| author | wenzelm | 
| Sat, 12 Jan 2013 14:53:56 +0100 | |
| changeset 50843 | 1465521b92a1 | 
| parent 46822 | 95f1e700b712 | 
| child 60770 | 240563fbf41d | 
| permissions | -rw-r--r-- | 
| 12610 | 1  | 
(* Title: ZF/Induct/FoldSet.thy  | 
| 
12089
 
34e7693271a9
Sidi Ehmety's port of the fold_set operator and multisets to ZF.
 
paulson 
parents:  
diff
changeset
 | 
2  | 
Author: Sidi O Ehmety, Cambridge University Computer Laboratory  | 
| 
 
34e7693271a9
Sidi Ehmety's port of the fold_set operator and multisets to ZF.
 
paulson 
parents:  
diff
changeset
 | 
3  | 
|
| 
 
34e7693271a9
Sidi Ehmety's port of the fold_set operator and multisets to ZF.
 
paulson 
parents:  
diff
changeset
 | 
4  | 
A "fold" functional for finite sets. For n non-negative we have  | 
| 
 
34e7693271a9
Sidi Ehmety's port of the fold_set operator and multisets to ZF.
 
paulson 
parents:  
diff
changeset
 | 
5  | 
fold f e {x1,...,xn} = f x1 (... (f xn e)) where f is at
 | 
| 
 
34e7693271a9
Sidi Ehmety's port of the fold_set operator and multisets to ZF.
 
paulson 
parents:  
diff
changeset
 | 
6  | 
least left-commutative.  | 
| 
 
34e7693271a9
Sidi Ehmety's port of the fold_set operator and multisets to ZF.
 
paulson 
parents:  
diff
changeset
 | 
7  | 
*)  | 
| 
 
34e7693271a9
Sidi Ehmety's port of the fold_set operator and multisets to ZF.
 
paulson 
parents:  
diff
changeset
 | 
8  | 
|
| 16417 | 9  | 
theory FoldSet imports Main begin  | 
| 
12089
 
34e7693271a9
Sidi Ehmety's port of the fold_set operator and multisets to ZF.
 
paulson 
parents:  
diff
changeset
 | 
10  | 
|
| 
 
34e7693271a9
Sidi Ehmety's port of the fold_set operator and multisets to ZF.
 
paulson 
parents:  
diff
changeset
 | 
11  | 
consts fold_set :: "[i, i, [i,i]=>i, i] => i"  | 
| 
 
34e7693271a9
Sidi Ehmety's port of the fold_set operator and multisets to ZF.
 
paulson 
parents:  
diff
changeset
 | 
12  | 
|
| 
 
34e7693271a9
Sidi Ehmety's port of the fold_set operator and multisets to ZF.
 
paulson 
parents:  
diff
changeset
 | 
13  | 
inductive  | 
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
32960 
diff
changeset
 | 
14  | 
domains "fold_set(A, B, f,e)" \<subseteq> "Fin(A)*B"  | 
| 14071 | 15  | 
intros  | 
16  | 
emptyI: "e\<in>B ==> <0, e>\<in>fold_set(A, B, f,e)"  | 
|
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
32960 
diff
changeset
 | 
17  | 
consI: "[| x\<in>A; x \<notin>C; <C,y> \<in> fold_set(A, B,f,e); f(x,y):B |]  | 
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
24893 
diff
changeset
 | 
18  | 
==> <cons(x,C), f(x,y)>\<in>fold_set(A, B, f, e)"  | 
| 14071 | 19  | 
type_intros Fin.intros  | 
| 
12089
 
34e7693271a9
Sidi Ehmety's port of the fold_set operator and multisets to ZF.
 
paulson 
parents:  
diff
changeset
 | 
20  | 
|
| 24893 | 21  | 
definition  | 
22  | 
  fold :: "[i, [i,i]=>i, i, i] => i"  ("fold[_]'(_,_,_')")  where
 | 
|
| 14071 | 23  | 
"fold[B](f,e, A) == THE x. <A, x>\<in>fold_set(A, B, f,e)"  | 
| 
12089
 
34e7693271a9
Sidi Ehmety's port of the fold_set operator and multisets to ZF.
 
