (p i)"
 | 
|  |    144 |           unfolding transp_def by (simp add: expand_fun_eq)}
 | 
|  |    145 |       then show "setprod ((\<lambda>i. ?di (transp A) i (inv p i)) o p) ?U = setprod (\<lambda>i. ?di A i (p i)) ?U" by (auto intro: setprod_cong)
 | 
|  |    146 |     qed
 | 
|  |    147 |     finally have "of_int (sign (inv p)) * (setprod (\<lambda>i. ?di (transp A) i (inv p i)) ?U) = of_int (sign p) * (setprod (\<lambda>i. ?di A i (p i)) ?U)" using sth
 | 
|  |    148 |       by simp}
 | 
|  |    149 |   then show ?thesis unfolding det_def apply (subst setsum_permutations_inverse)
 | 
|  |    150 |   apply (rule setsum_cong2) by blast
 | 
|  |    151 | qed
 | 
|  |    152 | 
 | 
|  |    153 | lemma det_lowerdiagonal:
 | 
|  |    154 |   fixes A :: "'a::comm_ring_1^'n^'n::{finite,wellorder}"
 | 
|  |    155 |   assumes ld: "\<And>i j. i < j \<Longrightarrow> A$i$j = 0"
 | 
|  |    156 |   shows "det A = setprod (\<lambda>i. A$i$i) (UNIV:: 'n set)"
 | 
|  |    157 | proof-
 | 
|  |    158 |   let ?U = "UNIV:: 'n set"
 | 
|  |    159 |   let ?PU = "{p. p permutes ?U}"
 | 
|  |    160 |   let ?pp = "\<lambda>p. of_int (sign p) * setprod (\<lambda>i. A$i$p i) (UNIV :: 'n set)"
 | 
|  |    161 |   have fU: "finite ?U" by simp
 | 
|  |    162 |   from finite_permutations[OF fU] have fPU: "finite ?PU" .
 | 
|  |    163 |   have id0: "{id} \<subseteq> ?PU" by (auto simp add: permutes_id)
 | 
|  |    164 |   {fix p assume p: "p \<in> ?PU -{id}"
 | 
|  |    165 |     from p have pU: "p permutes ?U" and pid: "p \<noteq> id" by blast+
 | 
|  |    166 |     from permutes_natset_le[OF pU] pid obtain i where
 | 
|  |    167 |       i: "p i > i" by (metis not_le)
 | 
|  |    168 |     from ld[OF i] have ex:"\<exists>i \<in> ?U. A$i$p i = 0" by blast
 | 
|  |    169 |     from setprod_zero[OF fU ex] have "?pp p = 0" by simp}
 | 
|  |    170 |   then have p0: "\<forall>p \<in> ?PU -{id}. ?pp p = 0"  by blast
 | 
|  |    171 |   from setsum_mono_zero_cong_left[OF fPU id0 p0] show ?thesis
 | 
|  |    172 |     unfolding det_def by (simp add: sign_id)
 | 
|  |    173 | qed
 | 
|  |    174 | 
 | 
|  |    175 | lemma det_upperdiagonal:
 | 
|  |    176 |   fixes A :: "'a::comm_ring_1^'n^'n::{finite,wellorder}"
 | 
|  |    177 |   assumes ld: "\<And>i j. i > j \<Longrightarrow> A$i$j = 0"
 | 
|  |    178 |   shows "det A = setprod (\<lambda>i. A$i$i) (UNIV:: 'n set)"
 | 
|  |    179 | proof-
 | 
|  |    180 |   let ?U = "UNIV:: 'n set"
 | 
|  |    181 |   let ?PU = "{p. p permutes ?U}"
 | 
|  |    182 |   let ?pp = "(\<lambda>p. of_int (sign p) * setprod (\<lambda>i. A$i$p i) (UNIV :: 'n set))"
 | 
|  |    183 |   have fU: "finite ?U" by simp
 | 
|  |    184 |   from finite_permutations[OF fU] have fPU: "finite ?PU" .
 | 
|  |    185 |   have id0: "{id} \<subseteq> ?PU" by (auto simp add: permutes_id)
 | 
|  |    186 |   {fix p assume p: "p \<in> ?PU -{id}"
 | 
|  |    187 |     from p have pU: "p permutes ?U" and pid: "p \<noteq> id" by blast+
 | 
|  |    188 |     from permutes_natset_ge[OF pU] pid obtain i where
 | 
|  |    189 |       i: "p i < i" by (metis not_le)
 | 
|  |    190 |     from ld[OF i] have ex:"\<exists>i \<in> ?U. A$i$p i = 0" by blast
 | 
|  |    191 |     from setprod_zero[OF fU ex] have "?pp p = 0" by simp}
 | 
|  |    192 |   then have p0: "\<forall>p \<in> ?PU -{id}. ?pp p = 0"  by blast
 | 
|  |    193 |   from   setsum_mono_zero_cong_left[OF fPU id0 p0] show ?thesis
 | 
|  |    194 |     unfolding det_def by (simp add: sign_id)
 | 
|  |    195 | qed
 | 
|  |    196 | 
 | 
|  |    197 | lemma det_diagonal:
 | 
|  |    198 |   fixes A :: "'a::comm_ring_1^'n^'n::finite"
 | 
|  |    199 |   assumes ld: "\<And>i j. i \<noteq> j \<Longrightarrow> A$i$j = 0"
 | 
|  |    200 |   shows "det A = setprod (\<lambda>i. A$i$i) (UNIV::'n set)"
 | 
|  |    201 | proof-
 | 
|  |    202 |   let ?U = "UNIV:: 'n set"
 | 
|  |    203 |   let ?PU = "{p. p permutes ?U}"
 | 
|  |    204 |   let ?pp = "\<lambda>p. of_int (sign p) * setprod (\<lambda>i. A$i$p i) (UNIV :: 'n set)"
 | 
|  |    205 |   have fU: "finite ?U" by simp
 | 
|  |    206 |   from finite_permutations[OF fU] have fPU: "finite ?PU" .
 | 
|  |    207 |   have id0: "{id} \<subseteq> ?PU" by (auto simp add: permutes_id)
 | 
|  |    208 |   {fix p assume p: "p \<in> ?PU - {id}"
 | 
|  |    209 |     then have "p \<noteq> id" by simp
 | 
|  |    210 |     then obtain i where i: "p i \<noteq> i" unfolding expand_fun_eq by auto
 | 
|  |    211 |     from ld [OF i [symmetric]] have ex:"\<exists>i \<in> ?U. A$i$p i = 0" by blast
 | 
|  |    212 |     from setprod_zero [OF fU ex] have "?pp p = 0" by simp}
 | 
|  |    213 |   then have p0: "\<forall>p \<in> ?PU - {id}. ?pp p = 0"  by blast
 | 
|  |    214 |   from setsum_mono_zero_cong_left[OF fPU id0 p0] show ?thesis
 | 
|  |    215 |     unfolding det_def by (simp add: sign_id)
 | 
|  |    216 | qed
 | 
|  |    217 | 
 | 
|  |    218 | lemma det_I: "det (mat 1 :: 'a::comm_ring_1^'n^'n::finite) = 1"
 | 
|  |    219 | proof-
 | 
|  |    220 |   let ?A = "mat 1 :: 'a::comm_ring_1^'n^'n"
 | 
|  |    221 |   let ?U = "UNIV :: 'n set"
 | 
|  |    222 |   let ?f = "\<lambda>i j. ?A$i$j"
 | 
|  |    223 |   {fix i assume i: "i \<in> ?U"
 | 
|  |    224 |     have "?f i i = 1" using i by (vector mat_def)}
 | 
|  |    225 |   hence th: "setprod (\<lambda>i. ?f i i) ?U = setprod (\<lambda>x. 1) ?U"
 | 
|  |    226 |     by (auto intro: setprod_cong)
 | 
|  |    227 |   {fix i j assume i: "i \<in> ?U" and j: "j \<in> ?U" and ij: "i \<noteq> j"
 | 
|  |    228 |     have "?f i j = 0" using i j ij by (vector mat_def) }
 | 
|  |    229 |   then have "det ?A = setprod (\<lambda>i. ?f i i) ?U" using det_diagonal
 | 
|  |    230 |     by blast
 | 
|  |    231 |   also have "\<dots> = 1" unfolding th setprod_1 ..
 | 
|  |    232 |   finally show ?thesis .
 | 
|  |    233 | qed
 | 
|  |    234 | 
 | 
|  |    235 | lemma det_0: "det (mat 0 :: 'a::comm_ring_1^'n^'n::finite) = 0"
 | 
|  |    236 |   by (simp add: det_def setprod_zero)
 | 
|  |    237 | 
 | 
|  |    238 | lemma det_permute_rows:
 | 
|  |    239 |   fixes A :: "'a::comm_ring_1^'n^'n::finite"
 | 
|  |    240 |   assumes p: "p permutes (UNIV :: 'n::finite set)"
 | 
|  |    241 |   shows "det(\<chi> i. A$p i :: 'a^'n^'n) = of_int (sign p) * det A"
 | 
|  |    242 |   apply (simp add: det_def setsum_right_distrib mult_assoc[symmetric])
 | 
|  |    243 |   apply (subst sum_permutations_compose_right[OF p])
 | 
|  |    244 | proof(rule setsum_cong2)
 | 
|  |    245 |   let ?U = "UNIV :: 'n set"
 | 
|  |    246 |   let ?PU = "{p. p permutes ?U}"
 | 
|  |    247 |   fix q assume qPU: "q \<in> ?PU"
 | 
|  |    248 |   have fU: "finite ?U" by simp
 | 
|  |    249 |   from qPU have q: "q permutes ?U" by blast
 | 
|  |    250 |   from p q have pp: "permutation p" and qp: "permutation q"
 | 
|  |    251 |     by (metis fU permutation_permutes)+
 | 
|  |    252 |   from permutes_inv[OF p] have ip: "inv p permutes ?U" .
