author | obua |
Sun, 09 May 2004 23:04:36 +0200 | |
changeset 14722 | 8e739a6eaf11 |
parent 14430 | 5cb24165a2e1 |
permissions | -rw-r--r-- |
12224 | 1 |
(* Title : MacLaurin.thy |
2 |
Author : Jacques D. Fleuriot |
|
3 |
Copyright : 2001 University of Edinburgh |
|
4 |
Description : MacLaurin series |
|
5 |
*) |
|
6 |
||
7 |
Goal "sumr 0 n (%m. f (m + k)) = sumr 0 (n + k) f - sumr 0 k f"; |
|
8 |
by (induct_tac "n" 1); |
|
9 |
by Auto_tac; |
|
10 |
qed "sumr_offset"; |
|
11 |
||
12 |
Goal "ALL f. sumr 0 n (%m. f (m + k)) = sumr 0 (n + k) f - sumr 0 k f"; |
|
13 |
by (induct_tac "n" 1); |
|
14 |
by Auto_tac; |
|
15 |
qed "sumr_offset2"; |
|
16 |
||
17 |
Goal "sumr 0 (n + k) f = sumr 0 n (%m. f (m + k)) + sumr 0 k f"; |
|
18 |
by (simp_tac (simpset() addsimps [sumr_offset]) 1); |
|
19 |
qed "sumr_offset3"; |
|
20 |
||
21 |
Goal "ALL n f. sumr 0 (n + k) f = sumr 0 n (%m. f (m + k)) + sumr 0 k f"; |
|
22 |
by (simp_tac (simpset() addsimps [sumr_offset]) 1); |
|
23 |
qed "sumr_offset4"; |
|
24 |
||
25 |
Goal "0 < n ==> \ |
|
26 |
\ sumr (Suc 0) (Suc n) (%n. (if even(n) then 0 else \ |
|
27 |
\ ((- 1) ^ ((n - (Suc 0)) div 2))/(real (fact n))) * a ^ n) = \ |
|
28 |
\ sumr 0 (Suc n) (%n. (if even(n) then 0 else \ |
|
29 |
\ ((- 1) ^ ((n - (Suc 0)) div 2))/(real (fact n))) * a ^ n)"; |
|
30 |
by (res_inst_tac [("n1","1")] (sumr_split_add RS subst) 1); |
|
31 |
by Auto_tac; |
|
32 |
qed "sumr_from_1_from_0"; |
|
33 |
||
34 |
(*---------------------------------------------------------------------------*) |
|
35 |
(* Maclaurin's theorem with Lagrange form of remainder *) |
|
36 |
(*---------------------------------------------------------------------------*) |
|
37 |
||
38 |
(* Annoying: Proof is now even longer due mostly to |
|
39 |
change in behaviour of simplifier since Isabelle99 *) |
|
40 |
Goal " [| 0 < h; 0 < n; diff 0 = f; \ |
|
41 |
\ ALL m t. \ |
|
42 |
\ m < n & 0 <= t & t <= h --> DERIV (diff m) t :> diff (Suc m) t |] \ |
|
43 |
\ ==> EX t. 0 < t & \ |
|
44 |
\ t < h & \ |
|
45 |
\ f h = \ |
|
46 |
\ sumr 0 n (%m. (diff m 0 / real (fact m)) * h ^ m) + \ |
|
47 |
\ (diff n t / real (fact n)) * h ^ n"; |
|
48 |
by (case_tac "n = 0" 1); |
|
49 |
by (Force_tac 1); |
|
50 |
by (dtac not0_implies_Suc 1); |
|
51 |
by (etac exE 1); |
|
52 |
by (subgoal_tac |
|
53 |
"EX B. f h = sumr 0 n (%m. (diff m 0 / real (fact m)) * (h ^ m)) \ |
|
54 |
\ + (B * ((h ^ n) / real (fact n)))" 1); |
|
55 |
||
56 |
by (simp_tac (HOL_ss addsimps [real_add_commute, real_divide_def, |
|
57 |
ARITH_PROVE "(x = z + (y::real)) = (x - y = z)"]) 2); |
|
58 |
by (res_inst_tac |
|
59 |
[("x","(f(h) - sumr 0 n (%m. (diff(m)(0) / real (fact m)) * (h ^ m))) \ |
|
60 |
\ * real (fact n) / (h ^ n)")] exI 2); |
|
61 |
by (simp_tac (HOL_ss addsimps [real_mult_assoc,real_divide_def]) 2); |
|
62 |
by (rtac (CLAIM "x = (1::real) ==> a = a * (x::real)") 2); |
|
63 |
by (asm_simp_tac (HOL_ss addsimps |
|
64 |
[CLAIM "(a::real) * (b * (c * d)) = (d * a) * (b * c)"] |
|
65 |
delsimps [realpow_Suc]) 2); |
|
14365
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents:
14348
diff
changeset
|
66 |
by (stac left_inverse 2); |
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents:
14348
diff
changeset
|
67 |
by (stac left_inverse 3); |
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
14334
diff
changeset
|
68 |
by (rtac (real_not_refl2 RS not_sym) 2); |
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
14334
diff
changeset
|
69 |
by (etac zero_less_power 2); |
12224 | 70 |
by (rtac real_of_nat_fact_not_zero 2); |
71 |
by (Simp_tac 2); |
|
72 |
by (etac exE 1); |
|
73 |
by (cut_inst_tac [("b","%t. f t - \ |
|
74 |
\ (sumr 0 n (%m. (diff m 0 / real (fact m)) * (t ^ m)) + \ |
|
75 |
\ (B * ((t ^ n) / real (fact n))))")] |
|
76 |
(CLAIM "EX g. g = b") 1); |
|
77 |
by (etac exE 1); |
|
78 |
by (subgoal_tac "g 0 = 0 & g h =0" 1); |
|
79 |
by (asm_simp_tac (simpset() addsimps |
|
80 |
[ARITH_PROVE "(x - y = z) = (x = z + (y::real))"] |
|
81 |
delsimps [sumr_Suc]) 2); |
|
82 |
by (cut_inst_tac [("n","m"),("k","1")] sumr_offset2 2); |
|
83 |
by (asm_full_simp_tac (simpset() addsimps |
|
84 |
[ARITH_PROVE "(x = y - z) = (y = x + (z::real))"] |
|
85 |
delsimps [sumr_Suc]) 2); |
|
86 |
by (cut_inst_tac [("b","%m t. diff m t - \ |
|
87 |