paulson 
parents:  
diff
changeset
 | 
24  | 
|
| 24893 | 25  | 
definition  | 
26  | 
setsum :: "[i=>i, i] => i" where  | 
|
| 14071 | 27  | 
"setsum(g, C) == if Finite(C) then  | 
28  | 
fold[int](%x y. g(x) $+ y, #0, C) else #0"  | 
|
29  | 
||
30  | 
(** foldSet **)  | 
|
31  | 
||
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
32960 
diff
changeset
 | 
32  | 
inductive_cases empty_fold_setE: "<0, x> \<in> fold_set(A, B, f,e)"  | 
| 
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
32960 
diff
changeset
 | 
33  | 
inductive_cases cons_fold_setE: "<cons(x,C), y> \<in> fold_set(A, B, f,e)"  | 
| 14071 | 34  | 
|
35  | 
(* add-hoc lemmas *)  | 
|
36  | 
||
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
32960 
diff
changeset
 | 
37  | 
lemma cons_lemma1: "[| x\<notin>C; x\<notin>B |] ==> cons(x,B)=cons(x,C) \<longleftrightarrow> B = C"  | 
| 14071 | 38  | 
by (auto elim: equalityE)  | 
39  | 
||
40  | 
lemma cons_lemma2: "[| cons(x, B)=cons(y, C); x\<noteq>y; x\<notin>B; y\<notin>C |]  | 
|
41  | 
    ==>  B - {y} = C-{x} & x\<in>C & y\<in>B"
 | 
|
42  | 
apply (auto elim: equalityE)  | 
|
43  | 
done  | 
|
44  | 
||
45  | 
(* fold_set monotonicity *)  | 
|
46  | 
lemma fold_set_mono_lemma:  | 
|
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
32960 
diff
changeset
 | 
47  | 
"<C, x> \<in> fold_set(A, B, f, e)  | 
| 
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
32960 
diff
changeset
 | 
48  | 
==> \<forall>D. A<=D \<longrightarrow> <C, x> \<in> fold_set(D, B, f, e)"  | 
| 14071 | 49  | 
apply (erule fold_set.induct)  | 
50  | 
apply (auto intro: fold_set.intros)  | 
|
51  | 
done  | 
|
52  | 
||
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
32960 
diff
changeset
 | 
53  | 
lemma fold_set_mono: " C<=A ==> fold_set(C, B, f, e) \<subseteq> fold_set(A, B, f, e)"  | 
| 14071 | 54  | 
apply clarify  | 
55  | 
apply (frule fold_set.dom_subset [THEN subsetD], clarify)  | 
|
56  | 
apply (auto dest: fold_set_mono_lemma)  | 
|
57  | 
done  | 
|
58  | 
||
59  | 
lemma fold_set_lemma:  | 
|
60  | 
"<C, x>\<in>fold_set(A, B, f, e) ==> <C, x>\<in>fold_set(C, B, f, e) & C<=A"  | 
|
61  | 
apply (erule fold_set.induct)  | 
|
62  | 
apply (auto intro!: fold_set.intros intro: fold_set_mono [THEN subsetD])  | 
|
63  | 
done  | 
|
64  | 
||
65  | 
(* Proving that fold_set is deterministic *)  | 
|
66  | 
lemma Diff1_fold_set:  | 
|
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
32960 
diff
changeset
 | 
67  | 
     "[| <C-{x},y> \<in> fold_set(A, B, f,e);  x\<in>C; x\<in>A; f(x, y):B |]  
 | 
| 
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
32960 
diff
changeset
 | 
68  | 
==> <C, f(x, y)> \<in> fold_set(A, B, f, e)"  | 
| 14071 | 69  | 
apply (frule fold_set.dom_subset [THEN subsetD])  | 
70  | 
apply (erule cons_Diff [THEN subst], rule fold_set.intros, auto)  | 
|
71  | 
done  | 
|
72  | 
||
73  | 
||
74  | 
locale fold_typing =  | 
|
75  | 
fixes A and B and e and f  | 
|
76  | 
assumes ftype [intro,simp]: "[|x \<in> A; y \<in> B|] ==> f(x,y) \<in> B"  | 
|
77  | 
and etype [intro,simp]: "e \<in> B"  | 