 | 
|  |    253 |     have "setprod (\<lambda>i. A$p i$ (q o p) i) ?U = setprod ((\<lambda>i. A$p i$(q o p) i) o inv p) ?U"
 | 
|  |    254 |       by (simp only: setprod_permute[OF ip, symmetric])
 | 
|  |    255 |     also have "\<dots> = setprod (\<lambda>i. A $ (p o inv p) i $ (q o (p o inv p)) i) ?U"
 | 
|  |    256 |       by (simp only: o_def)
 | 
|  |    257 |     also have "\<dots> = setprod (\<lambda>i. A$i$q i) ?U" by (simp only: o_def permutes_inverses[OF p])
 | 
|  |    258 |     finally   have thp: "setprod (\<lambda>i. A$p i$ (q o p) i) ?U = setprod (\<lambda>i. A$i$q i) ?U"
 | 
|  |    259 |       by blast
 | 
|  |    260 |   show "of_int (sign (q o p)) * setprod (\<lambda>i. A$ p i$ (q o p) i) ?U = of_int (sign p) * of_int (sign q) * setprod (\<lambda>i. A$i$q i) ?U"
 | 
|  |    261 |     by (simp only: thp sign_compose[OF qp pp] mult_commute of_int_mult)
 | 
|  |    262 | qed
 | 
|  |    263 | 
 | 
|  |    264 | lemma det_permute_columns:
 | 
|  |    265 |   fixes A :: "'a::comm_ring_1^'n^'n::finite"
 | 
|  |    266 |   assumes p: "p permutes (UNIV :: 'n set)"
 | 
|  |    267 |   shows "det(\<chi> i j. A$i$ p j :: 'a^'n^'n) = of_int (sign p) * det A"
 | 
|  |    268 | proof-
 | 
|  |    269 |   let ?Ap = "\<chi> i j. A$i$ p j :: 'a^'n^'n"
 | 
|  |    270 |   let ?At = "transp A"
 | 
|  |    271 |   have "of_int (sign p) * det A = det (transp (\<chi> i. transp A $ p i))"
 | 
|  |    272 |     unfolding det_permute_rows[OF p, of ?At] det_transp ..
 | 
|  |    273 |   moreover
 | 
|  |    274 |   have "?Ap = transp (\<chi> i. transp A $ p i)"
 | 
|  |    275 |     by (simp add: transp_def Cart_eq)
 | 
|  |    276 |   ultimately show ?thesis by simp
 | 
|  |    277 | qed
 | 
|  |    278 | 
 | 
|  |    279 | lemma det_identical_rows:
 | 
|  |    280 |   fixes A :: "'a::ordered_idom^'n^'n::finite"
 | 
|  |    281 |   assumes ij: "i \<noteq> j"
 | 
|  |    282 |   and r: "row i A = row j A"
 | 
|  |    283 |   shows "det A = 0"
 | 
|  |    284 | proof-
 | 
|  |    285 |   have tha: "\<And>(a::'a) b. a = b ==> b = - a ==> a = 0"
 | 
|  |    286 |     by simp
 | 
|  |    287 |   have th1: "of_int (-1) = - 1" by (metis of_int_1 of_int_minus number_of_Min)
 | 
|  |    288 |   let ?p = "Fun.swap i j id"
 | 
|  |    289 |   let ?A = "\<chi> i. A $ ?p i"
 | 
|  |    290 |   from r have "A = ?A" by (simp add: Cart_eq row_def swap_def)
 | 
|  |    291 |   hence "det A = det ?A" by simp
 | 
|  |    292 |   moreover have "det A = - det ?A"
 | 
|  |    293 |     by (simp add: det_permute_rows[OF permutes_swap_id] sign_swap_id ij th1)
 | 
|  |    294 |   ultimately show "det A = 0" by (metis tha)
 | 
|  |    295 | qed
 | 
|  |    296 | 
 | 
|  |    297 | lemma det_identical_columns:
 | 
|  |    298 |   fixes A :: "'a::ordered_idom^'n^'n::finite"
 | 
|  |    299 |   assumes ij: "i \<noteq> j"
 | 
|  |    300 |   and r: "column i A = column j A"
 | 
|  |    301 |   shows "det A = 0"
 | 
|  |    302 | apply (subst det_transp[symmetric])
 | 
|  |    303 | apply (rule det_identical_rows[OF ij])
 | 
|  |    304 | by (metis row_transp r)
 | 
|  |    305 | 
 | 
|  |    306 | lemma det_zero_row:
 | 
|  |    307 |   fixes A :: "'a::{idom, ring_char_0}^'n^'n::finite"
 | 
|  |    308 |   assumes r: "row i A = 0"
 | 
|  |    309 |   shows "det A = 0"
 | 
|  |    310 | using r
 | 
|  |    311 | apply (simp add: row_def det_def Cart_eq)
 | 
|  |    312 | apply (rule setsum_0')
 | 
|  |    313 | apply (auto simp: sign_nz)
 | 
|  |    314 | done
 | 
|  |    315 | 
 | 
|  |    316 | lemma det_zero_column:
 | 
|  |    317 |   fixes A :: "'a::{idom,ring_char_0}^'n^'n::finite"
 | 
|  |    318 |   assumes r: "column i A = 0"
 | 
|  |    319 |   shows "det A = 0"
 | 
|  |    320 |   apply (subst det_transp[symmetric])
 | 
|  |    321 |   apply (rule det_zero_row [of i])
 | 
|  |    322 |   by (metis row_transp r)
 | 
|  |    323 | 
 | 
|  |    324 | lemma det_row_add:
 | 
|  |    325 |   fixes a b c :: "'n::finite \<Rightarrow> _ ^ 'n"
 | 
|  |    326 |   shows "det((\<chi> i. if i = k then a i + b i else c i)::'a::comm_ring_1^'n^'n) =
 | 
|  |    327 |              det((\<chi> i. if i = k then a i else c i)::'a::comm_ring_1^'n^'n) +
 | 
|  |    328 |              det((\<chi> i. if i = k then b i else c i)::'a::comm_ring_1^'n^'n)"
 | 
|  |    329 | unfolding det_def Cart_lambda_beta setsum_addf[symmetric]
 | 
|  |    330 | proof (rule setsum_cong2)
 | 
|  |    331 |   let ?U = "UNIV :: 'n set"
 | 
|  |    332 |   let ?pU = "{p. p permutes ?U}"
 | 
|  |    333 |   let ?f = "(\<lambda>i. if i = k then a i + b i else c i)::'n \<Rightarrow> 'a::comm_ring_1^'n"
 | 
|  |    334 |   let ?g = "(\<lambda> i. if i = k then a i else c i)::'n \<Rightarrow> 'a::comm_ring_1^'n"
 | 
|  |    335 |   let ?h = "(\<lambda> i. if i = k then b i else c i)::'n \<Rightarrow> 'a::comm_ring_1^'n"
 | 
|  |    336 |   fix p assume p: "p \<in> ?pU"
 | 
|  |    337 |   let ?Uk = "?U - {k}"
 | 
|  |    338 |   from p have pU: "p permutes ?U" by blast
 | 
|  |    339 |   have kU: "?U = insert k ?Uk" by blast
 | 
|  |    340 |   {fix j assume j: "j \<in> ?Uk"
 | 
|  |    341 |     from j have "?f j $ p j = ?g j $ p j" and "?f j $ p j= ?h j $ p j"
 | 
|  |    342 |       by simp_all}
 | 
|  |    343 |   then have th1: "setprod (\<lambda>i. ?f i $ p i) ?Uk = setprod (\<lambda>i. ?g i $ p i) ?Uk"
 | 
|  |    344 |     and th2: "setprod (\<lambda>i. ?f i $ p i) ?Uk = setprod (\<lambda>i. ?h i $ p i) ?Uk"
 | 
|  |    345 |     apply -
 | 
|  |    346 |     apply (rule setprod_cong, simp_all)+
 | 
|  |    347 |     done
 | 
|  |    348 |   have th3: "finite ?Uk" "k \<notin> ?Uk" by auto
 | 
|  |    349 |   have "setprod (\<lambda>i. ?f i $ p i) ?U = setprod (\<lambda>i. ?f i $ p i) (insert k ?Uk)"
 | 
|  |    350 |     unfolding kU[symmetric] ..
 | 
|  |    351 |   also have "\<dots> = ?f k $ p k  * setprod (\<lambda>i. ?f i $ p i) ?Uk"
 | 
|  |    352 |     apply (rule setprod_insert)
 | 
|  |    353 |     apply simp
 | 
|  |    354 |     by blast
 | 
|  |    355 |   also have "\<dots> = (a k $ p k * setprod (\<lambda>i. ?f i $ p i) ?Uk) + (b k$ p k * setprod (\<lambda>i. ?f i $ p i) ?Uk)" by (simp add: ring_simps)
 | 
|  |    356 |   also have "\<dots> = (a k $ p k * setprod (\<lambda>i. ?g i $ p i) ?Uk) + (b k$ p k * setprod (\<lambda>i. ?h i $ p i) ?Uk)" by (metis th1 th2)
 | 
|  |    357 |   also have "\<dots> = setprod (\<lambda>i. ?g i $ p i) (insert k ?Uk) + setprod (\<lambda>i. ?h i $ p i) (insert k ?Uk)"
 | 
|  |    358 |     unfolding  setprod_insert[OF th3] by simp
 | 
|  |    359 |   finally have "setprod (\<lambda>i. ?f i $ p i) ?U = setprod (\<lambda>i. ?g i $ p i) ?U + setprod (\<lambda>i. ?h i $ p i) ?U" unfolding kU[symmetric] .