\ (sumr 0 (n - m) (%p. (diff (m + p) 0 / real (fact p)) * (t ^ p)) \ |
|
88 |
\ + (B * ((t ^ (n - m)) / real (fact(n - m)))))")] |
|
89 |
(CLAIM "EX difg. difg = b") 1); |
|
90 |
by (etac exE 1); |
|
91 |
by (subgoal_tac "difg 0 = g" 1); |
|
92 |
by (asm_simp_tac (simpset() delsimps [realpow_Suc,fact_Suc]) 2); |
|
93 |
by (subgoal_tac "ALL m t. m < n & 0 <= t & t <= h --> \ |
|
94 |
\ DERIV (difg m) t :> difg (Suc m) t" 1); |
|
95 |
by (Clarify_tac 2); |
|
96 |
by (rtac DERIV_diff 2); |
|
97 |
by (Asm_simp_tac 2); |
|
98 |
by DERIV_tac; |
|
99 |
by DERIV_tac; |
|
100 |
by (rtac lemma_DERIV_subst 3); |
|
101 |
by (rtac DERIV_quotient 3); |
|
102 |
by (rtac DERIV_const 4); |
|
103 |
by (rtac DERIV_pow 3); |
|
14334 | 104 |
by (asm_simp_tac (simpset() addsimps [inverse_mult_distrib, |
12224 | 105 |
CLAIM_SIMP "(a::real) * b * c * (d * e) = a * b * (c * d) * e" |
14334 | 106 |
mult_ac,fact_diff_Suc]) 4); |
12224 | 107 |
by (Asm_simp_tac 3); |
108 |
by (forw_inst_tac [("m","ma")] less_add_one 2); |
|
109 |
by (Clarify_tac 2); |
|
110 |
by (asm_simp_tac (simpset() addsimps |
|
111 |
[CLAIM "Suc m = ma + d + 1 ==> m - ma = d"] |
|
112 |
delsimps [sumr_Suc]) 2); |
|
113 |
by (asm_simp_tac (simpset() addsimps [(simplify (simpset() delsimps [sumr_Suc]) |
|
114 |
(read_instantiate [("k","1")] sumr_offset4))] |
|
115 |
delsimps [sumr_Suc,fact_Suc,realpow_Suc]) 2); |
|
116 |
by (rtac lemma_DERIV_subst 2); |
|
117 |
by (rtac DERIV_add 2); |
|
118 |
by (rtac DERIV_const 3); |
|
119 |
by (rtac DERIV_sumr 2); |
|
120 |
by (Clarify_tac 2); |
|
121 |
by (Simp_tac 3); |
|
122 |
by (simp_tac (simpset() addsimps [real_divide_def,real_mult_assoc] |
|
123 |
delsimps [fact_Suc,realpow_Suc]) 2); |
|
124 |
by (rtac DERIV_cmult 2); |
|
125 |
by (rtac lemma_DERIV_subst 2); |
|
126 |
by DERIV_tac; |
|
12486 | 127 |
by (stac fact_Suc 2); |
128 |
by (stac real_of_nat_mult 2); |
|
14334 | 129 |
by (simp_tac (simpset() addsimps [inverse_mult_distrib] @ |
130 |
mult_ac) 2); |
|
12224 | 131 |
by (subgoal_tac "ALL ma. ma < n --> \ |
132 |
\ (EX t. 0 < t & t < h & difg (Suc ma) t = 0)" 1); |
|
133 |
by (rotate_tac 11 1); |
|
134 |
by (dres_inst_tac [("x","m")] spec 1); |
|
135 |
by (etac impE 1); |
|
136 |
by (Asm_simp_tac 1); |
|
137 |
by (etac exE 1); |
|
138 |
by (res_inst_tac [("x","t")] exI 1); |
|
139 |
by (asm_full_simp_tac (simpset() addsimps |
|
140 |
[ARITH_PROVE "(x - y = 0) = (y = (x::real))"] |
|
141 |
delsimps [realpow_Suc,fact_Suc]) 1); |
|
142 |
by (subgoal_tac "ALL m. m < n --> difg m 0 = 0" 1); |
|
143 |
by (Clarify_tac 2); |
|
144 |
by (Asm_simp_tac 2); |
|
145 |
by (forw_inst_tac [("m","ma")] less_add_one 2); |
|
146 |
by (Clarify_tac 2); |
|
147 |
by (asm_simp_tac (simpset() delsimps [sumr_Suc]) 2); |
|
148 |
by (asm_simp_tac (simpset() addsimps [(simplify (simpset() delsimps [sumr_Suc]) |
|
149 |
(read_instantiate [("k","1")] sumr_offset4))] |
|
150 |
delsimps [sumr_Suc,fact_Suc,realpow_Suc]) 2); |
|
151 |
by (subgoal_tac "ALL m. m < n --> (EX t. 0 < t & t < h & \ |
|
152 |
\ DERIV (difg m) t :> 0)" 1); |
|
153 |
by (rtac allI 1 THEN rtac impI 1); |
|
154 |
by (rotate_tac 12 1); |
|
155 |
by (dres_inst_tac [("x","ma")] spec 1); |
|
156 |
by (etac impE 1 THEN assume_tac 1); |
|
157 |
by (etac exE 1); |
|
158 |
by (res_inst_tac [("x","t")] exI 1); |
|
159 |
(* do some tidying up *) |
|
160 |
by (ALLGOALS(thin_tac "difg = \ |
|
161 |
\ (%m t. diff m t - \ |
|
162 |
\ (sumr 0 (n - m) \ |
|
163 |
\ (%p. diff (m + p) 0 / real (fact p) * t ^ p) + \ |
|
164 |
\ B * (t ^ (n - m) / real (fact (n - m)))))")); |
|
165 |
by (ALLGOALS(thin_tac "g = \ |
|
166 |
\ (%t. f t - \ |
|
167 |
\ (sumr 0 n (%m. diff m 0 / real (fact m) * t ^ m) + \ |
|
168 |
\ B * (t ^ n / real (fact n))))")); |
|
169 |
by (ALLGOALS(thin_tac "f h = \ |
|
170 |
\ sumr 0 n (%m. diff m 0 / real (fact m) * h ^ m) + \ |
|
171 |
\ B * (h ^ n / real (fact n))")); |
|
172 |
(* back to business *) |
|
173 |
by (Asm_simp_tac 1); |
|
174 |
by (rtac DERIV_unique 1); |
|
175 |
by (Blast_tac 2); |
|
176 |
by (Force_tac 1); |
|
177 |
by (rtac allI 1 THEN induct_tac "ma" 1); |
|
178 |
by (rtac impI 1 THEN rtac Rolle 1); |
|
179 |
by (assume_tac 1); |
|
180 |
by (Asm_full_simp_tac 1); |
|
181 |
by (Asm_full_simp_tac 1); |
|
182 |