|
78  | 
and fcomm: "[|x \<in> A; y \<in> A; z \<in> B|] ==> f(x, f(y, z))=f(y, f(x, z))"  | 
|
79  | 
||
80  | 
||
81  | 
lemma (in fold_typing) Fin_imp_fold_set:  | 
|
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
32960 
diff
changeset
 | 
82  | 
"C\<in>Fin(A) ==> (\<exists>x. <C, x> \<in> fold_set(A, B, f,e))"  | 
| 14071 | 83  | 
apply (erule Fin_induct)  | 
84  | 
apply (auto dest: fold_set.dom_subset [THEN subsetD]  | 
|
85  | 
intro: fold_set.intros etype ftype)  | 
|
86  | 
done  | 
|
87  | 
||
88  | 
lemma Diff_sing_imp:  | 
|
89  | 
     "[|C - {b} = D - {a}; a \<noteq> b; b \<in> C|] ==> C = cons(b,D) - {a}"
 | 
|
90  | 
by (blast elim: equalityE)  | 
|
91  | 
||
92  | 
lemma (in fold_typing) fold_set_determ_lemma [rule_format]:  | 
|
93  | 
"n\<in>nat  | 
|
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
32960 
diff
changeset
 | 
94  | 
==> \<forall>C. |C|<n \<longrightarrow>  | 
| 
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
32960 
diff
changeset
 | 
95  | 
(\<forall>x. <C, x> \<in> fold_set(A, B, f,e)\<longrightarrow>  | 
| 
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
32960 
diff
changeset
 | 
96  | 
(\<forall>y. <C, y> \<in> fold_set(A, B, f,e) \<longrightarrow> y=x))"  | 
| 14071 | 97  | 
apply (erule nat_induct)  | 
98  | 
apply (auto simp add: le_iff)  | 
|
99  | 
apply (erule fold_set.cases)  | 
|
100  | 
apply (force elim!: empty_fold_setE)  | 
|
101  | 
apply (erule fold_set.cases)  | 
|
102  | 
apply (force elim!: empty_fold_setE, clarify)  | 
|
103  | 
(*force simplification of "|C| < |cons(...)|"*)  | 
|
104  | 
apply (frule_tac a = Ca in fold_set.dom_subset [THEN subsetD, THEN SigmaD1])  | 
|
105  | 
apply (frule_tac a = Cb in fold_set.dom_subset [THEN subsetD, THEN SigmaD1])  | 
|
106  | 
apply (simp add: Fin_into_Finite [THEN Finite_imp_cardinal_cons])  | 
|
107  | 
apply (case_tac "x=xb", auto)  | 
|
108  | 
apply (simp add: cons_lemma1, blast)  | 
|
109  | 
txt{*case @{term "x\<noteq>xb"}*}
 | 
|
110  | 
apply (drule cons_lemma2, safe)  | 
|
111  | 
apply (frule Diff_sing_imp, assumption+)  | 
|
112  | 
txt{** LEVEL 17*}
 | 
|
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
32960 
diff
changeset
 | 
113  | 
apply (subgoal_tac "|Ca| \<le> |Cb|")  | 
| 14071 | 114  | 
prefer 2  | 
115  | 
apply (rule succ_le_imp_le)  | 
|
116  | 
apply (simp add: Fin_into_Finite Finite_imp_succ_cardinal_Diff  | 
|
117  | 
Fin_into_Finite [THEN Finite_imp_cardinal_cons])  | 
|
118  | 
apply (rule_tac C1 = "Ca-{xb}" in Fin_imp_fold_set [THEN exE])
 | 
|
119  | 
apply (blast intro: Diff_subset [THEN Fin_subset])  | 
|
120  | 
txt{** LEVEL 24 **}
 | 
|
121  | 
apply (frule Diff1_fold_set, blast, blast)  | 
|
122  | 
apply (blast dest!: ftype fold_set.dom_subset [THEN subsetD])  | 
|
123  | 
apply (subgoal_tac "ya = f(xb,xa) ")  | 
|
124  | 
prefer 2 apply (blast del: equalityCE)  | 
|
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
32960 
diff
changeset
 | 
125  | 
apply (subgoal_tac "<Cb-{x}, xa> \<in> fold_set(A,B,f,e)")
 | 
| 14071 | 126  | 
prefer 2 apply simp  | 