 | 
|  |    360 |   then show "of_int (sign p) * setprod (\<lambda>i. ?f i $ p i) ?U = of_int (sign p) * setprod (\<lambda>i. ?g i $ p i) ?U + of_int (sign p) * setprod (\<lambda>i. ?h i $ p i) ?U"
 | 
|  |    361 |     by (simp add: ring_simps)
 | 
|  |    362 | qed
 | 
|  |    363 | 
 | 
|  |    364 | lemma det_row_mul:
 | 
|  |    365 |   fixes a b :: "'n::finite \<Rightarrow> _ ^ 'n"
 | 
|  |    366 |   shows "det((\<chi> i. if i = k then c *s a i else b i)::'a::comm_ring_1^'n^'n) =
 | 
|  |    367 |              c* det((\<chi> i. if i = k then a i else b i)::'a::comm_ring_1^'n^'n)"
 | 
|  |    368 | 
 | 
|  |    369 | unfolding det_def Cart_lambda_beta setsum_right_distrib
 | 
|  |    370 | proof (rule setsum_cong2)
 | 
|  |    371 |   let ?U = "UNIV :: 'n set"
 | 
|  |    372 |   let ?pU = "{p. p permutes ?U}"
 | 
|  |    373 |   let ?f = "(\<lambda>i. if i = k then c*s a i else b i)::'n \<Rightarrow> 'a::comm_ring_1^'n"
 | 
|  |    374 |   let ?g = "(\<lambda> i. if i = k then a i else b i)::'n \<Rightarrow> 'a::comm_ring_1^'n"
 | 
|  |    375 |   fix p assume p: "p \<in> ?pU"
 | 
|  |    376 |   let ?Uk = "?U - {k}"
 | 
|  |    377 |   from p have pU: "p permutes ?U" by blast
 | 
|  |    378 |   have kU: "?U = insert k ?Uk" by blast
 | 
|  |    379 |   {fix j assume j: "j \<in> ?Uk"
 | 
|  |    380 |     from j have "?f j $ p j = ?g j $ p j" by simp}
 | 
|  |    381 |   then have th1: "setprod (\<lambda>i. ?f i $ p i) ?Uk = setprod (\<lambda>i. ?g i $ p i) ?Uk"
 | 
|  |    382 |     apply -
 | 
|  |    383 |     apply (rule setprod_cong, simp_all)
 | 
|  |    384 |     done
 | 
|  |    385 |   have th3: "finite ?Uk" "k \<notin> ?Uk" by auto
 | 
|  |    386 |   have "setprod (\<lambda>i. ?f i $ p i) ?U = setprod (\<lambda>i. ?f i $ p i) (insert k ?Uk)"
 | 
|  |    387 |     unfolding kU[symmetric] ..
 | 
|  |    388 |   also have "\<dots> = ?f k $ p k  * setprod (\<lambda>i. ?f i $ p i) ?Uk"
 | 
|  |    389 |     apply (rule setprod_insert)
 | 
|  |    390 |     apply simp
 | 
|  |    391 |     by blast
 | 
|  |    392 |   also have "\<dots> = (c*s a k) $ p k * setprod (\<lambda>i. ?f i $ p i) ?Uk" by (simp add: ring_simps)
 | 
|  |    393 |   also have "\<dots> = c* (a k $ p k * setprod (\<lambda>i. ?g i $ p i) ?Uk)"
 | 
|  |    394 |     unfolding th1 by (simp add: mult_ac)
 | 
|  |    395 |   also have "\<dots> = c* (setprod (\<lambda>i. ?g i $ p i) (insert k ?Uk))"
 | 
|  |    396 |     unfolding  setprod_insert[OF th3] by simp
 | 
|  |    397 |   finally have "setprod (\<lambda>i. ?f i $ p i) ?U = c* (setprod (\<lambda>i. ?g i $ p i) ?U)" unfolding kU[symmetric] .
 | 
|  |    398 |   then show "of_int (sign p) * setprod (\<lambda>i. ?f i $ p i) ?U = c * (of_int (sign p) * setprod (\<lambda>i. ?g i $ p i) ?U)"
 | 
|  |    399 |     by (simp add: ring_simps)
 | 
|  |    400 | qed
 | 
|  |    401 | 
 | 
|  |    402 | lemma det_row_0:
 | 
|  |    403 |   fixes b :: "'n::finite \<Rightarrow> _ ^ 'n"
 | 
|  |    404 |   shows "det((\<chi> i. if i = k then 0 else b i)::'a::comm_ring_1^'n^'n) = 0"
 | 
|  |    405 | using det_row_mul[of k 0 "\<lambda>i. 1" b]
 | 
|  |    406 | apply (simp)
 | 
|  |    407 |   unfolding vector_smult_lzero .
 | 
|  |    408 | 
 | 
|  |    409 | lemma det_row_operation:
 | 
|  |    410 |   fixes A :: "'a::ordered_idom^'n^'n::finite"
 | 
|  |    411 |   assumes ij: "i \<noteq> j"
 | 
|  |    412 |   shows "det (\<chi> k. if k = i then row i A + c *s row j A else row k A) = det A"
 | 
|  |    413 | proof-
 | 
|  |    414 |   let ?Z = "(\<chi> k. if k = i then row j A else row k A) :: 'a ^'n^'n"
 | 
|  |    415 |   have th: "row i ?Z = row j ?Z" by (vector row_def)
 | 
|  |    416 |   have th2: "((\<chi> k. if k = i then row i A else row k A) :: 'a^'n^'n) = A"
 | 
|  |    417 |     by (vector row_def)
 | 
|  |    418 |   show ?thesis
 | 
|  |    419 |     unfolding det_row_add [of i] det_row_mul[of i] det_identical_rows[OF ij th] th2
 | 
|  |    420 |     by simp
 | 
|  |    421 | qed
 | 
|  |    422 | 
 | 
|  |    423 | lemma det_row_span:
 | 
|  |    424 |   fixes A :: "'a:: ordered_idom^'n^'n::finite"
 | 
|  |    425 |   assumes x: "x \<in> span {row j A |j. j \<noteq> i}"
 | 
|  |    426 |   shows "det (\<chi> k. if k = i then row i A + x else row k A) = det A"
 | 
|  |    427 | proof-
 | 
|  |    428 |   let ?U = "UNIV :: 'n set"
 | 
|  |    429 |   let ?S = "{row j A |j. j \<noteq> i}"
 | 
|  |    430 |   let ?d = "\<lambda>x. det (\<chi> k. if k = i then x else row k A)"
 | 
|  |    431 |   let ?P = "\<lambda>x. ?d (row i A + x) = det A"
 | 
|  |    432 |   {fix k
 | 
|  |    433 | 
 | 
|  |    434 |     have "(if k = i then row i A + 0 else row k A) = row k A" by simp}
 | 
|  |    435 |   then have P0: "?P 0"
 | 
|  |    436 |     apply -
 | 
|  |    437 |     apply (rule cong[of det, OF refl])
 | 
|  |    438 |     by (vector row_def)
 | 
|  |    439 |   moreover
 | 
|  |    440 |   {fix c z y assume zS: "z \<in> ?S" and Py: "?P y"
 | 
|  |    441 |     from zS obtain j where j: "z = row j A" "i \<noteq> j" by blast
 | 
|  |    442 |     let ?w = "row i A + y"
 | 
|  |    443 |     have th0: "row i A + (c*s z + y) = ?w + c*s z" by vector
 | 
|  |    444 |     have thz: "?d z = 0"
 | 
|  |    445 |       apply (rule det_identical_rows[OF j(2)])
 | 
|  |    446 |       using j by (vector row_def)
 | 
|  |    447 |     have "?d (row i A + (c*s z + y)) = ?d (?w + c*s z)" unfolding th0 ..
 | 
|  |    448 |     then have "?P (c*s z + y)" unfolding thz Py det_row_mul[of i] det_row_add[of i]
 | 
|  |    449 |       by simp }
 | 
|  |    450 | 
 | 
|  |    451 |   ultimately show ?thesis
 | 
|  |    452 |     apply -
 | 
|  |    453 |     apply (rule span_induct_alt[of ?P ?S, OF P0])
 | 
|  |    454 |     apply blast
 | 
|  |    455 |     apply (rule x)
 | 
|  |    456 |     done
 | 
|  |    457 | qed
 | 
|  |    458 | 
 | 
|  |    459 | (* ------------------------------------------------------------------------- *)
 | 
|  |    460 | (* May as well do this, though it's a bit unsatisfactory since it ignores    *)
 | 
|  |    461 | (* exact duplicates by considering the rows/columns as a set.                *)
 | 
|  |    462 | (* ------------------------------------------------------------------------- *)
 | 
|  |    463 | 
 | 
|  |    464 | lemma det_dependent_rows:
 | 
|  |    465 |   fixes A:: "'a::ordered_idom^'n^'n::finite"
 | 
|  |    466 |   assumes d: "dependent (rows A)"
 | 
|  |    467 |   shows "det A = 0"
 | 
|  |    468 | proof-
 | 
|  |    469 |   let ?U = "UNIV :: 'n set"
 | 
|  |    470 |   from d obtain i where i: "row i A \<in> span (rows A - {row i A})"
 | 
|  |    471 |     unfolding dependent_def rows_def by blast
 | 
|  |    472 |   {fix j k assume jk: "j \<noteq> k"
 | 
|  |    473 |     and c: "row j A = row k A"
 | 
|  |    474 |     from det_identical_rows[OF jk c] have ?thesis .}
 | 
|  |    475 |   moreover
 | 
|  |    476 |   {assume H: "\<And> i j. i \<noteq> j \<Longrightarrow> row i A \<noteq> row j A"
 | 
|  |    477 |     have th0: "- row i A \<in> span {row j A|j. j \<noteq> i}"
 | 
|  |    478 |       apply (rule span_neg)
 | 
|  |    479 |       apply (rule set_rev_mp)
 | 
|  |    480 |       apply (rule i)
 | 
|  |    481 |       apply (rule span_mono)
 | 
|  |    482 |       using H i by (auto simp add: rows_def)
 | 
|  |    483 |     from det_row_span[OF th0]
 | 
|  |    484 |     have "det A = det (\<chi> k. if k = i then 0 *s 1 else row k A)"
 | 
|  |    485 |       unfolding right_minus vector_smult_lzero ..