by (subgoal_tac "ALL t. 0 <= t & t <= h --> g differentiable t" 1); |
|
183 |
by (asm_full_simp_tac (simpset() addsimps [differentiable_def]) 1); |
|
184 |
by (blast_tac (claset() addDs [DERIV_isCont]) 1); |
|
185 |
by (asm_full_simp_tac (simpset() addsimps [differentiable_def]) 1); |
|
186 |
by (Clarify_tac 1); |
|
187 |
by (res_inst_tac [("x","difg (Suc 0) t")] exI 1); |
|
188 |
by (Force_tac 1); |
|
189 |
by (asm_full_simp_tac (simpset() addsimps [differentiable_def]) 1); |
|
190 |
by (Clarify_tac 1); |
|
191 |
by (res_inst_tac [("x","difg (Suc 0) x")] exI 1); |
|
192 |
by (Force_tac 1); |
|
193 |
by (Step_tac 1); |
|
194 |
by (Force_tac 1); |
|
195 |
by (subgoal_tac "EX ta. 0 < ta & ta < t & \ |
|
196 |
\ DERIV difg (Suc n) ta :> 0" 1); |
|
197 |
by (rtac Rolle 2 THEN assume_tac 2); |
|
198 |
by (Asm_full_simp_tac 2); |
|
199 |
by (rotate_tac 2 2); |
|
200 |
by (dres_inst_tac [("x","n")] spec 2); |
|
201 |
by (ftac (ARITH_PROVE "n < m ==> n < Suc m") 2); |
|
202 |
by (rtac DERIV_unique 2); |
|
203 |
by (assume_tac 3); |
|
204 |
by (Force_tac 2); |
|
205 |
by (subgoal_tac |
|
206 |
"ALL ta. 0 <= ta & ta <= t --> (difg (Suc n)) differentiable ta" 2); |
|
207 |
by (asm_full_simp_tac (simpset() addsimps [differentiable_def]) 2); |
|
208 |
by (blast_tac (claset() addSDs [DERIV_isCont]) 2); |
|
209 |
by (asm_full_simp_tac (simpset() addsimps [differentiable_def]) 2); |
|
210 |
by (Clarify_tac 2); |
|
211 |
by (res_inst_tac [("x","difg (Suc (Suc n)) ta")] exI 2); |
|
212 |
by (Force_tac 2); |
|
213 |
by (asm_full_simp_tac (simpset() addsimps [differentiable_def]) 2); |
|
214 |
by (Clarify_tac 2); |
|
215 |
by (res_inst_tac [("x","difg (Suc (Suc n)) x")] exI 2); |
|
216 |
by (Force_tac 2); |
|
217 |
by (Step_tac 1); |
|
218 |
by (res_inst_tac [("x","ta")] exI 1); |
|
219 |
by (Force_tac 1); |
|
220 |
qed "Maclaurin"; |
|
221 |
||
222 |
Goal "0 < h & 0 < n & diff 0 = f & \ |
|
223 |
\ (ALL m t. \ |
|
224 |
\ m < n & 0 <= t & t <= h --> DERIV (diff m) t :> diff (Suc m) t) \ |
|
225 |
\ --> (EX t. 0 < t & \ |
|
226 |
\ t < h & \ |
|
227 |
\ f h = \ |
|
228 |
\ sumr 0 n (%m. diff m 0 / real (fact m) * h ^ m) + \ |
|
229 |
\ diff n t / real (fact n) * h ^ n)"; |
|
230 |
by (blast_tac (claset() addIs [Maclaurin]) 1); |
|
231 |
qed "Maclaurin_objl"; |
|
232 |
||
233 |
Goal " [| 0 < h; diff 0 = f; \ |
|
234 |
\ ALL m t. \ |
|
235 |
\ m < n & 0 <= t & t <= h --> DERIV (diff m) t :> diff (Suc m) t |] \ |
|
236 |
\ ==> EX t. 0 < t & \ |
|
237 |
\ t <= h & \ |
|
238 |
\ f h = \ |
|
239 |
\ sumr 0 n (%m. diff m 0 / real (fact m) * h ^ m) + \ |
|
240 |
\ diff n t / real (fact n) * h ^ n"; |
|
241 |
by (case_tac "n" 1); |
|
242 |
by Auto_tac; |
|
243 |
by (dtac Maclaurin 1 THEN Auto_tac); |
|
244 |
qed "Maclaurin2"; |
|
245 |
||
246 |
Goal "0 < h & diff 0 = f & \ |
|
247 |
\ (ALL m t. \ |
|
248 |
\ m < n & 0 <= t & t <= h --> DERIV (diff m) t :> diff (Suc m) t) \ |
|
249 |
\ --> (EX t. 0 < t & \ |
|
250 |
\ t <= h & \ |
|
251 |
\ f h = \ |
|
252 |
\ sumr 0 n (%m. diff m 0 / real (fact m) * h ^ m) + \ |
|
253 |
\ diff n t / real (fact n) * h ^ n)"; |
|
254 |
by (blast_tac (claset() addIs [Maclaurin2]) 1); |
|
255 |
qed "Maclaurin2_objl"; |
|
256 |
||
257 |
Goal " [| h < 0; 0 < n; diff 0 = f; \ |
|
258 |
\ ALL m t. \ |
|
259 |
\ m < n & h <= t & t <= 0 --> DERIV (diff m) t :> diff (Suc m) t |] \ |
|
260 |
\ ==> EX t. h < t & \ |
|
261 |
\ t < 0 & \ |
|
262 |
\ f h = \ |
|
263 |
\ sumr 0 n (%m. diff m 0 / real (fact m) * h ^ m) + \ |
|
264 |
\ diff n t / real (fact n) * h ^ n"; |
|
265 |
by (cut_inst_tac [("f","%x. f (-x)"), |
|
266 |
("diff","%n x. ((- 1) ^ n) * diff n (-x)"), |
|
267 |
("h","-h"),("n","n")] Maclaurin_objl 1); |
|
268 |
by (Asm_full_simp_tac 1); |
|
269 |
by (etac impE 1 THEN Step_tac 1); |
|
14334 | 270 |
by (stac minus_mult_right 1); |
12224 | 271 |
by (rtac DERIV_cmult 1); |
272 |
by (rtac lemma_DERIV_subst 1); |
|
273 |
by (rtac (read_instantiate [("g","uminus")] DERIV_chain2) 1); |
|
274 |
by (rtac DERIV_minus 2 THEN rtac DERIV_Id 2); |
|
275 |
by (Force_tac 2); |
|
276 |
by (Force_tac 1); |
|
277 |
by (res_inst_tac [("x","-t")] exI 1); |
|
278 |
by Auto_tac; |
|
279 |
by (rtac (CLAIM "[| x = x'; y = y' |] ==> x + y = x' + (y'::real)") 1); |
|
280 |
by (rtac sumr_fun_eq 1); |
|
281 |
by (Asm_full_simp_tac 1); |
|
282 |