127  | 
apply (subgoal_tac "yb = f (x, xa) ")  | 
|
128  | 
apply (drule_tac [2] C = Cb in Diff1_fold_set, simp_all)  | 
|
129  | 
apply (blast intro: fcomm dest!: fold_set.dom_subset [THEN subsetD])  | 
|
130  | 
apply (blast intro: ftype dest!: fold_set.dom_subset [THEN subsetD], blast)  | 
|
131  | 
done  | 
|
132  | 
||
133  | 
lemma (in fold_typing) fold_set_determ:  | 
|
134  | 
"[| <C, x>\<in>fold_set(A, B, f, e);  | 
|
135  | 
<C, y>\<in>fold_set(A, B, f, e)|] ==> y=x"  | 
|
136  | 
apply (frule fold_set.dom_subset [THEN subsetD], clarify)  | 
|
137  | 
apply (drule Fin_into_Finite)  | 
|
138  | 
apply (unfold Finite_def, clarify)  | 
|
139  | 
apply (rule_tac n = "succ (n)" in fold_set_determ_lemma)  | 
|
140  | 
apply (auto intro: eqpoll_imp_lepoll [THEN lepoll_cardinal_le])  | 
|
141  | 
done  | 
|
142  | 
||
143  | 
(** The fold function **)  | 
|
144  | 
||
145  | 
lemma (in fold_typing) fold_equality:  | 
|
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
32960 
diff
changeset
 | 
146  | 
"<C,y> \<in> fold_set(A,B,f,e) ==> fold[B](f,e,C) = y"  | 
| 14071 | 147  | 
apply (unfold fold_def)  | 
148  | 
apply (frule fold_set.dom_subset [THEN subsetD], clarify)  | 
|
149  | 
apply (rule the_equality)  | 
|
150  | 
apply (rule_tac [2] A=C in fold_typing.fold_set_determ)  | 
|
151  | 
apply (force dest: fold_set_lemma)  | 
|
152  | 
apply (auto dest: fold_set_lemma)  | 
|
153  | 
apply (simp add: fold_typing_def, auto)  | 
|
154  | 
apply (auto dest: fold_set_lemma intro: ftype etype fcomm)  | 
|
155  | 
done  | 
|
156  | 
||
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
32960 
diff
changeset
 | 
157  | 
lemma fold_0 [simp]: "e \<in> B ==> fold[B](f,e,0) = e"  | 
| 14071 | 158  | 
apply (unfold fold_def)  | 
159  | 
apply (blast elim!: empty_fold_setE intro: fold_set.intros)  | 
|
160  | 
done  | 
|
161  | 
||
162  | 
text{*This result is the right-to-left direction of the subsequent result*}
 | 
|
163  | 
lemma (in fold_typing) fold_set_imp_cons:  | 
|
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
32960 
diff
changeset
 | 
164  | 
"[| <C, y> \<in> fold_set(C, B, f, e); C \<in> Fin(A); c \<in> A; c\<notin>C |]  | 
| 
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
32960 
diff
changeset
 | 
165  | 
==> <cons(c, C), f(c,y)> \<in> fold_set(cons(c, C), B, f, e)"  | 
| 14071 | 166  | 
apply (frule FinD [THEN fold_set_mono, THEN subsetD])  | 
167  | 
apply assumption  | 
|
168  | 
apply (frule fold_set.dom_subset [of A, THEN subsetD])  | 
|
169  | 
apply (blast intro!: fold_set.consI intro: fold_set_mono [THEN subsetD])  | 
|
170  | 
done  | 
|
171  | 
||
172  | 
lemma (in fold_typing) fold_cons_lemma [rule_format]:  | 
|
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
32960 
diff
changeset
 | 
173  | 
"[| C \<in> Fin(A); c \<in> A; c\<notin>C |]  | 
| 
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
32960 
diff
changeset
 | 
174  | 
==> <cons(c, C), v> \<in> fold_set(cons(c, C), B, f, e) \<longleftrightarrow>  | 
| 
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
32960 
diff
changeset
 | 
