| author | paulson | 
| Tue, 10 Sep 2002 16:51:31 +0200 | |
| changeset 13564 | 1500a2e48d44 | 
| parent 13535 | 007559e981c7 | 
| child 13634 | 99a593b49b04 | 
| permissions | -rw-r--r-- | 
| 13505 | 1  | 
(* Title: ZF/Constructible/Formula.thy  | 
2  | 
ID: $Id$  | 
|
3  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
|
4  | 
Copyright 2002 University of Cambridge  | 
|
5  | 
*)  | 
|
6  | 
||
| 13223 | 7  | 
header {* First-Order Formulas and the Definition of the Class L *}
 | 
8  | 
||
9  | 
theory Formula = Main:  | 
|
10  | 
||
| 13291 | 11  | 
subsection{*Internalized formulas of FOL*}
 | 
12  | 
||
13  | 
text{*De Bruijn representation.
 | 
|
14  | 
Unbound variables get their denotations from an environment.*}  | 
|
| 13223 | 15  | 
|
16  | 
consts formula :: i  | 
|
17  | 
datatype  | 
|
18  | 
  "formula" = Member ("x: nat", "y: nat")
 | 
|
19  | 
            | Equal  ("x: nat", "y: nat")
 | 
|
| 
13398
 
1cadd412da48
Towards relativization and absoluteness of formula_rec
 
paulson 
parents: 
13385 
diff
changeset
 | 
20  | 
            | Nand ("p: formula", "q: formula")
 | 
| 13223 | 21  | 
            | Forall ("p: formula")
 | 
22  | 
||
23  | 
declare formula.intros [TC]  | 
|
24  | 
||
| 
13398
 
1cadd412da48
Towards relativization and absoluteness of formula_rec
 
paulson 
parents: 
13385 
diff
changeset
 | 
25  | 
constdefs Neg :: "i=>i"  | 
| 
 
1cadd412da48
Towards relativization and absoluteness of formula_rec
 
paulson 
parents: 
13385 
diff
changeset
 | 
26  | 
"Neg(p) == Nand(p,p)"  | 
| 
 
1cadd412da48
Towards relativization and absoluteness of formula_rec
 
paulson 
parents: 
13385 
diff
changeset
 | 
27  | 
|
| 
 
1cadd412da48
Towards relativization and absoluteness of formula_rec
 
paulson 
parents: 
13385 
diff
changeset
 | 
28  | 
constdefs And :: "[i,i]=>i"  | 
| 
 
1cadd412da48
Towards relativization and absoluteness of formula_rec
 
paulson 
parents: 
13385 
diff
changeset
 | 
29  | 
"And(p,q) == Neg(Nand(p,q))"  | 
| 
 
1cadd412da48
Towards relativization and absoluteness of formula_rec
 
paulson 
parents: 
13385 
diff
changeset
 | 
30  | 
|
| 13223 | 31  | 
constdefs Or :: "[i,i]=>i"  | 
| 
13398
 
1cadd412da48
Towards relativization and absoluteness of formula_rec
 
paulson 
parents: 
13385 
diff
changeset
 | 
32  | 
"Or(p,q) == Nand(Neg(p),Neg(q))"  | 
| 13223 | 33  | 
|
34  | 
constdefs Implies :: "[i,i]=>i"  | 
|
| 
13398
 
1cadd412da48
Towards relativization and absoluteness of formula_rec
 
paulson 
parents: 
13385 
diff
changeset
 | 
35  | 
"Implies(p,q) == Nand(p,Neg(q))"  | 
| 13223 | 36  | 
|
| 13291 | 37  | 
constdefs Iff :: "[i,i]=>i"  | 
38  | 
"Iff(p,q) == And(Implies(p,q), Implies(q,p))"  | 
|
39  | 
||
| 13223 | 40  | 
constdefs Exists :: "i=>i"  | 
41  | 
"Exists(p) == Neg(Forall(Neg(p)))";  | 
|
42  | 
||
| 
13398
 
1cadd412da48
Towards relativization and absoluteness of formula_rec
 
paulson 
parents: 
13385 
diff
changeset
 | 
43  | 
lemma Neg_type [TC]: "p \<in> formula ==> Neg(p) \<in> formula"  | 
| 
 