by (auto_tac (claset(),simpset() addsimps [real_divide_def, |
|
283 |
CLAIM "((a * b) * c) * d = (b * c) * (a * (d::real))", |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
14334
diff
changeset
|
284 |
power_mult_distrib RS sym])); |
12224 | 285 |
qed "Maclaurin_minus"; |
286 |
||
287 |
Goal "(h < 0 & 0 < n & diff 0 = f & \ |
|
288 |
\ (ALL m t. \ |
|
289 |
\ m < n & h <= t & t <= 0 --> DERIV (diff m) t :> diff (Suc m) t))\ |
|
290 |
\ --> (EX t. h < t & \ |
|
291 |
\ t < 0 & \ |
|
292 |
\ f h = \ |
|
293 |
\ sumr 0 n (%m. diff m 0 / real (fact m) * h ^ m) + \ |
|
294 |
\ diff n t / real (fact n) * h ^ n)"; |
|
295 |
by (blast_tac (claset() addIs [Maclaurin_minus]) 1); |
|
296 |
qed "Maclaurin_minus_objl"; |
|
297 |
||
298 |
(* ------------------------------------------------------------------------- *) |
|
299 |
(* More convenient "bidirectional" version. *) |
|
300 |
(* ------------------------------------------------------------------------- *) |
|
301 |
||
302 |
(* not good for PVS sin_approx, cos_approx *) |
|
303 |
Goal " [| diff 0 = f; \ |
|
304 |
\ ALL m t. \ |
|
305 |
\ m < n & abs t <= abs x --> DERIV (diff m) t :> diff (Suc m) t |] \ |
|
306 |
\ ==> EX t. abs t <= abs x & \ |
|
307 |
\ f x = \ |
|
308 |
\ sumr 0 n (%m. diff m 0 / real (fact m) * x ^ m) + \ |
|
309 |
\ diff n t / real (fact n) * x ^ n"; |
|
310 |
by (case_tac "n = 0" 1); |
|
311 |
by (Force_tac 1); |
|
312 |
by (case_tac "x = 0" 1); |
|
313 |
by (res_inst_tac [("x","0")] exI 1); |
|
314 |
by (Asm_full_simp_tac 1); |
|
315 |
by (res_inst_tac [("P","0 < n")] impE 1); |
|
316 |
by (assume_tac 2 THEN assume_tac 2); |
|
317 |
by (induct_tac "n" 1); |
|
318 |
by (Simp_tac 1); |
|
319 |
by Auto_tac; |
|
14269 | 320 |
by (cut_inst_tac [("x","x"),("y","0")] linorder_less_linear 1); |
12224 | 321 |
by Auto_tac; |
322 |
by (cut_inst_tac [("f","diff 0"), |
|
323 |
("diff","diff"), |
|
324 |
("h","x"),("n","n")] Maclaurin_objl 2); |
|
325 |
by (Step_tac 2); |
|
326 |
by (blast_tac (claset() addDs |
|
327 |
[ARITH_PROVE "[|(0::real) <= t;t <= x |] ==> abs t <= abs x"]) 2); |
|
328 |
by (res_inst_tac [("x","t")] exI 2); |
|
329 |
by (force_tac (claset() addIs |
|
330 |
[ARITH_PROVE "[| 0 < t; (t::real) < x|] ==> abs t <= abs x"],simpset()) 2); |
|
331 |
by (cut_inst_tac [("f","diff 0"), |
|
332 |
("diff","diff"), |
|
333 |
("h","x"),("n","n")] Maclaurin_minus_objl 1); |
|
334 |
by (Step_tac 1); |
|
335 |
by (blast_tac (claset() addDs |
|
336 |
[ARITH_PROVE "[|x <= t;t <= (0::real) |] ==> abs t <= abs x"]) 1); |
|
337 |
by (res_inst_tac [("x","t")] exI 1); |
|
338 |
by (force_tac (claset() addIs |
|
339 |
[ARITH_PROVE "[| x < t; (t::real) < 0|] ==> abs t <= abs x"],simpset()) 1); |
|
340 |
qed "Maclaurin_bi_le"; |
|
341 |
||
342 |
Goal "[| diff 0 = f; \ |
|
343 |
\ ALL m x. DERIV (diff m) x :> diff(Suc m) x; \ |
|
344 |
\ x ~= 0; 0 < n \ |
|
345 |
\ |] ==> EX t. 0 < abs t & abs t < abs x & \ |
|
346 |
\ f x = sumr 0 n (%m. (diff m 0 / real (fact m)) * x ^ m) + \ |
|
347 |
\ (diff n t / real (fact n)) * x ^ n"; |
|
14365
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents:
14348
diff
changeset
|
348 |
by (res_inst_tac [("x","x"),("y","0")] linorder_cases 1); |
12224 | 349 |
by (Blast_tac 2); |
350 |
by (dtac Maclaurin_minus 1); |
|
351 |
by (dtac Maclaurin 5); |
|
352 |
by (TRYALL(assume_tac)); |
|
353 |
by (Blast_tac 1); |
|
354 |
by (Blast_tac 2); |
|
355 |
by (Step_tac 1); |
|
356 |
by (ALLGOALS(res_inst_tac [("x","t")] exI)); |
|
357 |
by (Step_tac 1); |
|
358 |
by (ALLGOALS(arith_tac)); |
|
359 |
qed "Maclaurin_all_lt"; |
|
360 |
||
361 |
Goal "diff 0 = f & \ |
|
362 |
\ (ALL m x. DERIV (diff m) x :> diff(Suc m) x) & \ |
|
363 |
\ x ~= 0 & 0 < n \ |
|
364 |
\ --> (EX t. 0 < abs t & abs t < abs x & \ |
|
365 |
\ f x = sumr 0 n (%m. (diff m 0 / real (fact m)) * x ^ m) + \ |
|
366 |
\ (diff n t / real (fact n)) * x ^ n)"; |
|
367 |
by (blast_tac (claset() addIs [Maclaurin_all_lt]) 1); |
|
368 |
qed "Maclaurin_all_lt_objl"; |
|
369 |
||
370 |
Goal "x = (0::real) \ |
|
371 |
\ ==> 0 < n --> \ |
|
372 |
\ sumr 0 n (%m. (diff m (0::real) / real (fact m)) * x ^ m) = \ |
|
373 |
\ diff 0 0"; |
|
374 |
by (Asm_simp_tac 1); |
|
375 |
by (induct_tac "n" 1); |
|
376 |
by Auto_tac; |
|
377 |
qed_spec_mp "Maclaurin_zero"; |