175  | 
(\<exists>y. <C, y> \<in> fold_set(C, B, f, e) & v = f(c, y))"  | 
| 14071 | 176  | 
apply auto  | 
177  | 
prefer 2 apply (blast intro: fold_set_imp_cons)  | 
|
178  | 
apply (frule_tac Fin.consI [of c, THEN FinD, THEN fold_set_mono, THEN subsetD], assumption+)  | 
|
179  | 
apply (frule_tac fold_set.dom_subset [of A, THEN subsetD])  | 
|
180  | 
apply (drule FinD)  | 
|
181  | 
apply (rule_tac A1 = "cons(c,C)" and f1=f and B1=B and C1=C and e1=e in fold_typing.Fin_imp_fold_set [THEN exE])  | 
|
182  | 
apply (blast intro: fold_typing.intro ftype etype fcomm)  | 
|
183  | 
apply (blast intro: Fin_subset [of _ "cons(c,C)"] Finite_into_Fin  | 
|
184  | 
dest: Fin_into_Finite)  | 
|
185  | 
apply (rule_tac x = x in exI)  | 
|
186  | 
apply (auto intro: fold_set.intros)  | 
|
187  | 
apply (drule_tac fold_set_lemma [of C], blast)  | 
|
188  | 
apply (blast intro!: fold_set.consI  | 
|
189  | 
intro: fold_set_determ fold_set_mono [THEN subsetD]  | 
|
190  | 
dest: fold_set.dom_subset [THEN subsetD])  | 
|
191  | 
done  | 
|
192  | 
||
193  | 
lemma (in fold_typing) fold_cons:  | 
|
194  | 
"[| C\<in>Fin(A); c\<in>A; c\<notin>C|]  | 
|
195  | 
==> fold[B](f, e, cons(c, C)) = f(c, fold[B](f, e, C))"  | 
|
196  | 
apply (unfold fold_def)  | 
|
197  | 
apply (simp add: fold_cons_lemma)  | 
|
198  | 
apply (rule the_equality, auto)  | 
|
199  | 
apply (subgoal_tac [2] "\<langle>C, y\<rangle> \<in> fold_set(A, B, f, e)")  | 
|
200  | 
apply (drule Fin_imp_fold_set)  | 
|
201  | 
apply (auto dest: fold_set_lemma simp add: fold_def [symmetric] fold_equality)  | 
|
202  | 
apply (blast intro: fold_set_mono [THEN subsetD] dest!: FinD)  | 
|
203  | 
done  | 
|
204  | 
||
205  | 
lemma (in fold_typing) fold_type [simp,TC]:  | 
|
206  | 
"C\<in>Fin(A) ==> fold[B](f,e,C):B"  | 
|
207  | 
apply (erule Fin_induct)  | 
|
208  | 
apply (simp_all add: fold_cons ftype etype)  | 
|
209  | 
done  | 
|
210  | 
||
211  | 
lemma (in fold_typing) fold_commute [rule_format]:  | 
|
212  | 
"[| C\<in>Fin(A); c\<in>A |]  | 
|
213  | 
==> (\<forall>y\<in>B. f(c, fold[B](f, y, C)) = fold[B](f, f(c, y), C))"  | 
|
214  | 
apply (erule Fin_induct)  | 
|
215  | 
apply (simp_all add: fold_typing.fold_cons [of A B _ f]  | 
|
216  | 
fold_typing.fold_type [of A B _ f]  | 
|
217  | 
fold_typing_def fcomm)  | 
|
218  | 
done  | 
|
219  | 
||
220  | 
lemma (in fold_typing) fold_nest_Un_Int:  | 
|
221  | 
"[| C\<in>Fin(A); D\<in>Fin(A) |]  | 
|
222  | 
==> fold[B](f, fold[B](f, e, D), C) =  | 
|
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
32960 
diff
changeset
 | 
223  | 
fold[B](f, fold[B](f, e, (C \<inter> D)), C \<union> D)"  | 
| 14071 | 224  | 
apply (erule Fin_induct, auto)  | 
225  | 
apply (simp add: Un_cons Int_cons_left fold_type fold_commute  | 
|
226  | 
fold_typing.fold_cons [of A _ _ f]  | 
|
227  | 
fold_typing_def fcomm cons_absorb)  | 
|
228  | 
done  | 
|
229  | 
||
230  | 
lemma (in fold_typing) fold_nest_Un_disjoint:  | 
|
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
32960 
diff
changeset
 | 
231  | 
"[| C\<in>Fin(A); D\<in>Fin(A); C \<inter> D = 0 |]  | 