1cadd412da48
Towards relativization and absoluteness of formula_rec
 
paulson 
parents: 
13385 
diff
changeset
 | 
44  | 
by (simp add: Neg_def)  | 
| 
 
1cadd412da48
Towards relativization and absoluteness of formula_rec
 
paulson 
parents: 
13385 
diff
changeset
 | 
45  | 
|
| 
 
1cadd412da48
Towards relativization and absoluteness of formula_rec
 
paulson 
parents: 
13385 
diff
changeset
 | 
46  | 
lemma And_type [TC]: "[| p \<in> formula; q \<in> formula |] ==> And(p,q) \<in> formula"  | 
| 
 
1cadd412da48
Towards relativization and absoluteness of formula_rec
 
paulson 
parents: 
13385 
diff
changeset
 | 
47  | 
by (simp add: And_def)  | 
| 
 
1cadd412da48
Towards relativization and absoluteness of formula_rec
 
paulson 
parents: 
13385 
diff
changeset
 | 
48  | 
|
| 13223 | 49  | 
lemma Or_type [TC]: "[| p \<in> formula; q \<in> formula |] ==> Or(p,q) \<in> formula"  | 
50  | 
by (simp add: Or_def)  | 
|
51  | 
||
52  | 
lemma Implies_type [TC]:  | 
|
53  | 
"[| p \<in> formula; q \<in> formula |] ==> Implies(p,q) \<in> formula"  | 
|
54  | 
by (simp add: Implies_def)  | 
|
55  | 
||
| 13291 | 56  | 
lemma Iff_type [TC]:  | 
57  | 
"[| p \<in> formula; q \<in> formula |] ==> Iff(p,q) \<in> formula"  | 
|
58  | 
by (simp add: Iff_def)  | 
|
59  | 
||
| 13223 | 60  | 
lemma Exists_type [TC]: "p \<in> formula ==> Exists(p) \<in> formula"  | 
61  | 
by (simp add: Exists_def)  | 
|
62  | 
||
63  | 
||
64  | 
consts satisfies :: "[i,i]=>i"  | 
|
65  | 
primrec (*explicit lambda is required because the environment varies*)  | 
|
66  | 
"satisfies(A,Member(x,y)) =  | 
|
67  | 
(\<lambda>env \<in> list(A). bool_of_o (nth(x,env) \<in> nth(y,env)))"  | 
|
68  | 
||
69  | 
"satisfies(A,Equal(x,y)) =  | 
|
70  | 
(\<lambda>env \<in> list(A). bool_of_o (nth(x,env) = nth(y,env)))"  | 
|
71  | 
||
| 
13398
 
1cadd412da48
Towards relativization and absoluteness of formula_rec
 
paulson 
parents: 
13385 
diff
changeset
 | 
72  | 
"satisfies(A,Nand(p,q)) =  | 
| 
 
1cadd412da48
Towards relativization and absoluteness of formula_rec
 
paulson 
parents: 
13385 
diff
changeset
 | 
73  | 
(\<lambda>env \<in> list(A). not ((satisfies(A,p)`env) and (satisfies(A,q)`env)))"  | 
| 13223 | 74  | 
|
75  | 
"satisfies(A,Forall(p)) =  | 
|
76  | 
(\<lambda>env \<in> list(A). bool_of_o (\<forall>x\<in>A. satisfies(A,p) ` (Cons(x,env)) = 1))"  | 
|
77  | 
||
78  | 
||
79  | 
lemma "p \<in> formula ==> satisfies(A,p) \<in> list(A) -> bool"  | 
|
80  | 
by (induct_tac p, simp_all)  | 
|
81  | 
||
82  | 
syntax sats :: "[i,i,i] => o"  | 
|
83  | 
translations "sats(A,p,env)" == "satisfies(A,p)`env = 1"  | 
|
84  | 
||
85  | 
lemma [simp]:  | 
|
86  | 
"env \<in> list(A)  | 
|
87  | 
==> sats(A, Member(x,y), env) <-> nth(x,env) \<in> nth(y,env)"  | 
|
88  | 
by simp  | 
|
89  | 
||
90  | 
lemma [simp]:  | 
|
91  | 
"env \<in> list(A)  | 
|
92  | 
==> sats(A, Equal(x,y), env) <-> nth(x,env) = nth(y,env)"  | 
|
93  | 
by simp  | 
|
94  | 
||
| 
13398
 