|
378 |
||
379 |
Goal "[| diff 0 = f; \ |
|
380 |
\ ALL m x. DERIV (diff m) x :> diff (Suc m) x \ |
|
381 |
\ |] ==> EX t. abs t <= abs x & \ |
|
382 |
\ f x = sumr 0 n (%m. (diff m 0 / real (fact m)) * x ^ m) + \ |
|
383 |
\ (diff n t / real (fact n)) * x ^ n"; |
|
384 |
by (cut_inst_tac [("n","n"),("m","0")] |
|
385 |
(ARITH_PROVE "n <= m | m < (n::nat)") 1); |
|
386 |
by (etac disjE 1); |
|
387 |
by (Force_tac 1); |
|
388 |
by (case_tac "x = 0" 1); |
|
389 |
by (forw_inst_tac [("diff","diff"),("n","n")] Maclaurin_zero 1); |
|
390 |
by (assume_tac 1); |
|
391 |
by (dtac (gr_implies_not0 RS not0_implies_Suc) 1); |
|
392 |
by (res_inst_tac [("x","0")] exI 1); |
|
393 |
by (Force_tac 1); |
|
394 |
by (forw_inst_tac [("diff","diff"),("n","n")] Maclaurin_all_lt 1); |
|
395 |
by (TRYALL(assume_tac)); |
|
396 |
by (Step_tac 1); |
|
397 |
by (res_inst_tac [("x","t")] exI 1); |
|
398 |
by Auto_tac; |
|
399 |
qed "Maclaurin_all_le"; |
|
400 |
||
401 |
Goal "diff 0 = f & \ |
|
402 |
\ (ALL m x. DERIV (diff m) x :> diff (Suc m) x) \ |
|
403 |
\ --> (EX t. abs t <= abs x & \ |
|
404 |
\ f x = sumr 0 n (%m. (diff m 0 / real (fact m)) * x ^ m) + \ |
|
405 |
\ (diff n t / real (fact n)) * x ^ n)"; |
|
406 |
by (blast_tac (claset() addIs [Maclaurin_all_le]) 1); |
|
407 |
qed "Maclaurin_all_le_objl"; |
|
408 |
||
409 |
(* ------------------------------------------------------------------------- *) |
|
410 |
(* Version for exp. *) |
|
411 |
(* ------------------------------------------------------------------------- *) |
|
412 |
||
413 |
Goal "[| x ~= 0; 0 < n |] \ |
|
414 |
\ ==> (EX t. 0 < abs t & \ |
|
415 |
\ abs t < abs x & \ |
|
416 |
\ exp x = sumr 0 n (%m. (x ^ m) / real (fact m)) + \ |
|
417 |
\ (exp t / real (fact n)) * x ^ n)"; |
|
418 |
by (cut_inst_tac [("diff","%n. exp"),("f","exp"),("x","x"),("n","n")] |
|
419 |
Maclaurin_all_lt_objl 1); |
|
420 |
by Auto_tac; |
|
421 |
qed "Maclaurin_exp_lt"; |
|
422 |
||
423 |
Goal "EX t. abs t <= abs x & \ |
|
424 |
\ exp x = sumr 0 n (%m. (x ^ m) / real (fact m)) + \ |
|
425 |
\ (exp t / real (fact n)) * x ^ n"; |
|
426 |
by (cut_inst_tac [("diff","%n. exp"),("f","exp"),("x","x"),("n","n")] |
|
427 |
Maclaurin_all_le_objl 1); |
|
428 |
by Auto_tac; |
|
429 |
qed "Maclaurin_exp_le"; |
|
430 |
||
431 |
(* ------------------------------------------------------------------------- *) |
|
432 |
(* Version for sin function *) |
|
433 |
(* ------------------------------------------------------------------------- *) |
|
434 |
||
435 |
Goal "[| a < b; ALL x. a <= x & x <= b --> DERIV f x :> f'(x) |] \ |
|
436 |
\ ==> EX z. a < z & z < b & (f b - f a = (b - a) * f'(z))"; |
|
437 |
by (dtac MVT 1); |
|
438 |
by (blast_tac (claset() addIs [DERIV_isCont]) 1); |
|
439 |
by (force_tac (claset() addDs [order_less_imp_le], |
|
440 |
simpset() addsimps [differentiable_def]) 1); |
|
441 |
by (blast_tac (claset() addDs [DERIV_unique,order_less_imp_le]) 1); |
|
442 |
qed "MVT2"; |
|
443 |
||
444 |
Goal "d < (4::nat) ==> d = 0 | d = 1 | d = 2 | d = 3"; |
|
445 |
by (case_tac "d" 1 THEN Auto_tac); |
|
446 |
qed "lemma_exhaust_less_4"; |
|
447 |
||
448 |
bind_thm ("real_mult_le_lemma", |
|
14334 | 449 |
simplify (simpset()) (inst "b" "1" mult_right_mono)); |
12224 | 450 |
|
451 |
||
452 |
Goal "abs(sin x - \ |
|
453 |
\ sumr 0 n (%m. (if even m then 0 \ |
|
454 |
\ else ((- 1) ^ ((m - (Suc 0)) div 2)) / real (fact m)) * \ |
|
455 |
\ x ^ m)) \ |
|
456 |
\ <= inverse(real (fact n)) * abs(x) ^ n"; |
|
457 |
by (cut_inst_tac [("f","sin"),("n","n"),("x","x"), |
|
458 |
("diff","%n x. if n mod 4 = 0 then sin(x) \ |
|
459 |
\ else if n mod 4 = 1 then cos(x) \ |
|
460 |
\ else if n mod 4 = 2 then -sin(x) \ |
|
461 |
\ else -cos(x)")] Maclaurin_all_le_objl 1); |
|
462 |
by (Step_tac 1); |
|
463 |
by (Asm_full_simp_tac 1); |
|
12486 | 464 |
by (stac mod_Suc_eq_Suc_mod 1); |
12224 | 465 |
by (cut_inst_tac [("m1","m")] (CLAIM "0 < (4::nat)" RS mod_less_divisor |
466 |
RS lemma_exhaust_less_4) 1); |
|
467 |
by (Step_tac 1); |
|
468 |
by (Asm_simp_tac 1); |
|
469 |
by (Asm_simp_tac 1); |
|
470 |
by (Asm_simp_tac 1); |
|
471 |
by (rtac DERIV_minus 1 THEN Simp_tac 1); |
|
472 |
by (Asm_simp_tac 1); |
|
473 |
by (rtac lemma_DERIV_subst 1 THEN rtac DERIV_minus 1 THEN rtac DERIV_cos 1); |
|
474 |