 | 
|  |    486 |     with det_row_mul[of i "0::'a" "\<lambda>i. 1"]
 | 
|  |    487 |     have "det A = 0" by simp}
 | 
|  |    488 |   ultimately show ?thesis by blast
 | 
|  |    489 | qed
 | 
|  |    490 | 
 | 
|  |    491 | lemma det_dependent_columns: assumes d: "dependent(columns (A::'a::ordered_idom^'n^'n::finite))" shows "det A = 0"
 | 
|  |    492 | by (metis d det_dependent_rows rows_transp det_transp)
 | 
|  |    493 | 
 | 
|  |    494 | (* ------------------------------------------------------------------------- *)
 | 
|  |    495 | (* Multilinearity and the multiplication formula.                            *)
 | 
|  |    496 | (* ------------------------------------------------------------------------- *)
 | 
|  |    497 | 
 | 
|  |    498 | lemma Cart_lambda_cong: "(\<And>x. f x = g x) \<Longrightarrow> (Cart_lambda f::'a^'n) = (Cart_lambda g :: 'a^'n)"
 | 
|  |    499 |   apply (rule iffD1[OF Cart_lambda_unique]) by vector
 | 
|  |    500 | 
 | 
|  |    501 | lemma det_linear_row_setsum:
 | 
|  |    502 |   assumes fS: "finite S"
 | 
|  |    503 |   shows "det ((\<chi> i. if i = k then setsum (a i) S else c i)::'a::comm_ring_1^'n^'n::finite) = setsum (\<lambda>j. det ((\<chi> i. if i = k then a  i j else c i)::'a^'n^'n)) S"
 | 
|  |    504 | proof(induct rule: finite_induct[OF fS])
 | 
|  |    505 |   case 1 thus ?case apply simp  unfolding setsum_empty det_row_0[of k] ..
 | 
|  |    506 | next
 | 
|  |    507 |   case (2 x F)
 | 
|  |    508 |   then  show ?case by (simp add: det_row_add cong del: if_weak_cong)
 | 
|  |    509 | qed
 | 
|  |    510 | 
 | 
|  |    511 | lemma finite_bounded_functions:
 | 
|  |    512 |   assumes fS: "finite S"
 | 
|  |    513 |   shows "finite {f. (\<forall>i \<in> {1.. (k::nat)}. f i \<in> S) \<and> (\<forall>i. i \<notin> {1 .. k} \<longrightarrow> f i = i)}"
 | 
|  |    514 | proof(induct k)
 | 
|  |    515 |   case 0
 | 
|  |    516 |   have th: "{f. \<forall>i. f i = i} = {id}" by (auto intro: ext)
 | 
|  |    517 |   show ?case by (auto simp add: th)
 | 
|  |    518 | next
 | 
|  |    519 |   case (Suc k)
 | 
|  |    520 |   let ?f = "\<lambda>(y::nat,g) i. if i = Suc k then y else g i"
 | 
|  |    521 |   let ?S = "?f ` (S \<times> {f. (\<forall>i\<in>{1..k}. f i \<in> S) \<and> (\<forall>i. i \<notin> {1..k} \<longrightarrow> f i = i)})"
 | 
|  |    522 |   have "?S = {f. (\<forall>i\<in>{1.. Suc k}. f i \<in> S) \<and> (\<forall>i. i \<notin> {1.. Suc k} \<longrightarrow> f i = i)}"
 | 
|  |    523 |     apply (auto simp add: image_iff)
 | 
|  |    524 |     apply (rule_tac x="x (Suc k)" in bexI)
 | 
|  |    525 |     apply (rule_tac x = "\<lambda>i. if i = Suc k then i else x i" in exI)
 | 
|  |    526 |     apply (auto intro: ext)
 | 
|  |    527 |     done
 | 
|  |    528 |   with finite_imageI[OF finite_cartesian_product[OF fS Suc.hyps(1)], of ?f]
 | 
|  |    529 |   show ?case by metis
 | 
|  |    530 | qed
 | 
|  |    531 | 
 | 
|  |    532 | 
 | 
|  |    533 | lemma eq_id_iff[simp]: "(\<forall>x. f x = x) = (f = id)" by (auto intro: ext)
 | 
|  |    534 | 
 | 
|  |    535 | lemma det_linear_rows_setsum_lemma:
 | 
|  |    536 |   assumes fS: "finite S" and fT: "finite T"
 | 
|  |    537 |   shows "det((\<chi> i. if i \<in> T then setsum (a i) S else c i):: 'a::comm_ring_1^'n^'n::finite) =
 | 
|  |    538 |              setsum (\<lambda>f. det((\<chi> i. if i \<in> T then a i (f i) else c i)::'a^'n^'n))
 | 
|  |    539 |                  {f. (\<forall>i \<in> T. f i \<in> S) \<and> (\<forall>i. i \<notin> T \<longrightarrow> f i = i)}"
 | 
|  |    540 | using fT
 | 
|  |    541 | proof(induct T arbitrary: a c set: finite)
 | 
|  |    542 |   case empty
 | 
|  |    543 |   have th0: "\<And>x y. (\<chi> i. if i \<in> {} then x i else y i) = (\<chi> i. y i)" by vector
 | 
|  |    544 |   from "empty.prems"  show ?case unfolding th0 by simp
 | 
|  |    545 | next
 | 
|  |    546 |   case (insert z T a c)
 | 
|  |    547 |   let ?F = "\<lambda>T. {f. (\<forall>i \<in> T. f i \<in> S) \<and> (\<forall>i. i \<notin> T \<longrightarrow> f i = i)}"
 | 
|  |    548 |   let ?h = "\<lambda>(y,g) i. if i = z then y else g i"
 | 
|  |    549 |   let ?k = "\<lambda>h. (h(z),(\<lambda>i. if i = z then i else h i))"
 | 
|  |    550 |   let ?s = "\<lambda> k a c f. det((\<chi> i. if i \<in> T then a i (f i) else c i)::'a^'n^'n)"
 | 
|  |    551 |   let ?c = "\<lambda>i. if i = z then a i j else c i"
 | 
|  |    552 |   have thif: "\<And>a b c d. (if a \<or> b then c else d) = (if a then c else if b then c else d)" by simp
 | 
|  |    553 |   have thif2: "\<And>a b c d e. (if a then b else if c then d else e) =
 | 
|  |    554 |      (if c then (if a then b else d) else (if a then b else e))" by simp
 | 
|  |    555 |   from `z \<notin> T` have nz: "\<And>i. i \<in> T \<Longrightarrow> i = z \<longleftrightarrow> False" by auto
 | 
|  |    556 |   have "det (\<chi> i. if i \<in> insert z T then setsum (a i) S else c i) =
 | 
|  |    557 |         det (\<chi> i. if i = z then setsum (a i) S
 | 
|  |    558 |                  else if i \<in> T then setsum (a i) S else c i)"
 | 
|  |    559 |     unfolding insert_iff thif ..
 | 
|  |    560 |   also have "\<dots> = (\<Sum>j\<in>S. det (\<chi> i. if i \<in> T then setsum (a i) S
 | 
|  |    561 |                     else if i = z then a i j else c i))"
 | 
|  |    562 |     unfolding det_linear_row_setsum[OF fS]
 | 
|  |    563 |     apply (subst thif2)
 | 
|  |    564 |     using nz by (simp cong del: if_weak_cong cong add: if_cong)
 | 
|  |    565 |   finally have tha:
 | 
|  |    566 |     "det (\<chi> i. if i \<in> insert z T then setsum (a i) S else c i) =
 | 
|  |    567 |      (\<Sum>(j, f)\<in>S \<times> ?F T. det (\<chi> i. if i \<in> T then a i (f i)
 | 
|  |    568 |                                 else if i = z then a i j
 | 
|  |    569 |                                 else c i))"
 | 
|  |    570 |     unfolding  insert.hyps unfolding setsum_cartesian_product by blast
 | 
|  |    571 |   show ?case unfolding tha
 | 
|  |    572 |     apply(rule setsum_eq_general_reverses[where h= "?h" and k= "?k"],
 | 
|  |    573 |       blast intro: finite_cartesian_product fS finite,
 | 
|  |    574 |       blast intro: finite_cartesian_product fS finite)
 | 
|  |    575 |     using `z \<notin> T`
 | 
|  |    576 |     apply (auto intro: ext)
 | 
|  |    577 |     apply (rule cong[OF refl[of det]])
 | 
|  |    578 |     by vector
 | 
|  |    579 | qed
 | 
|  |    580 | 
 | 
|  |    581 | lemma det_linear_rows_setsum:
 | 
|  |    582 |   assumes fS: "finite (S::'n::finite set)"
 | 
|  |    583 |   shows "det (\<chi> i. setsum (a i) S) = setsum (\<lambda>f. det (\<chi> i. a i (f i) :: 'a::comm_ring_1 ^ 'n^'n::finite)) {f. \<forall>i. f i \<in> S}"
 | 
|  |    584 | proof-
 | 
|  |    585 |   have th0: "\<And>x y. ((\<chi> i. if i \<in> (UNIV:: 'n set) then x i else y i) :: 'a^'n^'n) = (\<chi> i. x i)" by vector
 | 
|  |    586 | 
 | 
|  |    587 |   from det_linear_rows_setsum_lemma[OF fS, of "UNIV :: 'n set" a, unfolded th0, OF finite] show ?thesis by simp
 | 
|  |    588 | qed
 | 
|  |    589 | 
 | 
|  |    590 | lemma matrix_mul_setsum_alt:
 | 
|  |    591 |   fixes A B :: "'a::comm_ring_1^'n^'n::finite"
 | 
|  |    592 |   shows "A ** B = (\<chi> i. setsum (\<lambda>k. A$i$k *s B $ k) (UNIV :: 'n set))"
 | 
|  |    593 |   by (vector matrix_matrix_mult_def setsum_component)
 | 
|  |    594 | 
 | 
|  |    595 | lemma det_rows_mul:
 | 
|  |    596 |   "det((\<chi> i. c i *s a i)::'a::comm_ring_1^'n^'n::finite) =
 | 
|  |    597 |   setprod (\<lambda>i. c i) (UNIV:: 'n set) * det((\<chi> i. a i)::'a^'n^'n)"
 | 
|  |    598 | proof (simp add: det_def setsum_right_distrib cong add: setprod_cong, rule setsum_cong2)
 | 
|  |    599 |   let ?U = "UNIV :: 'n set"
 | 
|  |    600 |   let ?PU = "{p. p permutes ?U}"
 | 
|  |    601 |   fix p assume pU: "p \<in> ?PU"
 | 
|  |    602 |   let ?s = "of_int (sign p)"
 | 
|  |    603 |   from pU have p: "p permutes ?U" by blast
 | 
|  |    604 |   have "setprod (\<lambda>i. c i * a i $ p i) ?U = setprod c ?U * setprod (\<lambda>i. a i $ p i) ?U"
 | 
|  |    605 |     unfolding setprod_timesf ..