1cadd412da48
Towards relativization and absoluteness of formula_rec
 
paulson 
parents: 
13385 
diff
changeset
 | 
95  | 
lemma sats_Nand_iff [simp]:  | 
| 13223 | 96  | 
"env \<in> list(A)  | 
| 
13398
 
1cadd412da48
Towards relativization and absoluteness of formula_rec
 
paulson 
parents: 
13385 
diff
changeset
 | 
97  | 
==> (sats(A, Nand(p,q), env)) <-> ~ (sats(A,p,env) & sats(A,q,env))"  | 
| 
 
1cadd412da48
Towards relativization and absoluteness of formula_rec
 
paulson 
parents: 
13385 
diff
changeset
 | 
98  | 
by (simp add: Bool.and_def Bool.not_def cond_def)  | 
| 13223 | 99  | 
|
100  | 
lemma sats_Forall_iff [simp]:  | 
|
101  | 
"env \<in> list(A)  | 
|
102  | 
==> sats(A, Forall(p), env) <-> (\<forall>x\<in>A. sats(A, p, Cons(x,env)))"  | 
|
103  | 
by simp  | 
|
104  | 
||
105  | 
declare satisfies.simps [simp del];  | 
|
106  | 
||
| 13298 | 107  | 
subsection{*Dividing line between primitive and derived connectives*}
 | 
| 13223 | 108  | 
|
| 
13398
 
1cadd412da48
Towards relativization and absoluteness of formula_rec
 
paulson 
parents: 
13385 
diff
changeset
 | 
109  | 
lemma sats_Neg_iff [simp]:  | 
| 
 
1cadd412da48
Towards relativization and absoluteness of formula_rec
 
paulson 
parents: 
13385 
diff
changeset
 | 
110  | 
"env \<in> list(A)  | 
| 
 
1cadd412da48
Towards relativization and absoluteness of formula_rec
 
paulson 
parents: 
13385 
diff
changeset
 | 
111  | 
==> sats(A, Neg(p), env) <-> ~ sats(A,p,env)"  | 
| 
 
1cadd412da48
Towards relativization and absoluteness of formula_rec
 
paulson 
parents: 
13385 
diff
changeset
 | 
112  | 
by (simp add: Neg_def)  | 
| 
 
1cadd412da48
Towards relativization and absoluteness of formula_rec
 
paulson 
parents: 
13385 
diff
changeset
 | 
113  | 
|
| 
 
1cadd412da48
Towards relativization and absoluteness of formula_rec
 
paulson 
parents: 
13385 
diff
changeset
 | 
114  | 
lemma sats_And_iff [simp]:  | 
| 
 
1cadd412da48
Towards relativization and absoluteness of formula_rec
 
paulson 
parents: 
13385 
diff
changeset
 | 
115  | 
"env \<in> list(A)  | 
| 
 
1cadd412da48
Towards relativization and absoluteness of formula_rec
 
paulson 
parents: 
13385 
diff
changeset
 | 
116  | 
==> (sats(A, And(p,q), env)) <-> sats(A,p,env) & sats(A,q,env)"  | 
| 
 
1cadd412da48
Towards relativization and absoluteness of formula_rec
 
paulson 
parents: 
13385 
diff
changeset
 | 
117  | 
by (simp add: And_def)  | 
| 
 