by (Simp_tac 1); |
|
475 |
by (dtac ssubst 1 THEN assume_tac 2); |
|
476 |
by (rtac (ARITH_PROVE "[|x = y; abs u <= (v::real) |] ==> abs ((x + u) - y) <= v") 1); |
|
477 |
by (rtac sumr_fun_eq 1); |
|
478 |
by (Step_tac 1); |
|
479 |
by (rtac (CLAIM "x = y ==> x * z = y * (z::real)") 1); |
|
12486 | 480 |
by (stac even_even_mod_4_iff 1); |
12224 | 481 |
by (cut_inst_tac [("m1","r")] (CLAIM "0 < (4::nat)" RS mod_less_divisor |
482 |
RS lemma_exhaust_less_4) 1); |
|
483 |
by (Step_tac 1); |
|
484 |
by (Asm_simp_tac 1); |
|
485 |
by (asm_simp_tac (simpset() addsimps [even_num_iff]) 2); |
|
486 |
by (asm_simp_tac (simpset() addsimps [even_num_iff]) 1); |
|
487 |
by (asm_simp_tac (simpset() addsimps [even_num_iff]) 2); |
|
488 |
by (dtac lemma_even_mod_4_div_2 1); |
|
489 |
by (asm_full_simp_tac (simpset() addsimps [numeral_2_eq_2,real_divide_def]) 1); |
|
490 |
by (dtac lemma_odd_mod_4_div_2 1); |
|
491 |
by (asm_full_simp_tac (simpset() addsimps [numeral_2_eq_2, real_divide_def]) 1); |
|
14334 | 492 |
by (auto_tac (claset() addSIs [real_mult_le_lemma,mult_right_mono], |
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
14334
diff
changeset
|
493 |
simpset() addsimps [real_divide_def,abs_mult,abs_inverse,power_abs RS |
12330 | 494 |
sym])); |
12224 | 495 |
qed "Maclaurin_sin_bound"; |
496 |
||
497 |
Goal "0 < n --> Suc (Suc (2 * n - 2)) = 2*n"; |
|
498 |
by (induct_tac "n" 1); |
|
499 |
by Auto_tac; |
|
500 |
qed_spec_mp "Suc_Suc_mult_two_diff_two"; |
|
501 |
Addsimps [Suc_Suc_mult_two_diff_two]; |
|
502 |
||
503 |
Goal "0 < n --> Suc (Suc (4*n - 2)) = 4*n"; |
|
504 |
by (induct_tac "n" 1); |
|
505 |
by Auto_tac; |
|
506 |
qed_spec_mp "lemma_Suc_Suc_4n_diff_2"; |
|
507 |
Addsimps [lemma_Suc_Suc_4n_diff_2]; |
|
508 |
||
509 |
Goal "0 < n --> Suc (2 * n - 1) = 2*n"; |
|
510 |
by (induct_tac "n" 1); |
|
511 |
by Auto_tac; |
|
512 |
qed_spec_mp "Suc_mult_two_diff_one"; |
|
513 |
Addsimps [Suc_mult_two_diff_one]; |
|
514 |
||
515 |
Goal "EX t. sin x = \ |
|
516 |
\ (sumr 0 n (%m. (if even m then 0 \ |
|
517 |
\ else ((- 1) ^ ((m - (Suc 0)) div 2)) / real (fact m)) * \ |
|
518 |
\ x ^ m)) \ |
|
519 |
\ + ((sin(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)"; |
|
520 |
by (cut_inst_tac [("f","sin"),("n","n"),("x","x"), |
|
521 |
("diff","%n x. sin(x + 1/2*real (n)*pi)")] |
|
522 |
Maclaurin_all_lt_objl 1); |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
14334
diff
changeset
|
523 |
by (Safe_tac); |
12224 | 524 |
by (Simp_tac 1); |
525 |
by (Simp_tac 1); |
|
526 |
by (case_tac "n" 1); |
|
527 |
by (Clarify_tac 1); |
|
528 |
by (Asm_full_simp_tac 1); |
|
529 |
by (dres_inst_tac [("x","0")] spec 1 THEN Asm_full_simp_tac 1); |
|
530 |
by (Asm_full_simp_tac 1); |
|
531 |
by (rtac ccontr 1); |
|
532 |
by (Asm_full_simp_tac 1); |
|
533 |
by (dres_inst_tac [("x","x")] spec 1 THEN Asm_full_simp_tac 1); |
|
534 |
by (dtac ssubst 1 THEN assume_tac 2); |
|
535 |
by (res_inst_tac [("x","t")] exI 1); |
|
536 |
by (rtac (CLAIM "[|x = y; x' = y'|] ==> x + x' = y + (y'::real)") 1); |
|
537 |
by (rtac sumr_fun_eq 1); |
|
14430
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
paulson
parents:
14365
diff
changeset
|
538 |
by (auto_tac (claset(),simpset() addsimps [odd_Suc_mult_two_ex])); |
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
paulson
parents:
14365
diff
changeset
|
539 |
by (auto_tac (claset(),simpset() addsimps [even_mult_two_ex] delsimps [fact_Suc,realpow_Suc])); |
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
paulson
parents:
14365
diff
changeset
|
540 |
(*Could sin_zero_iff help?*) |
12224 | 541 |
qed "Maclaurin_sin_expansion"; |
542 |
||
543 |
Goal "EX t. abs t <= abs x & \ |
|
544 |
\ sin x = \ |
|
545 |
\ (sumr 0 n (%m. (if even m then 0 \ |
|
546 |
\ else ((- 1) ^ ((m - (Suc 0)) div 2)) / real (fact m)) * \ |
|
547 |
\ x ^ m)) \ |
|
548 |
\ + ((sin(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)"; |
|
549 |
||
550 |
by (cut_inst_tac [("f","sin"),("n","n"),("x","x"), |
|
551 |
("diff","%n x. sin(x + 1/2*real (n)*pi)")] |
|
552 |
Maclaurin_all_lt_objl 1); |
|
553 |
by (Step_tac 1); |
|
554 |
by (Simp_tac 1); |
|
555 |
by (Simp_tac 1); |
|
556 |
by (case_tac "n" 1); |
|
557 |
by (Clarify_tac 1); |
|
558 |
by (Asm_full_simp_tac 1); |
|
559 |
by (Asm_full_simp_tac 1); |
