13841
|
1 |
%
|
|
2 |
\begin{isabellebody}%
|
|
3 |
\def\isabellecontext{a{\isadigit{1}}}%
|
|
4 |
\isamarkupfalse%
|
|
5 |
%
|
|
6 |
\isamarkupsubsection{Lists%
|
|
7 |
}
|
|
8 |
\isamarkuptrue%
|
|
9 |
%
|
|
10 |
\begin{isamarkuptext}%
|
|
11 |
Define a universal and an existential quantifier on lists.
|
|
12 |
Expression \isa{alls\ P\ xs} should be true iff \isa{P\ x} holds
|
|
13 |
for every element \isa{x} of \isa{xs}, and \isa{exs\ P\ xs}
|
|
14 |
should be true iff \isa{P\ x} holds for some element \isa{x} of
|
|
15 |
\isa{xs}.%
|
|
16 |
\end{isamarkuptext}%
|
|
17 |
\isamarkuptrue%
|
|
18 |
\isacommand{consts}\ \isanewline
|
|
19 |
\ \ alls\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ bool{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}a\ list\ {\isasymRightarrow}\ bool{\isachardoublequote}\isanewline
|
|
20 |
\ \ exs\ \ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ bool{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}a\ list\ {\isasymRightarrow}\ bool{\isachardoublequote}\isamarkupfalse%
|
|
21 |
%
|
|
22 |
\begin{isamarkuptext}%
|
|
23 |
Prove or disprove (by counter example) the following theorems.
|
|
24 |
You may have to prove some lemmas first.
|
|
25 |
|
|
26 |
Use the \isa{{\isacharbrackleft}simp{\isacharbrackright}}-attribute only if the equation is truly a
|
|
27 |
simplification and is necessary for some later proof.%
|
|
28 |
\end{isamarkuptext}%
|
|
29 |
\isamarkuptrue%
|
|
30 |
\isacommand{lemma}\ {\isachardoublequote}alls\ {\isacharparenleft}{\isasymlambda}x{\isachardot}\ P\ x\ {\isasymand}\ Q\ x{\isacharparenright}\ xs\ {\isacharequal}\ {\isacharparenleft}alls\ P\ xs\ {\isasymand}\ alls\ Q\ xs{\isacharparenright}{\isachardoublequote}\isamarkupfalse%
|
|
31 |
\isanewline
|
|
32 |
\isamarkupfalse%
|
|
33 |
\isacommand{lemma}\ {\isachardoublequote}alls\ P\ {\isacharparenleft}rev\ xs{\isacharparenright}\ {\isacharequal}\ alls\ P\ xs{\isachardoublequote}\isamarkupfalse%
|
|
34 |
\isanewline
|
|
35 |
\isamarkupfalse%
|
|
36 |
\isacommand{lemma}\ {\isachardoublequote}exs\ {\isacharparenleft}{\isasymlambda}x{\isachardot}\ P\ x\ {\isasymand}\ Q\ x{\isacharparenright}\ xs\ {\isacharequal}\ {\isacharparenleft}exs\ P\ xs\ {\isasymand}\ exs\ Q\ xs{\isacharparenright}{\isachardoublequote}\isamarkupfalse%
|
|
37 |
\isanewline
|
|
38 |
\isamarkupfalse%
|
|
39 |
\isacommand{lemma}\ {\isachardoublequote}exs\ P\ {\isacharparenleft}map\ f\ xs{\isacharparenright}\ {\isacharequal}\ exs\ {\isacharparenleft}P\ o\ f{\isacharparenright}\ xs{\isachardoublequote}\isamarkupfalse%
|
|
40 |
\isanewline
|
|
41 |
\isamarkupfalse%
|
|
42 |
\isacommand{lemma}\ {\isachardoublequote}exs\ P\ {\isacharparenleft}rev\ xs{\isacharparenright}\ {\isacharequal}\ exs\ P\ xs{\isachardoublequote}\isamarkupfalse%