| 
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
32960 
diff
changeset
 | 
232  | 
==> fold[B](f,e,C \<union> D) = fold[B](f, fold[B](f,e,D), C)"  | 
| 14071 | 233  | 
by (simp add: fold_nest_Un_Int)  | 
234  | 
||
235  | 
lemma Finite_cons_lemma: "Finite(C) ==> C\<in>Fin(cons(c, C))"  | 
|
236  | 
apply (drule Finite_into_Fin)  | 
|
237  | 
apply (blast intro: Fin_mono [THEN subsetD])  | 
|
238  | 
done  | 
|
239  | 
||
240  | 
subsection{*The Operator @{term setsum}*}
 | 
|
241  | 
||
242  | 
lemma setsum_0 [simp]: "setsum(g, 0) = #0"  | 
|
243  | 
by (simp add: setsum_def)  | 
|
244  | 
||
245  | 
lemma setsum_cons [simp]:  | 
|
246  | 
"Finite(C) ==>  | 
|
247  | 
setsum(g, cons(c,C)) =  | 
|
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
32960 
diff
changeset
 | 
248  | 
(if c \<in> C then setsum(g,C) else g(c) $+ setsum(g,C))"  | 
| 14071 | 249  | 
apply (auto simp add: setsum_def Finite_cons cons_absorb)  | 
250  | 
apply (rule_tac A = "cons (c, C)" in fold_typing.fold_cons)  | 
|
251  | 
apply (auto intro: fold_typing.intro Finite_cons_lemma)  | 
|
252  | 
done  | 
|
253  | 
||
254  | 
lemma setsum_K0: "setsum((%i. #0), C) = #0"  | 
|
255  | 
apply (case_tac "Finite (C) ")  | 
|
256  | 
prefer 2 apply (simp add: setsum_def)  | 
|
257  | 
apply (erule Finite_induct, auto)  | 
|
258  | 
done  | 
|
259  | 
||
260  | 
(*The reversed orientation looks more natural, but LOOPS as a simprule!*)  | 
|
261  | 
lemma setsum_Un_Int:  | 
|
262  | 
"[| Finite(C); Finite(D) |]  | 
|
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
32960 
diff
changeset
 | 
263  | 
==> setsum(g, C \<union> D) $+ setsum(g, C \<inter> D)  | 
| 14071 | 264  | 
= setsum(g, C) $+ setsum(g, D)"  | 
265  | 
apply (erule Finite_induct)  | 
|
266  | 
apply (simp_all add: Int_cons_right cons_absorb Un_cons Int_commute Finite_Un  | 
|
267  | 
Int_lower1 [THEN subset_Finite])  | 
|
268  | 
done  | 
|
269  | 
||
270  | 
lemma setsum_type [simp,TC]: "setsum(g, C):int"  | 
|
271  | 
apply (case_tac "Finite (C) ")  | 
|
272  | 
prefer 2 apply (simp add: setsum_def)  | 
|
273  | 
apply (erule Finite_induct, auto)  | 
|
274  | 
done  | 
|
275  | 
||
276  | 
lemma setsum_Un_disjoint:  | 
|
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
32960 
diff
changeset
 | 
277  | 
"[| Finite(C); Finite(D); C \<inter> D = 0 |]  | 
| 
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
32960 
diff
changeset
 | 
278  | 
==> setsum(g, C \<union> D) = setsum(g, C) $+ setsum(g,D)"  | 
| 14071 | 279  | 
apply (subst setsum_Un_Int [symmetric])  | 
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
32960 
diff
changeset
 | 
280  | 
apply (subgoal_tac [3] "Finite (C \<union> D) ")  | 
| 14071 | 281  | 
apply (auto intro: Finite_Un)  | 
282  | 
done  | 
|
283  | 
||
284  | 
lemma Finite_RepFun [rule_format (no_asm)]:  | 
|
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
32960 
diff
changeset
 | 
285  | 
"Finite(I) ==> (\<forall>i\<in>I. Finite(C(i))) \<longrightarrow> Finite(RepFun(I, C))"  | 
| 14071 | 286  | 
apply (erule Finite_induct, auto)  | 