|
560 |
by (rtac ccontr 1); |
|
561 |
by (Asm_full_simp_tac 1); |
|
562 |
by (dres_inst_tac [("x","x")] spec 1 THEN Asm_full_simp_tac 1); |
|
563 |
by (dtac ssubst 1 THEN assume_tac 2); |
|
564 |
by (res_inst_tac [("x","t")] exI 1); |
|
565 |
by (rtac conjI 1); |
|
566 |
by (arith_tac 1); |
|
567 |
by (rtac (CLAIM "[|x = y; x' = y'|] ==> x + x' = y + (y'::real)") 1); |
|
568 |
by (rtac sumr_fun_eq 1); |
|
14430
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
paulson
parents:
14365
diff
changeset
|
569 |
by (auto_tac (claset(),simpset() addsimps [odd_Suc_mult_two_ex])); |
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
paulson
parents:
14365
diff
changeset
|
570 |
by (auto_tac (claset(),simpset() addsimps [even_mult_two_ex] delsimps [fact_Suc,realpow_Suc])); |
12224 | 571 |
qed "Maclaurin_sin_expansion2"; |
572 |
||
573 |
Goal "[| 0 < n; 0 < x |] ==> \ |
|
574 |
\ EX t. 0 < t & t < x & \ |
|
575 |
\ sin x = \ |
|
576 |
\ (sumr 0 n (%m. (if even m then 0 \ |
|
577 |
\ else ((- 1) ^ ((m - (Suc 0)) div 2)) / real (fact m)) * \ |
|
578 |
\ x ^ m)) \ |
|
579 |
\ + ((sin(t + 1/2 * real(n) *pi) / real (fact n)) * x ^ n)"; |
|
580 |
by (cut_inst_tac [("f","sin"),("n","n"),("h","x"), |
|
581 |
("diff","%n x. sin(x + 1/2*real (n)*pi)")] |
|
582 |
Maclaurin_objl 1); |
|
583 |
by (Step_tac 1); |
|
584 |
by (Asm_full_simp_tac 1); |
|
585 |
by (Simp_tac 1); |
|
586 |
by (dtac ssubst 1 THEN assume_tac 2); |
|
587 |
by (res_inst_tac [("x","t")] exI 1); |
|
588 |
by (rtac conjI 1 THEN rtac conjI 2); |
|
589 |
by (assume_tac 1 THEN assume_tac 1); |
|
590 |
by (rtac (CLAIM "[|x = y; x' = y'|] ==> x + x' = y + (y'::real)") 1); |
|
591 |
by (rtac sumr_fun_eq 1); |
|
14430
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
paulson
parents:
14365
diff
changeset
|
592 |
by (auto_tac (claset(),simpset() addsimps [odd_Suc_mult_two_ex])); |
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
paulson
parents:
14365
diff
changeset
|
593 |
by (auto_tac (claset(),simpset() addsimps [even_mult_two_ex] delsimps [fact_Suc,realpow_Suc])); |
12224 | 594 |
qed "Maclaurin_sin_expansion3"; |
595 |
||
596 |
Goal "0 < x ==> \ |
|
597 |
\ EX t. 0 < t & t <= x & \ |
|
598 |
\ sin x = \ |
|
599 |
\ (sumr 0 n (%m. (if even m then 0 \ |
|
600 |
\ else ((- 1) ^ ((m - (Suc 0)) div 2)) / real (fact m)) * \ |
|
601 |
\ x ^ m)) \ |
|
602 |
\ + ((sin(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)"; |
|
603 |
by (cut_inst_tac [("f","sin"),("n","n"),("h","x"), |
|
604 |
("diff","%n x. sin(x + 1/2*real (n)*pi)")] |
|
605 |
Maclaurin2_objl 1); |
|
606 |
by (Step_tac 1); |
|
607 |
by (Asm_full_simp_tac 1); |
|
608 |
by (Simp_tac 1); |
|
609 |
by (dtac ssubst 1 THEN assume_tac 2); |
|
610 |
by (res_inst_tac [("x","t")] exI 1); |
|
611 |
by (rtac conjI 1 THEN rtac conjI 2); |
|
612 |
by (assume_tac 1 THEN assume_tac 1); |
|
613 |
by (rtac (CLAIM "[|x = y; x' = y'|] ==> x + x' = y + (y'::real)") 1); |
|
614 |
by (rtac sumr_fun_eq 1); |
|
14430
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
paulson
parents:
14365
diff
changeset
|
615 |
by (auto_tac (claset(),simpset() addsimps [odd_Suc_mult_two_ex])); |
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
paulson
parents:
14365
diff
changeset
|
616 |
by (auto_tac (claset(),simpset() addsimps [even_mult_two_ex] delsimps [fact_Suc,realpow_Suc])); |
12224 | 617 |
qed "Maclaurin_sin_expansion4"; |
618 |
||
619 |
(*-----------------------------------------------------------------------------*) |
|
620 |
(* Maclaurin expansion for cos *) |
|
621 |
(*-----------------------------------------------------------------------------*) |
|
622 |
||
623 |
Goal "sumr 0 (Suc n) \ |
|
624 |
\ (%m. (if even m \ |
|
625 |
\ then (- 1) ^ (m div 2)/(real (fact m)) \ |
|
626 |
\ else 0) * \ |
|
627 |
\ 0 ^ m) = 1"; |
|
628 |
by (induct_tac "n" 1); |
|
629 |
by Auto_tac; |
|
630 |
qed "sumr_cos_zero_one"; |
|
631 |
Addsimps [sumr_cos_zero_one]; |
|
632 |
||
633 |
Goal "EX t. abs t <= abs x & \ |
|
634 |
\ cos x = \ |
|
635 |
\ (sumr 0 n (%m. (if even m \ |
|
636 |
\ then (- 1) ^ (m div 2)/(real (fact m)) \ |
|
637 |
\ else 0) * \ |
|
638 |
\ x ^ m)) \ |
|
639 |
\ + ((cos(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)"; |
|
640 |
by (cut_inst_tac [("f","cos"),("n","n"),("x","x"), |