 | 
|  |    606 |   then show "?s * (\<Prod>xa\<in>?U. c xa * a xa $ p xa) =
 | 
|  |    607 |         setprod c ?U * (?s* (\<Prod>xa\<in>?U. a xa $ p xa))" by (simp add: ring_simps)
 | 
|  |    608 | qed
 | 
|  |    609 | 
 | 
|  |    610 | lemma det_mul:
 | 
|  |    611 |   fixes A B :: "'a::ordered_idom^'n^'n::finite"
 | 
|  |    612 |   shows "det (A ** B) = det A * det B"
 | 
|  |    613 | proof-
 | 
|  |    614 |   let ?U = "UNIV :: 'n set"
 | 
|  |    615 |   let ?F = "{f. (\<forall>i\<in> ?U. f i \<in> ?U) \<and> (\<forall>i. i \<notin> ?U \<longrightarrow> f i = i)}"
 | 
|  |    616 |   let ?PU = "{p. p permutes ?U}"
 | 
|  |    617 |   have fU: "finite ?U" by simp
 | 
|  |    618 |   have fF: "finite ?F" by (rule finite)
 | 
|  |    619 |   {fix p assume p: "p permutes ?U"
 | 
|  |    620 | 
 | 
|  |    621 |     have "p \<in> ?F" unfolding mem_Collect_eq permutes_in_image[OF p]
 | 
|  |    622 |       using p[unfolded permutes_def] by simp}
 | 
|  |    623 |   then have PUF: "?PU \<subseteq> ?F"  by blast
 | 
|  |    624 |   {fix f assume fPU: "f \<in> ?F - ?PU"
 | 
|  |    625 |     have fUU: "f ` ?U \<subseteq> ?U" using fPU by auto
 | 
|  |    626 |     from fPU have f: "\<forall>i \<in> ?U. f i \<in> ?U"
 | 
|  |    627 |       "\<forall>i. i \<notin> ?U \<longrightarrow> f i = i" "\<not>(\<forall>y. \<exists>!x. f x = y)" unfolding permutes_def
 | 
|  |    628 |       by auto
 | 
|  |    629 | 
 | 
|  |    630 |     let ?A = "(\<chi> i. A$i$f i *s B$f i) :: 'a^'n^'n"
 | 
|  |    631 |     let ?B = "(\<chi> i. B$f i) :: 'a^'n^'n"
 | 
|  |    632 |     {assume fni: "\<not> inj_on f ?U"
 | 
|  |    633 |       then obtain i j where ij: "f i = f j" "i \<noteq> j"
 | 
|  |    634 |         unfolding inj_on_def by blast
 | 
|  |    635 |       from ij
 | 
|  |    636 |       have rth: "row i ?B = row j ?B" by (vector row_def)
 | 
|  |    637 |       from det_identical_rows[OF ij(2) rth]
 | 
|  |    638 |       have "det (\<chi> i. A$i$f i *s B$f i) = 0"
 | 
|  |    639 |         unfolding det_rows_mul by simp}
 | 
|  |    640 |     moreover
 | 
|  |    641 |     {assume fi: "inj_on f ?U"
 | 
|  |    642 |       from f fi have fith: "\<And>i j. f i = f j \<Longrightarrow> i = j"
 | 
|  |    643 |         unfolding inj_on_def by metis
 | 
|  |    644 |       note fs = fi[unfolded surjective_iff_injective_gen[OF fU fU refl fUU, symmetric]]
 | 
|  |    645 | 
 | 
|  |    646 |       {fix y
 | 
|  |    647 |         from fs f have "\<exists>x. f x = y" by blast
 | 
|  |    648 |         then obtain x where x: "f x = y" by blast
 | 
|  |    649 |         {fix z assume z: "f z = y" from fith x z have "z = x" by metis}
 | 
|  |    650 |         with x have "\<exists>!x. f x = y" by blast}
 | 
|  |    651 |       with f(3) have "det (\<chi> i. A$i$f i *s B$f i) = 0" by blast}
 | 
|  |    652 |     ultimately have "det (\<chi> i. A$i$f i *s B$f i) = 0" by blast}
 | 
|  |    653 |   hence zth: "\<forall> f\<in> ?F - ?PU. det (\<chi> i. A$i$f i *s B$f i) = 0" by simp
 | 
|  |    654 |   {fix p assume pU: "p \<in> ?PU"
 | 
|  |    655 |     from pU have p: "p permutes ?U" by blast
 | 
|  |    656 |     let ?s = "\<lambda>p. of_int (sign p)"
 | 
|  |    657 |     let ?f = "\<lambda>q. ?s p * (\<Prod>i\<in> ?U. A $ i $ p i) *
 | 
|  |    658 |                (?s q * (\<Prod>i\<in> ?U. B $ i $ q i))"
 | 
|  |    659 |     have "(setsum (\<lambda>q. ?s q *
 | 
|  |    660 |             (\<Prod>i\<in> ?U. (\<chi> i. A $ i $ p i *s B $ p i :: 'a^'n^'n) $ i $ q i)) ?PU) =
 | 
|  |    661 |         (setsum (\<lambda>q. ?s p * (\<Prod>i\<in> ?U. A $ i $ p i) *
 | 
|  |    662 |                (?s q * (\<Prod>i\<in> ?U. B $ i $ q i))) ?PU)"
 | 
|  |    663 |       unfolding sum_permutations_compose_right[OF permutes_inv[OF p], of ?f]
 | 
|  |    664 |     proof(rule setsum_cong2)
 | 
|  |    665 |       fix q assume qU: "q \<in> ?PU"
 | 
|  |    666 |       hence q: "q permutes ?U" by blast
 | 
|  |    667 |       from p q have pp: "permutation p" and pq: "permutation q"
 | 
|  |    668 |         unfolding permutation_permutes by auto
 | 
|  |    669 |       have th00: "of_int (sign p) * of_int (sign p) = (1::'a)"
 | 
|  |    670 |         "\<And>a. of_int (sign p) * (of_int (sign p) * a) = a"
 | 
|  |    671 |         unfolding mult_assoc[symmetric] unfolding of_int_mult[symmetric]
 | 
|  |    672 |         by (simp_all add: sign_idempotent)
 | 
|  |    673 |       have ths: "?s q = ?s p * ?s (q o inv p)"
 | 
|  |    674 |         using pp pq permutation_inverse[OF pp] sign_inverse[OF pp]
 | 
|  |    675 |         by (simp add:  th00 mult_ac sign_idempotent sign_compose)
 | 
|  |    676 |       have th001: "setprod (\<lambda>i. B$i$ q (inv p i)) ?U = setprod ((\<lambda>i. B$i$ q (inv p i)) o p) ?U"
 | 
|  |    677 |         by (rule setprod_permute[OF p])
 | 
|  |    678 |       have thp: "setprod (\<lambda>i. (\<chi> i. A$i$p i *s B$p i :: 'a^'n^'n) $i $ q i) ?U = setprod (\<lambda>i. A$i$p i) ?U * setprod (\<lambda>i. B$i$ q (inv p i)) ?U"
 | 
|  |    679 |         unfolding th001 setprod_timesf[symmetric] o_def permutes_inverses[OF p]
 | 
|  |    680 |         apply (rule setprod_cong[OF refl])
 | 
|  |    681 |         using permutes_in_image[OF q] by vector
 | 
|  |    682 |       show "?s q * setprod (\<lambda>i. (((\<chi> i. A$i$p i *s B$p i) :: 'a^'n^'n)$i$q i)) ?U = ?s p * (setprod (\<lambda>i. A$i$p i) ?U) * (?s (q o inv p) * setprod (\<lambda>i. B$i$(q o inv p) i) ?U)"
 | 
|  |    683 |         using ths thp pp pq permutation_inverse[OF pp] sign_inverse[OF pp]
 | 
|  |    684 |         by (simp add: sign_nz th00 ring_simps sign_idempotent sign_compose)
 | 
|  |    685 |     qed
 | 
|  |    686 |   }
 | 
|  |    687 |   then have th2: "setsum (\<lambda>f. det (\<chi> i. A$i$f i *s B$f i)) ?PU = det A * det B"
 | 
|  |    688 |     unfolding det_def setsum_product
 | 
|  |    689 |     by (rule setsum_cong2)
 | 
|  |    690 |   have "det (A**B) = setsum (\<lambda>f.  det (\<chi> i. A $ i $ f i *s B $ f i)) ?F"
 | 
|  |    691 |     unfolding matrix_mul_setsum_alt det_linear_rows_setsum[OF fU] by simp
 | 
|  |    692 |   also have "\<dots> = setsum (\<lambda>f. det (\<chi> i. A$i$f i *s B$f i)) ?PU"
 | 
|  |    693 |     using setsum_mono_zero_cong_left[OF fF PUF zth, symmetric]
 | 
|  |    694 |     unfolding det_rows_mul by auto
 | 
|  |    695 |   finally show ?thesis unfolding th2 .