287  | 
done  | 
|
288  | 
||
289  | 
lemma setsum_UN_disjoint [rule_format (no_asm)]:  | 
|
290  | 
"Finite(I)  | 
|
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
32960 
diff
changeset
 | 
291  | 
==> (\<forall>i\<in>I. Finite(C(i))) \<longrightarrow>  | 
| 
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
32960 
diff
changeset
 | 
292  | 
(\<forall>i\<in>I. \<forall>j\<in>I. i\<noteq>j \<longrightarrow> C(i) \<inter> C(j) = 0) \<longrightarrow>  | 
| 14071 | 293  | 
setsum(f, \<Union>i\<in>I. C(i)) = setsum (%i. setsum(f, C(i)), I)"  | 
294  | 
apply (erule Finite_induct, auto)  | 
|
295  | 
apply (subgoal_tac "\<forall>i\<in>B. x \<noteq> i")  | 
|
296  | 
prefer 2 apply blast  | 
|
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
32960 
diff
changeset
 | 
297  | 
apply (subgoal_tac "C (x) \<inter> (\<Union>i\<in>B. C (i)) = 0")  | 
| 14071 | 298  | 
prefer 2 apply blast  | 
299  | 
apply (subgoal_tac "Finite (\<Union>i\<in>B. C (i)) & Finite (C (x)) & Finite (B) ")  | 
|
300  | 
apply (simp (no_asm_simp) add: setsum_Un_disjoint)  | 
|
301  | 
apply (auto intro: Finite_Union Finite_RepFun)  | 
|
302  | 
done  | 
|
303  | 
||
304  | 
||
305  | 
lemma setsum_addf: "setsum(%x. f(x) $+ g(x),C) = setsum(f, C) $+ setsum(g, C)"  | 
|
306  | 
apply (case_tac "Finite (C) ")  | 
|
307  | 
prefer 2 apply (simp add: setsum_def)  | 
|
308  | 
apply (erule Finite_induct, auto)  | 
|
309  | 
done  | 
|
310  | 
||
311  | 
||
312  | 
lemma fold_set_cong:  | 
|
313  | 
"[| A=A'; B=B'; e=e'; (\<forall>x\<in>A'. \<forall>y\<in>B'. f(x,y) = f'(x,y)) |]  | 
|
314  | 
==> fold_set(A,B,f,e) = fold_set(A',B',f',e')"  | 
|
315  | 
apply (simp add: fold_set_def)  | 
|
316  | 
apply (intro refl iff_refl lfp_cong Collect_cong disj_cong ex_cong, auto)  | 
|
317  | 
done  | 
|
318  | 
||
319  | 
lemma fold_cong:  | 
|
320  | 
"[| B=B'; A=A'; e=e';  | 
|
321  | 
!!x y. [|x\<in>A'; y\<in>B'|] ==> f(x,y) = f'(x,y) |] ==>  | 
|
322  | 
fold[B](f,e,A) = fold[B'](f', e', A')"  | 
|
323  | 
apply (simp add: fold_def)  | 
|
324  | 
apply (subst fold_set_cong)  | 
|
325  | 
apply (rule_tac [5] refl, simp_all)  | 
|
326  | 
done  | 
|
327  | 
||
328  | 
lemma setsum_cong:  | 
|
329  | 
"[| A=B; !!x. x\<in>B ==> f(x) = g(x) |] ==>  | 
|
330  | 
setsum(f, A) = setsum(g, B)"  | 
|
331  | 
by (simp add: setsum_def cong add: fold_cong)  | 
|
332  | 
||
333  | 
lemma setsum_Un:  | 
|
334  | 
"[| Finite(A); Finite(B) |]  | 
|
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
32960 
diff
changeset
 | 
335  | 
==> setsum(f, A \<union> B) =  | 
| 
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
32960 
diff
changeset
 | 
336  | 
setsum(f, A) $+ setsum(f, B) $- setsum(f, A \<inter> B)"  | 
| 14071 | 337  | 
apply (subst setsum_Un_Int [symmetric], auto)  | 
338  | 
done  | 
|
339  | 
||
340  | 
||
341  | 
lemma setsum_zneg_or_0 [rule_format (no_asm)]:  | 
|
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
32960 
diff
changeset
 | 
342  | 
"Finite(A) ==> (\<forall>x\<in>A. g(x) $<= #0) \<longrightarrow> setsum(g, A) $<= #0"  | 
| 14071 | 343  | 