|
641 |
("diff","%n x. cos(x + 1/2*real (n)*pi)")] |
|
642 |
Maclaurin_all_lt_objl 1); |
|
643 |
by (Step_tac 1); |
|
644 |
by (Simp_tac 1); |
|
645 |
by (Simp_tac 1); |
|
646 |
by (case_tac "n" 1); |
|
647 |
by (Asm_full_simp_tac 1); |
|
648 |
by (asm_full_simp_tac (simpset() delsimps [sumr_Suc]) 1); |
|
649 |
by (rtac ccontr 1); |
|
650 |
by (Asm_full_simp_tac 1); |
|
651 |
by (dres_inst_tac [("x","x")] spec 1 THEN Asm_full_simp_tac 1); |
|
652 |
by (dtac ssubst 1 THEN assume_tac 2); |
|
653 |
by (res_inst_tac [("x","t")] exI 1); |
|
654 |
by (rtac conjI 1); |
|
655 |
by (arith_tac 1); |
|
656 |
by (rtac (CLAIM "[|x = y; x' = y'|] ==> x + x' = y + (y'::real)") 1); |
|
657 |
by (rtac sumr_fun_eq 1); |
|
14430
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
paulson
parents:
14365
diff
changeset
|
658 |
by (auto_tac (claset(),simpset() addsimps [odd_Suc_mult_two_ex])); |
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
paulson
parents:
14365
diff
changeset
|
659 |
by (auto_tac (claset(),simpset() addsimps [even_mult_two_ex,left_distrib,cos_add] delsimps |
12224 | 660 |
[fact_Suc,realpow_Suc])); |
661 |
by (auto_tac (claset(),simpset() addsimps [real_mult_commute])); |
|
662 |
qed "Maclaurin_cos_expansion"; |
|
663 |
||
664 |
Goal "[| 0 < x; 0 < n |] ==> \ |
|
665 |
\ EX t. 0 < t & t < x & \ |
|
666 |
\ cos x = \ |
|
667 |
\ (sumr 0 n (%m. (if even m \ |
|
668 |
\ then (- 1) ^ (m div 2)/(real (fact m)) \ |
|
669 |
\ else 0) * \ |
|
670 |
\ x ^ m)) \ |
|
671 |
\ + ((cos(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)"; |
|
672 |
by (cut_inst_tac [("f","cos"),("n","n"),("h","x"), |
|
673 |
("diff","%n x. cos(x + 1/2*real (n)*pi)")] |
|
674 |
Maclaurin_objl 1); |
|
675 |
by (Step_tac 1); |
|
676 |
by (Asm_full_simp_tac 1); |
|
677 |
by (Simp_tac 1); |
|
678 |
by (dtac ssubst 1 THEN assume_tac 2); |
|
679 |
by (res_inst_tac [("x","t")] exI 1); |
|
680 |
by (rtac conjI 1 THEN rtac conjI 2); |
|
681 |
by (assume_tac 1 THEN assume_tac 1); |
|
682 |
by (rtac (CLAIM "[|x = y; x' = y'|] ==> x + x' = y + (y'::real)") 1); |
|
683 |
by (rtac sumr_fun_eq 1); |
|
14430
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
paulson
parents:
14365
diff
changeset
|
684 |
by (auto_tac (claset(),simpset() addsimps [odd_Suc_mult_two_ex])); |
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
paulson
parents:
14365
diff
changeset
|
685 |
by (auto_tac (claset(),simpset() addsimps [even_mult_two_ex,left_distrib,cos_add] delsimps [fact_Suc,realpow_Suc])); |
12224 | 686 |
by (auto_tac (claset(),simpset() addsimps [real_mult_commute])); |
687 |
qed "Maclaurin_cos_expansion2"; |
|
688 |
||
689 |
Goal "[| x < 0; 0 < n |] ==> \ |
|
690 |
\ EX t. x < t & t < 0 & \ |
|
691 |
\ cos x = \ |
|
692 |
\ (sumr 0 n (%m. (if even m \ |
|
693 |
\ then (- 1) ^ (m div 2)/(real (fact m)) \ |
|
694 |
\ else 0) * \ |
|
695 |
\ x ^ m)) \ |
|
696 |
\ + ((cos(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)"; |
|
697 |
by (cut_inst_tac [("f","cos"),("n","n"),("h","x"), |
|
698 |
("diff","%n x. cos(x + 1/2*real (n)*pi)")] |
|
699 |
Maclaurin_minus_objl 1); |
|
700 |
by (Step_tac 1); |
|
701 |
by (Asm_full_simp_tac 1); |
|
702 |
by (Simp_tac 1); |
|
703 |
by (dtac ssubst 1 THEN assume_tac 2); |
|
704 |
by (res_inst_tac [("x","t")] exI 1); |
|
705 |
by (rtac conjI 1 THEN rtac conjI 2); |
|
706 |
by (assume_tac 1 THEN assume_tac 1); |
|
707 |
by (rtac (CLAIM "[|x = y; x' = y'|] ==> x + x' = y + (y'::real)") 1); |
|
708 |
by (rtac sumr_fun_eq 1); |
|
14430
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
paulson
parents:
14365
diff
changeset
|
709 |
by (auto_tac (claset(),simpset() addsimps [odd_Suc_mult_two_ex])); |
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
paulson
parents:
14365
diff
changeset
|
710 |
by (auto_tac (claset(),simpset() addsimps [even_mult_two_ex,left_distrib,cos_add] delsimps [fact_Suc,realpow_Suc])); |
12224 | 711 |
by (auto_tac (claset(),simpset() addsimps [real_mult_commute])); |
712 |
qed "Maclaurin_minus_cos_expansion"; |
|
713 |
||
714 |
(* ------------------------------------------------------------------------- *) |
|
715 |
(* Version for ln(1 +/- x). Where is it?? *) |
|
716 |
(* ------------------------------------------------------------------------- *) |
|
717 |