 | 
|  |    696 | qed
 | 
|  |    697 | 
 | 
|  |    698 | (* ------------------------------------------------------------------------- *)
 | 
|  |    699 | (* Relation to invertibility.                                                *)
 | 
|  |    700 | (* ------------------------------------------------------------------------- *)
 | 
|  |    701 | 
 | 
|  |    702 | lemma invertible_left_inverse:
 | 
|  |    703 |   fixes A :: "real^'n^'n::finite"
 | 
|  |    704 |   shows "invertible A \<longleftrightarrow> (\<exists>(B::real^'n^'n). B** A = mat 1)"
 | 
|  |    705 |   by (metis invertible_def matrix_left_right_inverse)
 | 
|  |    706 | 
 | 
|  |    707 | lemma invertible_righ_inverse:
 | 
|  |    708 |   fixes A :: "real^'n^'n::finite"
 | 
|  |    709 |   shows "invertible A \<longleftrightarrow> (\<exists>(B::real^'n^'n). A** B = mat 1)"
 | 
|  |    710 |   by (metis invertible_def matrix_left_right_inverse)
 | 
|  |    711 | 
 | 
|  |    712 | lemma invertible_det_nz:
 | 
|  |    713 |   fixes A::"real ^'n^'n::finite"
 | 
|  |    714 |   shows "invertible A \<longleftrightarrow> det A \<noteq> 0"
 | 
|  |    715 | proof-
 | 
|  |    716 |   {assume "invertible A"
 | 
|  |    717 |     then obtain B :: "real ^'n^'n" where B: "A ** B = mat 1"
 | 
|  |    718 |       unfolding invertible_righ_inverse by blast
 | 
|  |    719 |     hence "det (A ** B) = det (mat 1 :: real ^'n^'n)" by simp
 | 
|  |    720 |     hence "det A \<noteq> 0"
 | 
|  |    721 |       apply (simp add: det_mul det_I) by algebra }
 | 
|  |    722 |   moreover
 | 
|  |    723 |   {assume H: "\<not> invertible A"
 | 
|  |    724 |     let ?U = "UNIV :: 'n set"
 | 
|  |    725 |     have fU: "finite ?U" by simp
 | 
|  |    726 |     from H obtain c i where c: "setsum (\<lambda>i. c i *s row i A) ?U = 0"
 | 
|  |    727 |       and iU: "i \<in> ?U" and ci: "c i \<noteq> 0"
 | 
|  |    728 |       unfolding invertible_righ_inverse
 | 
|  |    729 |       unfolding matrix_right_invertible_independent_rows by blast
 | 
|  |    730 |     have stupid: "\<And>(a::real^'n) b. a + b = 0 \<Longrightarrow> -a = b"
 | 
|  |    731 |       apply (drule_tac f="op + (- a)" in cong[OF refl])
 | 
|  |    732 |       apply (simp only: ab_left_minus add_assoc[symmetric])
 | 
|  |    733 |       apply simp
 | 
|  |    734 |       done
 | 
|  |    735 |     from c ci
 | 
|  |    736 |     have thr0: "- row i A = setsum (\<lambda>j. (1/ c i) *s (c j *s row j A)) (?U - {i})"
 | 
|  |    737 |       unfolding setsum_diff1'[OF fU iU] setsum_cmul
 | 
|  |    738 |       apply -
 | 
|  |    739 |       apply (rule vector_mul_lcancel_imp[OF ci])
 | 
|  |    740 |       apply (auto simp add: vector_smult_assoc vector_smult_rneg field_simps)
 | 
|  |    741 |       unfolding stupid ..
 | 
|  |    742 |     have thr: "- row i A \<in> span {row j A| j. j \<noteq> i}"
 | 
|  |    743 |       unfolding thr0
 | 
|  |    744 |       apply (rule span_setsum)
 | 
|  |    745 |       apply simp
 | 
|  |    746 |       apply (rule ballI)
 | 
|  |    747 |       apply (rule span_mul)+
 | 
|  |    748 |       apply (rule span_superset)
 | 
|  |    749 |       apply auto
 | 
|  |    750 |       done
 | 
|  |    751 |     let ?B = "(\<chi> k. if k = i then 0 else row k A) :: real ^'n^'n"
 | 
|  |    752 |     have thrb: "row i ?B = 0" using iU by (vector row_def)
 | 
|  |    753 |     have "det A = 0"
 | 
|  |    754 |       unfolding det_row_span[OF thr, symmetric] right_minus
 | 
|  |    755 |       unfolding  det_zero_row[OF thrb]  ..}
 | 
|  |    756 |   ultimately show ?thesis by blast
 | 
|  |    757 | qed
 | 
|  |    758 | 
 | 
|  |    759 | (* ------------------------------------------------------------------------- *)
 | 
|  |    760 | (* Cramer's rule.                                                            *)
 | 
|  |    761 | (* ------------------------------------------------------------------------- *)
 | 
|  |    762 | 
 | 
|  |    763 | lemma cramer_lemma_transp:
 | 
|  |    764 |   fixes A:: "'a::ordered_idom^'n^'n::finite" and x :: "'a ^'n::finite"
 | 
|  |    765 |   shows "det ((\<chi> i. if i = k then setsum (\<lambda>i. x$i *s row i A) (UNIV::'n set)
 | 
|  |    766 |                            else row i A)::'a^'n^'n) = x$k * det A"
 | 
|  |    767 |   (is "?lhs = ?rhs")
 | 
|  |    768 | proof-
 | 
|  |    769 |   let ?U = "UNIV :: 'n set"
 | 
|  |    770 |   let ?Uk = "?U - {k}"
 | 
|  |    771 |   have U: "?U = insert k ?Uk" by blast
 | 
|  |    772 |   have fUk: "finite ?Uk" by simp
 | 
|  |    773 |   have kUk: "k \<notin> ?Uk" by simp
 | 
|  |    774 |   have th00: "\<And>k s. x$k *s row k A + s = (x$k - 1) *s row k A + row k A + s"
 | 
|  |    775 |     by (vector ring_simps)
 | 
|  |    776 |   have th001: "\<And>f k . (\<lambda>x. if x = k then f k else f x) = f" by (auto intro: ext)
 | 
|  |    777 |   have "(\<chi> i. row i A) = A" by (vector row_def)
 | 
|  |    778 |   then have thd1: "det (\<chi> i. row i A) = det A"  by simp
 | 
|  |    779 |   have thd0: "det (\<chi> i. if i = k then row k A + (\<Sum>i \<in> ?Uk. x $ i *s row i A) else row i A) = det A"
 | 
|  |    780 |     apply (rule det_row_span)
 | 
|  |    781 |     apply (rule span_setsum[OF fUk])
 | 
|  |    782 |     apply (rule ballI)
 | 
|  |    783 |     apply (rule span_mul)
 | 
|  |    784 |     apply (rule span_superset)
 | 
|  |    785 |     apply auto
 | 
|  |    786 |     done
 | 
|  |    787 |   show "?lhs = x$k * det A"
 | 
|  |    788 |     apply (subst U)
 | 
|  |    789 |     unfolding setsum_insert[OF fUk kUk]
 | 
|  |    790 |     apply (subst th00)
 | 
|  |    791 |     unfolding add_assoc
 | 
|  |    792 |     apply (subst det_row_add)
 | 
|  |    793 |     unfolding thd0
 | 
|  |    794 |     unfolding det_row_mul
 | 
|  |    795 |     unfolding th001[of k "\<lambda>i. row i A"]
 | 
|  |    796 |     unfolding thd1  by (simp add: ring_simps)
 | 
|  |    797 | qed
 | 
|  |    798 | 
 | 
|  |    799 | lemma cramer_lemma:
 | 
|  |    800 |   fixes A :: "'a::ordered_idom ^'n^'n::finite"
 | 
|  |    801 |   shows "det((\<chi> i j. if j = k then (A *v x)$i else A$i$j):: 'a^'n^'n) = x$k * det A"
 | 
|  |    802 | proof-
 | 
|  |    803 |   let ?U = "UNIV :: 'n set"
 | 
|  |    804 |   have stupid: "\<And>c. setsum (\<lambda>i. c i *s row i (transp A)) ?U = setsum (\<lambda>i. c i *s column i A) ?U"
 | 
|  |    805 |     by (auto simp add: row_transp intro: setsum_cong2)
 | 
|  |    806 |   show ?thesis  unfolding matrix_mult_vsum
 | 
|  |    807 |   unfolding cramer_lemma_transp[of k x "transp A", unfolded det_transp, symmetric]
 | 
|  |    808 |   unfolding stupid[of "\<lambda>i. x$i"]
 | 
|  |    809 |   apply (subst det_transp[symmetric])
 | 
|  |    810 |   apply (rule cong[OF refl[of det]]) by (vector transp_def column_def row_def)
 | 
|  |    811 | qed
 | 
|  |    812 | 
 | 
|  |    813 | lemma cramer:
 | 
|  |    814 |   fixes A ::"real^'n^'n::finite"
 | 
|  |    815 |   assumes d0: "det A \<noteq> 0"
 | 
|  |    816 |   shows "A *v x = b \<longleftrightarrow> x = (\<chi> k. det(\<chi> i j. if j=k then b$i else A$i$j :: real^'n^'n) / det A)"
 | 
|  |    817 | proof-
 | 
|  |    818 |   from d0 obtain B where B: "A ** B = mat 1" "B ** A = mat 1"
 | 
|  |    819 |     unfolding invertible_det_nz[symmetric] invertible_def by blast
 | 
|  |    820 |   have "(A ** B) *v b = b" by (simp add: B matrix_vector_mul_lid)
 | 
|  |    821 |   hence "A *v (B *v b) = b" by (simp add: matrix_vector_mul_assoc)
 | 
|  |    822 |   then have xe: "\<exists>x. A*v x = b" by blast
 | 
|  |    823 |   {fix x assume x: "A *v x = b"
 | 
|  |    824 |   have "x = (\<chi> k. det(\<chi> i j. if j=k then b$i else A$i$j :: real^'n^'n) / det A)"
 | 
|  |    825 |     unfolding x[symmetric]
 | 
|  |    826 |     using d0 by (simp add: Cart_eq cramer_lemma field_simps)}
 | 
|  |    827 |   with xe show ?thesis by auto
 | 
|  |    828 | qed
 | 
|  |    829 | 
 | 
|  |    830 | (* ------------------------------------------------------------------------- *)