1cadd412da48
Towards relativization and absoluteness of formula_rec
 
paulson 
parents: 
13385 
diff
changeset
 | 
118  | 
|
| 13223 | 119  | 
lemma sats_Or_iff [simp]:  | 
120  | 
"env \<in> list(A)  | 
|
121  | 
==> (sats(A, Or(p,q), env)) <-> sats(A,p,env) | sats(A,q,env)"  | 
|
122  | 
by (simp add: Or_def)  | 
|
123  | 
||
124  | 
lemma sats_Implies_iff [simp]:  | 
|
125  | 
"env \<in> list(A)  | 
|
126  | 
==> (sats(A, Implies(p,q), env)) <-> (sats(A,p,env) --> sats(A,q,env))"  | 
|
| 13291 | 127  | 
by (simp add: Implies_def, blast)  | 
128  | 
||
129  | 
lemma sats_Iff_iff [simp]:  | 
|
130  | 
"env \<in> list(A)  | 
|
131  | 
==> (sats(A, Iff(p,q), env)) <-> (sats(A,p,env) <-> sats(A,q,env))"  | 
|
132  | 
by (simp add: Iff_def, blast)  | 
|
| 13223 | 133  | 
|
134  | 
lemma sats_Exists_iff [simp]:  | 
|
135  | 
"env \<in> list(A)  | 
|
136  | 
==> sats(A, Exists(p), env) <-> (\<exists>x\<in>A. sats(A, p, Cons(x,env)))"  | 
|
137  | 
by (simp add: Exists_def)  | 
|
138  | 
||
139  | 
||
| 13291 | 140  | 
subsubsection{*Derived rules to help build up formulas*}
 | 
141  | 
||
142  | 
lemma mem_iff_sats:  | 
|
143  | 
"[| nth(i,env) = x; nth(j,env) = y; env \<in> list(A)|]  | 
|
144  | 
==> (x\<in>y) <-> sats(A, Member(i,j), env)"  | 
|
145  | 
by (simp add: satisfies.simps)  | 
|
146  | 
||
| 13298 | 147  | 
lemma equal_iff_sats:  | 
148  | 
"[| nth(i,env) = x; nth(j,env) = y; env \<in> list(A)|]  | 
|
149  | 
==> (x=y) <-> sats(A, Equal(i,j), env)"  | 
|
150  | 
by (simp add: satisfies.simps)  | 
|
151  | 
||
| 13316 | 152  | 
lemma not_iff_sats:  | 
153  | 
"[| P <-> sats(A,p,env); env \<in> list(A)|]  | 
|
154  | 
==> (~P) <-> sats(A, Neg(p), env)"  | 
|
155  | 
by simp  | 
|
156  | 
||
| 13291 | 157  | 
lemma conj_iff_sats:  | 
158  | 
"[| P <-> sats(A,p,env); Q <-> sats(A,q,env); env \<in> list(A)|]  | 
|
159  | 
==> (P & Q) <-> sats(A, And(p,q), env)"  | 
|
160  | 
by (simp add: sats_And_iff)  | 
|
161  | 
||
162  | 
lemma disj_iff_sats:  | 
|
163  | 
"[| P <-> sats(A,p,env); Q <-> sats(A,q,env); env \<in> list(A)|]  | 
|
164  | 
==> (P | Q) <-> sats(A, Or(p,q), env)"  | 
|
165  | 
by (simp add: sats_Or_iff)  | 
|
166  | 
||
167  | 
lemma iff_iff_sats:  | 
|
168  | 
"[| P <-> sats(A,p,env); Q <-> sats(A,q,env); env \<in> list(A)|]  | 
|
169  | 
==> (P <-> Q) <-> sats(A, Iff(p,q), env)"  | 
|
170  | 
by (simp add: sats_Forall_iff)  | 
|
171  | 
||
172  | 
lemma imp_iff_sats:  | 
|
173  | 
"[| P <-> sats(A,p,env); Q <-> sats(A,q,env); env \<in> list(A)|]  | 
|
174  | 
==> (P --> Q) <-> sats(A, Implies(p,q), env)"  | 
|
175  | 
by (simp add: sats_Forall_iff)  | 
|
176  | 
||
177  | 
lemma ball_iff_sats:  | 
|
178  | 
"[| !!x. x\<in>A ==> P(x) <-> sats(A, p, Cons(x, env)); env \<in> list(A)|]  | 
|
179  | 
==> (\<forall>x\<in>A. P(x)) <-> sats(A, Forall(p), env)"  | 
|
180  | 
by (simp add: sats_Forall_iff)  | 
|
181  | 
||
182  | 
lemma bex_iff_sats:  | 
|
183  | 
"[| !!x. x\<in>A ==> P(x) <-> sats(A, p, Cons(x, env)); env \<in> list(A)|]  | 
|
184  | 
==> (\<exists>x\<in>A. P(x)) <-> sats(A, Exists(p), env)"  | 
|
185  | 
by (simp add: sats_Exists_iff)  | 
|
186  | 
||
| 13316 | 187  | 
lemmas FOL_iff_sats =  | 
188  | 
mem_iff_sats equal_iff_sats not_iff_sats conj_iff_sats  | 
|
189  | 
disj_iff_sats imp_iff_sats iff_iff_sats imp_iff_sats ball_iff_sats  | 
|
190  | 
bex_iff_sats  | 
|
| 13223 | 191  | 
|
192  | 
constdefs incr_var :: "[i,i]=>i"  | 
|
193  | 
"incr_var(x,lev) == if x<lev then x else succ(x)"  | 
|
194  | 
||
195  | 
lemma incr_var_lt: "x<lev ==> incr_var(x,lev) = x"  | 
|
196  | 
by (simp add: incr_var_def)  | 
|
197  | 
||
198  | 
lemma incr_var_le: "lev\<le>x ==> incr_var(x,lev) = succ(x)"  | 
|
199  | 
apply (simp add: incr_var_def)  | 
|
200  | 
apply (blast dest: lt_trans1)  | 
|
201  | 
done  | 
|
202  | 
||
203  | 
consts incr_bv :: "i=>i"  | 
|
204  | 
primrec  | 
|
205  | 
"incr_bv(Member(x,y)) =  | 
|
206  | 
(\<lambda>lev \<in> nat. Member (incr_var(x,lev), incr_var(y,lev)))"  | 
|
207  | 
||
208  | 
"incr_bv(Equal(x,y)) =  | 
|
209  | 
(\<lambda>lev \<in> nat. Equal (incr_var(x,lev), incr_var(y,lev)))"  | 
|
210  | 
||
| 
13398
 