|
|
43 |
\isamarkupfalse%
|
|
44 |
%
|
|
45 |
\begin{isamarkuptext}%
|
|
46 |
Find a term \isa{Z} such that the following equation holds:%
|
|
47 |
\end{isamarkuptext}%
|
|
48 |
\isamarkuptrue%
|
|
49 |
\isacommand{lemma}\ {\isachardoublequote}exs\ {\isacharparenleft}{\isasymlambda}x{\isachardot}\ P\ x\ {\isasymor}\ Q\ x{\isacharparenright}\ xs\ {\isacharequal}\ Z{\isachardoublequote}\isamarkupfalse%
|
|
50 |
\isamarkupfalse%
|
|
51 |
%
|
|
52 |
\begin{isamarkuptext}%
|
|
53 |
Express the existential via the universal quantifier ---
|
|
54 |
\isa{exs} should not occur on the right-hand side:%
|
|
55 |
\end{isamarkuptext}%
|
|
56 |
\isamarkuptrue%
|
|
57 |
\isacommand{lemma}\ {\isachardoublequote}exs\ P\ xs\ {\isacharequal}\ Z{\isachardoublequote}\isamarkupfalse%
|
|
58 |
\isamarkupfalse%
|
|
59 |
%
|
|
60 |
\begin{isamarkuptext}%
|
|
61 |
Define a function \isa{is{\isacharunderscore}in\ x\ xs} that checks if \isa{x} occurs in
|
13844
|
62 |
\isa{xs}. Now express \isa{is{\isacharunderscore}in} via \isa{exs}:%
|
13841
|
63 |
\end{isamarkuptext}%
|
|
64 |
\isamarkuptrue%
|
|
65 |
\isacommand{lemma}\ {\isachardoublequote}is{\isacharunderscore}in\ a\ xs\ {\isacharequal}\ Z{\isachardoublequote}\isamarkupfalse%
|
|
66 |
\isamarkupfalse%
|
|
67 |
%
|
|
68 |
\begin{isamarkuptext}%
|
|
69 |
Define a function \isa{nodups\ xs} that is true iff
|
|
70 |
\isa{xs} does not contain duplicates, and a function \isa{deldups\ xs} that removes all duplicates. Note that \isa{deldups\ {\isacharbrackleft}x{\isacharcomma}\ y{\isacharcomma}\ x{\isacharbrackright}}
|
|
71 |
(where \isa{x} and \isa{y} are distinct) can be either
|
|
72 |
\isa{{\isacharbrackleft}x{\isacharcomma}\ y{\isacharbrackright}} or \isa{{\isacharbrackleft}y{\isacharcomma}\ x{\isacharbrackright}}.
|
|
73 |
|
|
74 |
Prove or disprove (by counter example) the following theorems.%
|
|
75 |
\end{isamarkuptext}%
|
|
76 |
\isamarkuptrue%
|
|
77 |
\isacommand{lemma}\ {\isachardoublequote}length\ {\isacharparenleft}deldups\ xs{\isacharparenright}\ {\isacharless}{\isacharequal}\ length\ xs{\isachardoublequote}\isamarkupfalse%
|
|
78 |
\isanewline
|
|
79 |
\isamarkupfalse%
|
|
80 |
\isacommand{lemma}\ {\isachardoublequote}nodups\ {\isacharparenleft}deldups\ xs{\isacharparenright}{\isachardoublequote}\isamarkupfalse%
|
|
81 |
\isanewline
|
|
82 |
\isamarkupfalse%
|
|
83 |
\isacommand{lemma}\ {\isachardoublequote}deldups\ {\isacharparenleft}rev\ xs{\isacharparenright}\ {\isacharequal}\ rev\ {\isacharparenleft}deldups\ xs{\isacharparenright}{\isachardoublequote}\isamarkupfalse%
|
|
84 |
\isamarkupfalse%
|
|
85 |
\isamarkupfalse%
|
|
86 |
\end{isabellebody}%
|
|
87 |
%%% Local Variables:
|
|
88 |
%%% mode: latex
|
|
89 |
%%% TeX-master: "root"
|
|
90 |
%%% End:
|