 | 
|  |    831 | (* Orthogonality of a transformation and matrix.                             *)
 | 
|  |    832 | (* ------------------------------------------------------------------------- *)
 | 
|  |    833 | 
 | 
|  |    834 | definition "orthogonal_transformation f \<longleftrightarrow> linear f \<and> (\<forall>v w. f v \<bullet> f w = v \<bullet> w)"
 | 
|  |    835 | 
 | 
|  |    836 | lemma orthogonal_transformation: "orthogonal_transformation f \<longleftrightarrow> linear f \<and> (\<forall>(v::real ^_). norm (f v) = norm v)"
 | 
|  |    837 |   unfolding orthogonal_transformation_def
 | 
|  |    838 |   apply auto
 | 
|  |    839 |   apply (erule_tac x=v in allE)+
 | 
|  |    840 |   apply (simp add: real_vector_norm_def)
 | 
|  |    841 |   by (simp add: dot_norm  linear_add[symmetric])
 | 
|  |    842 | 
 | 
|  |    843 | definition "orthogonal_matrix (Q::'a::semiring_1^'n^'n) \<longleftrightarrow> transp Q ** Q = mat 1 \<and> Q ** transp Q = mat 1"
 | 
|  |    844 | 
 | 
|  |    845 | lemma orthogonal_matrix: "orthogonal_matrix (Q:: real ^'n^'n::finite)  \<longleftrightarrow> transp Q ** Q = mat 1"
 | 
|  |    846 |   by (metis matrix_left_right_inverse orthogonal_matrix_def)
 | 
|  |    847 | 
 | 
|  |    848 | lemma orthogonal_matrix_id: "orthogonal_matrix (mat 1 :: _^'n^'n::finite)"
 | 
|  |    849 |   by (simp add: orthogonal_matrix_def transp_mat matrix_mul_lid)
 | 
|  |    850 | 
 | 
|  |    851 | lemma orthogonal_matrix_mul:
 | 
|  |    852 |   fixes A :: "real ^'n^'n::finite"
 | 
|  |    853 |   assumes oA : "orthogonal_matrix A"
 | 
|  |    854 |   and oB: "orthogonal_matrix B"
 | 
|  |    855 |   shows "orthogonal_matrix(A ** B)"
 | 
|  |    856 |   using oA oB
 | 
|  |    857 |   unfolding orthogonal_matrix matrix_transp_mul
 | 
|  |    858 |   apply (subst matrix_mul_assoc)
 | 
|  |    859 |   apply (subst matrix_mul_assoc[symmetric])
 | 
|  |    860 |   by (simp add: matrix_mul_rid)
 | 
|  |    861 | 
 | 
|  |    862 | lemma orthogonal_transformation_matrix:
 | 
|  |    863 |   fixes f:: "real^'n \<Rightarrow> real^'n::finite"
 | 
|  |    864 |   shows "orthogonal_transformation f \<longleftrightarrow> linear f \<and> orthogonal_matrix(matrix f)"
 | 
|  |    865 |   (is "?lhs \<longleftrightarrow> ?rhs")
 | 
|  |    866 | proof-
 | 
|  |    867 |   let ?mf = "matrix f"
 | 
|  |    868 |   let ?ot = "orthogonal_transformation f"
 | 
|  |    869 |   let ?U = "UNIV :: 'n set"
 | 
|  |    870 |   have fU: "finite ?U" by simp
 | 
|  |    871 |   let ?m1 = "mat 1 :: real ^'n^'n"
 | 
|  |    872 |   {assume ot: ?ot
 | 
|  |    873 |     from ot have lf: "linear f" and fd: "\<forall>v w. f v \<bullet> f w = v \<bullet> w"
 | 
|  |    874 |       unfolding  orthogonal_transformation_def orthogonal_matrix by blast+
 | 
|  |    875 |     {fix i j
 | 
|  |    876 |       let ?A = "transp ?mf ** ?mf"
 | 
|  |    877 |       have th0: "\<And>b (x::'a::comm_ring_1). (if b then 1 else 0)*x = (if b then x else 0)"
 | 
|  |    878 |         "\<And>b (x::'a::comm_ring_1). x*(if b then 1 else 0) = (if b then x else 0)"
 | 
|  |    879 |         by simp_all
 | 
|  |    880 |       from fd[rule_format, of "basis i" "basis j", unfolded matrix_works[OF lf, symmetric] dot_matrix_vector_mul]
 | 
|  |    881 |       have "?A$i$j = ?m1 $ i $ j"
 | 
|  |    882 |         by (simp add: dot_def matrix_matrix_mult_def columnvector_def rowvector_def basis_def th0 setsum_delta[OF fU] mat_def)}
 | 
|  |    883 |     hence "orthogonal_matrix ?mf" unfolding orthogonal_matrix by vector
 | 
|  |    884 |     with lf have ?rhs by blast}
 | 
|  |    885 |   moreover
 | 
|  |    886 |   {assume lf: "linear f" and om: "orthogonal_matrix ?mf"
 | 
|  |    887 |     from lf om have ?lhs
 | 
|  |    888 |       unfolding orthogonal_matrix_def norm_eq orthogonal_transformation
 | 
|  |    889 |       unfolding matrix_works[OF lf, symmetric]
 | 
|  |    890 |       apply (subst dot_matrix_vector_mul)
 | 
|  |    891 |       by (simp add: dot_matrix_product matrix_mul_lid)}
 | 
|  |    892 |   ultimately show ?thesis by blast
 | 
|  |    893 | qed
 | 
|  |    894 | 
 | 
|  |    895 | lemma det_orthogonal_matrix:
 | 
|  |    896 |   fixes Q:: "'a::ordered_idom^'n^'n::finite"
 | 
|  |    897 |   assumes oQ: "orthogonal_matrix Q"
 | 
|  |    898 |   shows "det Q = 1 \<or> det Q = - 1"
 | 
|  |    899 | proof-
 | 
|  |    900 | 
 | 
|  |    901 |   have th: "\<And>x::'a. x = 1 \<or> x = - 1 \<longleftrightarrow> x*x = 1" (is "\<And>x::'a. ?ths x")
 | 
|  |    902 |   proof-
 | 
|  |    903 |     fix x:: 'a
 | 
|  |    904 |     have th0: "x*x - 1 = (x - 1)*(x + 1)" by (simp add: ring_simps)
 | 
|  |    905 |     have th1: "\<And>(x::'a) y. x = - y \<longleftrightarrow> x + y = 0"
 | 
|  |    906 |       apply (subst eq_iff_diff_eq_0) by simp
 | 
|  |    907 |     have "x*x = 1 \<longleftrightarrow> x*x - 1 = 0" by simp
 | 
|  |    908 |     also have "\<dots> \<longleftrightarrow> x = 1 \<or> x = - 1" unfolding th0 th1 by simp
 | 
|  |    909 |     finally show "?ths x" ..
 | 
|  |    910 |   qed
 | 
|  |    911 |   from oQ have "Q ** transp Q = mat 1" by (metis orthogonal_matrix_def)
 | 
|  |    912 |   hence "det (Q ** transp Q) = det (mat 1:: 'a^'n^'n)" by simp
 | 
|  |    913 |   hence "det Q * det Q = 1" by (simp add: det_mul det_I det_transp)
 | 
|  |    914 |   then show ?thesis unfolding th .
 | 
|  |    915 | qed
 | 
|  |    916 | 
 | 
|  |    917 | (* ------------------------------------------------------------------------- *)
 | 
|  |    918 | (* Linearity of scaling, and hence isometry, that preserves origin.          *)
 | 
|  |    919 | (* ------------------------------------------------------------------------- *)
 | 
|  |    920 | lemma scaling_linear:
 | 
|  |    921 |   fixes f :: "real ^'n \<Rightarrow> real ^'n::finite"
 | 
|  |    922 |   assumes f0: "f 0 = 0" and fd: "\<forall>x y. dist (f x) (f y) = c * dist x y"
 | 
|  |    923 |   shows "linear f"
 | 
|  |    924 | proof-
 | 
|  |    925 |   {fix v w
 | 
|  |    926 |     {fix x note fd[rule_format, of x 0, unfolded dist_norm f0 diff_0_right] }
 | 
|  |    927 |     note th0 = this
 | 
|  |    928 |     have "f v \<bullet> f w = c^2 * (v \<bullet> w)"
 | 
|  |    929 |       unfolding dot_norm_neg dist_norm[symmetric]
 | 
|  |    930 |       unfolding th0 fd[rule_format] by (simp add: power2_eq_square field_simps)}
 | 
|  |    931 |   note fc = this
 | 
|  |    932 |   show ?thesis unfolding linear_def vector_eq
 | 
|  |    933 |     by (simp add: dot_lmult dot_ladd dot_rmult dot_radd fc ring_simps)
 | 
|  |    934 | qed
 | 
|  |    935 | 
 | 
|  |    936 | lemma isometry_linear:
 | 
|  |    937 |   "f (0:: real^'n) = (0:: real^'n::finite) \<Longrightarrow> \<forall>x y. dist(f x) (f y) = dist x y
 | 
|  |    938 |         \<Longrightarrow> linear f"
 | 
|  |    939 | by (rule scaling_linear[where c=1]) simp_all
 | 
|  |    940 | 
 | 
|  |    941 | (* ------------------------------------------------------------------------- *)
 | 
|  |    942 | (* Hence another formulation of orthogonal transformation.                   *)
 | 
|  |    943 | (* ------------------------------------------------------------------------- *)
 | 
|  |    944 | 
 | 
|  |    945 | lemma orthogonal_transformation_isometry:
 | 
|  |    946 |   "orthogonal_transformation f \<longleftrightarrow> f(0::real^'n) = (0::real^'n::finite) \<and> (\<forall>x y. dist(f x) (f y) = dist x y)"
 | 
|  |    947 |   unfolding orthogonal_transformation
 | 
|  |    948 |   apply (rule iffI)
 | 
|  |    949 |   apply clarify
 | 
|  |    950 |   apply (clarsimp simp add: linear_0 linear_sub[symmetric] dist_norm)
 | 
|  |    951 |   apply (rule conjI)
 | 
|  |    952 |   apply (rule isometry_linear)
 | 
|  |    953 |   apply simp
 | 
|  |    954 |   apply simp
 | 
|  |    955 |   apply clarify
 | 
|  |    956 |   apply (erule_tac x=v in allE)
 | 
|  |    957 |   apply (erule_tac x=0 in allE)