1cadd412da48
Towards relativization and absoluteness of formula_rec
 
paulson 
parents: 
13385 
diff
changeset
 | 
211  | 
"incr_bv(Nand(p,q)) =  | 
| 
 
1cadd412da48
Towards relativization and absoluteness of formula_rec
 
paulson 
parents: 
13385 
diff
changeset
 | 
212  | 
(\<lambda>lev \<in> nat. Nand (incr_bv(p)`lev, incr_bv(q)`lev))"  | 
| 13223 | 213  | 
|
214  | 
"incr_bv(Forall(p)) =  | 
|
215  | 
(\<lambda>lev \<in> nat. Forall (incr_bv(p) ` succ(lev)))"  | 
|
216  | 
||
217  | 
||
218  | 
constdefs incr_boundvars :: "i => i"  | 
|
219  | 
"incr_boundvars(p) == incr_bv(p)`0"  | 
|
220  | 
||
221  | 
||
222  | 
lemma [TC]: "x \<in> nat ==> incr_var(x,lev) \<in> nat"  | 
|
223  | 
by (simp add: incr_var_def)  | 
|
224  | 
||
225  | 
lemma incr_bv_type [TC]: "p \<in> formula ==> incr_bv(p) \<in> nat -> formula"  | 
|
226  | 
by (induct_tac p, simp_all)  | 
|
227  | 
||
228  | 
lemma incr_boundvars_type [TC]: "p \<in> formula ==> incr_boundvars(p) \<in> formula"  | 
|
229  | 
by (simp add: incr_boundvars_def)  | 
|
230  | 
||
231  | 
(*Obviously DPow is closed under complements and finite intersections and  | 
|
232  | 
unions. Needs an inductive lemma to allow two lists of parameters to  | 
|
233  | 
be combined.*)  | 
|
234  | 
||
235  | 
lemma sats_incr_bv_iff [rule_format]:  | 
|
236  | 
"[| p \<in> formula; env \<in> list(A); x \<in> A |]  | 
|
237  | 
==> \<forall>bvs \<in> list(A).  | 
|
238  | 
sats(A, incr_bv(p) ` length(bvs), bvs @ Cons(x,env)) <->  | 
|
239  | 
sats(A, p, bvs@env)"  | 
|
240  | 
apply (induct_tac p)  | 
|
241  | 
apply (simp_all add: incr_var_def nth_append succ_lt_iff length_type)  | 
|
242  | 
apply (auto simp add: diff_succ not_lt_iff_le)  | 
|
243  | 
done  | 
|
244  | 
||
245  | 
(*UNUSED*)  | 
|
246  | 
lemma sats_incr_boundvars_iff:  | 
|
247  | 
"[| p \<in> formula; env \<in> list(A); x \<in> A |]  | 
|
248  | 
==> sats(A, incr_boundvars(p), Cons(x,env)) <-> sats(A, p, env)"  | 
|
249  | 
apply (insert sats_incr_bv_iff [of p env A x Nil])  | 
|
250  | 
apply (simp add: incr_boundvars_def)  | 
|
251  | 
done  | 
|
252  | 
||
253  | 
(*UNUSED  | 
|
254  | 
lemma formula_add_params [rule_format]:  | 
|
255  | 
"[| p \<in> formula; n \<in> nat |]  | 
|
256  | 
==> \<forall>bvs \<in> list(A). \<forall>env \<in> list(A).  | 
|
257  | 
length(bvs) = n -->  | 
|
258  | 
sats(A, iterates(incr_boundvars,n,p), bvs@env) <-> sats(A, p, env)"  | 
|
259  | 
apply (induct_tac n, simp, clarify)  | 
|
260  | 
apply (erule list.cases)  | 
|
261  | 
apply (auto simp add: sats_incr_boundvars_iff)  | 
|
262  | 
done  | 
|
263  | 
*)  | 
|
264  | 
||
265  | 
consts arity :: "i=>i"  | 
|
266  | 
primrec  | 
|
267  | 
"arity(Member(x,y)) = succ(x) \<union> succ(y)"  | 
|
268  | 
||
269  | 
"arity(Equal(x,y)) = succ(x) \<union> succ(y)"  | 
|
270  | 
||
| 
13398
 