apply (erule Finite_induct)  | 
344  | 
apply (auto intro: zneg_or_0_add_zneg_or_0_imp_zneg_or_0)  | 
|
345  | 
done  | 
|
346  | 
||
347  | 
lemma setsum_succD_lemma [rule_format]:  | 
|
348  | 
"Finite(A)  | 
|
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
32960 
diff
changeset
 | 
349  | 
==> \<forall>n\<in>nat. setsum(f,A) = $# succ(n) \<longrightarrow> (\<exists>a\<in>A. #0 $< f(a))"  | 
| 14071 | 350  | 
apply (erule Finite_induct)  | 
351  | 
apply (auto simp del: int_of_0 int_of_succ simp add: not_zless_iff_zle int_of_0 [symmetric])  | 
|
352  | 
apply (subgoal_tac "setsum (f, B) $<= #0")  | 
|
353  | 
apply simp_all  | 
|
354  | 
prefer 2 apply (blast intro: setsum_zneg_or_0)  | 
|
355  | 
apply (subgoal_tac "$# 1 $<= f (x) $+ setsum (f, B) ")  | 
|
356  | 
apply (drule zdiff_zle_iff [THEN iffD2])  | 
|
357  | 
apply (subgoal_tac "$# 1 $<= $# 1 $- setsum (f,B) ")  | 
|
358  | 
apply (drule_tac x = "$# 1" in zle_trans)  | 
|
359  | 
apply (rule_tac [2] j = "#1" in zless_zle_trans, auto)  | 
|
360  | 
done  | 
|
361  | 
||
362  | 
lemma setsum_succD:  | 
|
363  | 
"[| setsum(f, A) = $# succ(n); n\<in>nat |]==> \<exists>a\<in>A. #0 $< f(a)"  | 
|
364  | 
apply (case_tac "Finite (A) ")  | 
|
365  | 
apply (blast intro: setsum_succD_lemma)  | 
|
366  | 
apply (unfold setsum_def)  | 
|
367  | 
apply (auto simp del: int_of_0 int_of_succ simp add: int_succ_int_1 [symmetric] int_of_0 [symmetric])  | 
|
368  | 
done  | 
|
369  | 
||
370  | 
lemma g_zpos_imp_setsum_zpos [rule_format]:  | 
|
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
32960 
diff
changeset
 | 
371  | 
"Finite(A) ==> (\<forall>x\<in>A. #0 $<= g(x)) \<longrightarrow> #0 $<= setsum(g, A)"  | 
| 14071 | 372  | 
apply (erule Finite_induct)  | 
373  | 
apply (simp (no_asm))  | 
|
374  | 
apply (auto intro: zpos_add_zpos_imp_zpos)  | 
|
375  | 
done  | 
|
376  | 
||
377  | 
lemma g_zpos_imp_setsum_zpos2 [rule_format]:  | 
|
378  | 
"[| Finite(A); \<forall>x. #0 $<= g(x) |] ==> #0 $<= setsum(g, A)"  | 
|
379  | 
apply (erule Finite_induct)  | 
|
380  | 
apply (auto intro: zpos_add_zpos_imp_zpos)  | 
|
381  | 
done  | 
|
382  | 
||
383  | 
lemma g_zspos_imp_setsum_zspos [rule_format]:  | 
|
384  | 
"Finite(A)  | 
|
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
32960 
diff
changeset
 | 
385  | 
==> (\<forall>x\<in>A. #0 $< g(x)) \<longrightarrow> A \<noteq> 0 \<longrightarrow> (#0 $< setsum(g, A))"  | 
| 14071 | 386  | 
apply (erule Finite_induct)  | 
387  | 
apply (auto intro: zspos_add_zspos_imp_zspos)  | 
|
388  | 
done  | 
|
389  | 
||
390  | 
lemma setsum_Diff [rule_format]:  | 
|
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
32960 
diff
changeset
 | 
391  | 
     "Finite(A) ==> \<forall>a. M(a) = #0 \<longrightarrow> setsum(M, A) = setsum(M, A-{a})"
 | 
| 14071 | 392  | 
apply (erule Finite_induct)  | 
393  | 
apply (simp_all add: Diff_cons_eq Finite_Diff)  | 
|
394  | 
done  | 
|
395  | 
||
| 
12089
 
34e7693271a9
Sidi Ehmety's port of the fold_set operator and multisets to ZF.
 
paulson 
parents:  
diff
changeset
 | 
396  | 
end  |