 | 
|  |    958 |   by (simp add: dist_norm)
 | 
|  |    959 | 
 | 
|  |    960 | (* ------------------------------------------------------------------------- *)
 | 
|  |    961 | (* Can extend an isometry from unit sphere.                                  *)
 | 
|  |    962 | (* ------------------------------------------------------------------------- *)
 | 
|  |    963 | 
 | 
|  |    964 | lemma isometry_sphere_extend:
 | 
|  |    965 |   fixes f:: "real ^'n \<Rightarrow> real ^'n::finite"
 | 
|  |    966 |   assumes f1: "\<forall>x. norm x = 1 \<longrightarrow> norm (f x) = 1"
 | 
|  |    967 |   and fd1: "\<forall> x y. norm x = 1 \<longrightarrow> norm y = 1 \<longrightarrow> dist (f x) (f y) = dist x y"
 | 
|  |    968 |   shows "\<exists>g. orthogonal_transformation g \<and> (\<forall>x. norm x = 1 \<longrightarrow> g x = f x)"
 | 
|  |    969 | proof-
 | 
|  |    970 |   {fix x y x' y' x0 y0 x0' y0' :: "real ^'n"
 | 
|  |    971 |     assume H: "x = norm x *s x0" "y = norm y *s y0"
 | 
|  |    972 |     "x' = norm x *s x0'" "y' = norm y *s y0'"
 | 
|  |    973 |     "norm x0 = 1" "norm x0' = 1" "norm y0 = 1" "norm y0' = 1"
 | 
|  |    974 |     "norm(x0' - y0') = norm(x0 - y0)"
 | 
|  |    975 | 
 | 
|  |    976 |     have "norm(x' - y') = norm(x - y)"
 | 
|  |    977 |       apply (subst H(1))
 | 
|  |    978 |       apply (subst H(2))
 | 
|  |    979 |       apply (subst H(3))
 | 
|  |    980 |       apply (subst H(4))
 | 
|  |    981 |       using H(5-9)
 | 
|  |    982 |       apply (simp add: norm_eq norm_eq_1)
 | 
|  |    983 |       apply (simp add: dot_lsub dot_rsub dot_lmult dot_rmult)
 | 
|  |    984 |       apply (simp add: ring_simps)
 | 
|  |    985 |       by (simp only: right_distrib[symmetric])}
 | 
|  |    986 |   note th0 = this
 | 
|  |    987 |   let ?g = "\<lambda>x. if x = 0 then 0 else norm x *s f (inverse (norm x) *s x)"
 | 
|  |    988 |   {fix x:: "real ^'n" assume nx: "norm x = 1"
 | 
|  |    989 |     have "?g x = f x" using nx by auto}
 | 
|  |    990 |   hence thfg: "\<forall>x. norm x = 1 \<longrightarrow> ?g x = f x" by blast
 | 
|  |    991 |   have g0: "?g 0 = 0" by simp
 | 
|  |    992 |   {fix x y :: "real ^'n"
 | 
|  |    993 |     {assume "x = 0" "y = 0"
 | 
|  |    994 |       then have "dist (?g x) (?g y) = dist x y" by simp }
 | 
|  |    995 |     moreover
 | 
|  |    996 |     {assume "x = 0" "y \<noteq> 0"
 | 
|  |    997 |       then have "dist (?g x) (?g y) = dist x y"
 | 
|  |    998 |         apply (simp add: dist_norm norm_mul)
 | 
|  |    999 |         apply (rule f1[rule_format])
 | 
|  |   1000 |         by(simp add: norm_mul field_simps)}
 | 
|  |   1001 |     moreover
 | 
|  |   1002 |     {assume "x \<noteq> 0" "y = 0"
 | 
|  |   1003 |       then have "dist (?g x) (?g y) = dist x y"
 | 
|  |   1004 |         apply (simp add: dist_norm norm_mul)
 | 
|  |   1005 |         apply (rule f1[rule_format])
 | 
|  |   1006 |         by(simp add: norm_mul field_simps)}
 | 
|  |   1007 |     moreover
 | 
|  |   1008 |     {assume z: "x \<noteq> 0" "y \<noteq> 0"
 | 
|  |   1009 |       have th00: "x = norm x *s (inverse (norm x) *s x)" "y = norm y *s (inverse (norm y) *s y)" "norm x *s f ((inverse (norm x) *s x)) = norm x *s f (inverse (norm x) *s x)"
 | 
|  |   1010 |         "norm y *s f (inverse (norm y) *s y) = norm y *s f (inverse (norm y) *s y)"
 | 
|  |   1011 |         "norm (inverse (norm x) *s x) = 1"
 | 
|  |   1012 |         "norm (f (inverse (norm x) *s x)) = 1"
 | 
|  |   1013 |         "norm (inverse (norm y) *s y) = 1"
 | 
|  |   1014 |         "norm (f (inverse (norm y) *s y)) = 1"
 | 
|  |   1015 |         "norm (f (inverse (norm x) *s x) - f (inverse (norm y) *s y)) =
 | 
|  |   1016 |         norm (inverse (norm x) *s x - inverse (norm y) *s y)"
 | 
|  |   1017 |         using z
 | 
|  |   1018 |         by (auto simp add: vector_smult_assoc field_simps norm_mul intro: f1[rule_format] fd1[rule_format, unfolded dist_norm])
 | 
|  |   1019 |       from z th0[OF th00] have "dist (?g x) (?g y) = dist x y"
 | 
|  |   1020 |         by (simp add: dist_norm)}
 | 
|  |   1021 |     ultimately have "dist (?g x) (?g y) = dist x y" by blast}
 | 
|  |   1022 |   note thd = this
 | 
|  |   1023 |     show ?thesis
 | 
|  |   1024 |     apply (rule exI[where x= ?g])
 | 
|  |   1025 |     unfolding orthogonal_transformation_isometry
 | 
|  |   1026 |       using  g0 thfg thd by metis
 | 
|  |   1027 | qed
 | 
|  |   1028 | 
 | 
|  |   1029 | (* ------------------------------------------------------------------------- *)
 | 
|  |   1030 | (* Rotation, reflection, rotoinversion.                                      *)
 | 
|  |   1031 | (* ------------------------------------------------------------------------- *)
 | 
|  |   1032 | 
 | 
|  |   1033 | definition "rotation_matrix Q \<longleftrightarrow> orthogonal_matrix Q \<and> det Q = 1"
 | 
|  |   1034 | definition "rotoinversion_matrix Q \<longleftrightarrow> orthogonal_matrix Q \<and> det Q = - 1"
 | 
|  |   1035 | 
 | 
|  |   1036 | lemma orthogonal_rotation_or_rotoinversion:
 | 
|  |   1037 |   fixes Q :: "'a::ordered_idom^'n^'n::finite"
 | 
|  |   1038 |   shows " orthogonal_matrix Q \<longleftrightarrow> rotation_matrix Q \<or> rotoinversion_matrix Q"
 | 
|  |   1039 |   by (metis rotoinversion_matrix_def rotation_matrix_def det_orthogonal_matrix)
 | 
|  |   1040 | (* ------------------------------------------------------------------------- *)
 | 
|  |   1041 | (* Explicit formulas for low dimensions.                                     *)
 | 
|  |   1042 | (* ------------------------------------------------------------------------- *)
 | 
|  |   1043 | 
 | 
|  |   1044 | lemma setprod_1: "setprod f {(1::nat)..1} = f 1" by simp
 | 
|  |   1045 | 
 | 
|  |   1046 | lemma setprod_2: "setprod f {(1::nat)..2} = f 1 * f 2"
 | 
|  |   1047 |   by (simp add: nat_number setprod_numseg mult_commute)
 | 
|  |   1048 | lemma setprod_3: "setprod f {(1::nat)..3} = f 1 * f 2 * f 3"
 | 
|  |   1049 |   by (simp add: nat_number setprod_numseg mult_commute)
 | 
|  |   1050 | 
 | 
|  |   1051 | lemma det_1: "det (A::'a::comm_ring_1^1^1) = A$1$1"
 | 
|  |   1052 |   by (simp add: det_def permutes_sing sign_id UNIV_1)
 | 
|  |   1053 | 
 | 
|  |   1054 | lemma det_2: "det (A::'a::comm_ring_1^2^2) = A$1$1 * A$2$2 - A$1$2 * A$2$1"
 | 
|  |   1055 | proof-
 | 
|  |   1056 |   have f12: "finite {2::2}" "1 \<notin> {2::2}" by auto
 | 
|  |   1057 |   show ?thesis
 | 
|  |   1058 |   unfolding det_def UNIV_2
 | 
|  |   1059 |   unfolding setsum_over_permutations_insert[OF f12]
 | 
|  |   1060 |   unfolding permutes_sing
 | 
|  |   1061 |   apply (simp add: sign_swap_id sign_id swap_id_eq)
 | 
|  |   1062 |   by (simp add: arith_simps(31)[symmetric] of_int_minus of_int_1 del: arith_simps(31))
 | 
|  |   1063 | qed
 | 
|  |   1064 | 
 | 
|  |   1065 | lemma det_3: "det (A::'a::comm_ring_1^3^3) =
 | 
|  |   1066 |   A$1$1 * A$2$2 * A$3$3 +
 | 
|  |   1067 |   A$1$2 * A$2$3 * A$3$1 +
 | 
|  |   1068 |   A$1$3 * A$2$1 * A$3$2 -
 | 
|  |   1069 |   A$1$1 * A$2$3 * A$3$2 -
 | 
|  |   1070 |   A$1$2 * A$2$1 * A$3$3 -
 | 
|  |   1071 |   A$1$3 * A$2$2 * A$3$1"
 | 
|  |   1072 | proof-
 | 
|  |   1073 |   have f123: "finite {2::3, 3}" "1 \<notin> {2::3, 3}" by auto
 | 
|  |   1074 |   have f23: "finite {3::3}" "2 \<notin> {3::3}" by auto
 | 
|  |   1075 | 
 | 
|  |   1076 |   show ?thesis
 | 
|  |   1077 |   unfolding det_def UNIV_3
 | 
|  |   1078 |   unfolding setsum_over_permutations_insert[OF f123]
 | 
|  |   1079 |   unfolding setsum_over_permutations_insert[OF f23]
 | 
|  |   1080 | 
 | 
|  |   1081 |   unfolding permutes_sing
 | 
|  |   1082 |   apply (simp add: sign_swap_id permutation_swap_id sign_compose sign_id swap_id_eq)
 | 
|  |   1083 |   apply (simp add: arith_simps(31)[symmetric] of_int_minus of_int_1 del: arith_simps(31))
 | 
|  |   1084 |   by (simp add: ring_simps)
 | 
|  |   1085 | qed
 | 
|  |   1086 | 
 | 
|  |   1087 | end
 |