1cadd412da48
Towards relativization and absoluteness of formula_rec
 
paulson 
parents: 
13385 
diff
changeset
 | 
271  | 
"arity(Nand(p,q)) = arity(p) \<union> arity(q)"  | 
| 13223 | 272  | 
|
| 13269 | 273  | 
"arity(Forall(p)) = nat_case(0, %x. x, arity(p))"  | 
| 13223 | 274  | 
|
275  | 
||
276  | 
lemma arity_type [TC]: "p \<in> formula ==> arity(p) \<in> nat"  | 
|
277  | 
by (induct_tac p, simp_all)  | 
|
278  | 
||
| 
13398
 
1cadd412da48
Towards relativization and absoluteness of formula_rec
 
paulson 
parents: 
13385 
diff
changeset
 | 
279  | 
lemma arity_Neg [simp]: "arity(Neg(p)) = arity(p)"  | 
| 
 
1cadd412da48
Towards relativization and absoluteness of formula_rec
 
paulson 
parents: 
13385 
diff
changeset
 | 
280  | 
by (simp add: Neg_def)  | 
| 
 
1cadd412da48
Towards relativization and absoluteness of formula_rec
 
paulson 
parents: 
13385 
diff
changeset
 | 
281  | 
|
| 
 
1cadd412da48
Towards relativization and absoluteness of formula_rec
 
paulson 
parents: 
13385 
diff
changeset
 | 
282  | 
lemma arity_And [simp]: "arity(And(p,q)) = arity(p) \<union> arity(q)"  | 
| 
 
1cadd412da48
Towards relativization and absoluteness of formula_rec
 
paulson 
parents: 
13385 
diff
changeset
 | 
283  | 
by (simp add: And_def)  | 
| 
 
1cadd412da48
Towards relativization and absoluteness of formula_rec
 
paulson 
parents: 
13385 
diff
changeset
 | 
284  | 
|
| 13223 | 285  | 
lemma arity_Or [simp]: "arity(Or(p,q)) = arity(p) \<union> arity(q)"  | 
286  | 
by (simp add: Or_def)  | 
|
287  | 
||
288  | 
lemma arity_Implies [simp]: "arity(Implies(p,q)) = arity(p) \<union> arity(q)"  | 
|
289  | 
by (simp add: Implies_def)  | 
|
290  | 
||
| 13291 | 291  | 
lemma arity_Iff [simp]: "arity(Iff(p,q)) = arity(p) \<union> arity(q)"  | 
292  | 
by (simp add: Iff_def, blast)  | 
|
293  | 
||
| 13269 | 294  | 
lemma arity_Exists [simp]: "arity(Exists(p)) = nat_case(0, %x. x, arity(p))"  | 
| 13223 | 295  | 
by (simp add: Exists_def)  | 
296  | 
||
297  | 
||
298  | 
lemma arity_sats_iff [rule_format]:  | 
|
299  | 
"[| p \<in> formula; extra \<in> list(A) |]  | 
|
300  | 
==> \<forall>env \<in> list(A).  | 
|
301  | 
arity(p) \<le> length(env) -->  | 
|
302  | 
sats(A, p, env @ extra) <-> sats(A, p, env)"  | 
|
303  | 
apply (induct_tac p)  | 
|
| 13269 | 304  | 
apply (simp_all add: nth_append Un_least_lt_iff arity_type nat_imp_quasinat  | 
305  | 
split: split_nat_case, auto)  | 
|
| 13223 | 306  | 
done  | 
307  | 
||
308  | 
lemma arity_sats1_iff:  | 
|
309  | 
"[| arity(p) \<le> succ(length(env)); p \<in> formula; x \<in> A; env \<in> list(A);  | 
|
310  | 
extra \<in> list(A) |]  | 
|
311  | 
==> sats(A, p, Cons(x, env @ extra)) <-> sats(A, p, Cons(x, env))"  | 
|
312  | 
apply (insert arity_sats_iff [of p extra A "Cons(x,env)"])  | 
|
313  | 
apply simp  | 
|
314  | 
done  | 
|
315  | 
||
316  | 
(*the following two lemmas prevent huge case splits in arity_incr_bv_lemma*)  | 
|
317  | 
lemma incr_var_lemma:  | 
|
318  | 
"[| x \<in> nat; y \<in> nat; lev \<le> x |]  | 
|
319  | 
==> succ(x) \<union> incr_var(y,lev) = succ(x \<union> y)"  | 
|
320  | 
apply (simp add: incr_var_def Ord_Un_if, auto)  | 
|
321  | 
apply (blast intro: leI)  | 
|
322  | 
apply (simp add: not_lt_iff_le)  | 
|
323  | 
apply (blast intro: le_anti_sym)  | 
|
324  | 
apply (blast dest: lt_trans2)  | 
|
325  | 
done  | 
|
326  | 
||
327  | 
lemma incr_And_lemma:  | 
|
328  | 
"y < x ==> y \<union> succ(x) = succ(x \<union> y)"  | 
|
329  | 
apply (simp add: Ord_Un_if lt_Ord lt_Ord2 succ_lt_iff)  | 
|
330  | 
apply (blast dest: lt_asym)  | 
|
331  | 
done  | 
|
332  | 
||
333  | 
lemma arity_incr_bv_lemma [rule_format]:  | 
|
334  | 
"p \<in> formula  | 
|
335  | 
==> \<forall>n \<in> nat. arity (incr_bv(p) ` n) =  | 
|
336  | 
(if n < arity(p) then succ(arity(p)) else arity(p))"  | 
|
337  | 
apply (induct_tac p)  | 
|
338  | 
apply (simp_all add: imp_disj not_lt_iff_le Un_least_lt_iff lt_Un_iff le_Un_iff  | 
|
339  | 
succ_Un_distrib [symmetric] incr_var_lt incr_var_le  | 
|
| 13269 | 340  | 
Un_commute incr_var_lemma arity_type nat_imp_quasinat  | 
341  | 
split: split_nat_case)  | 
|
342  | 
 txt{*the Forall case reduces to linear arithmetic*}
 | 
|
343  | 
prefer 2  | 
|
344  | 
apply clarify  | 
|
345  | 
apply (blast dest: lt_trans1)  | 
|
346  | 
txt{*left with the And case*}
 | 
|
| 13223 | 347  | 
apply safe  | 
348  | 
apply (blast intro: incr_And_lemma lt_trans1)  | 
|
349  | 
apply (subst incr_And_lemma)  | 
|
| 13269 | 350  | 
apply (blast intro: lt_trans1)  | 
351  | 
apply (simp add: Un_commute)  | 
|
| 13223 | 352  | 
done  | 
353  | 
||
354  | 
lemma arity_incr_boundvars_eq:  | 
|
355  | 
"p \<in> formula  | 
|
356  | 
==> arity(incr_boundvars(p)) =  | 
|
357  | 
(if 0 < arity(p) then succ(arity(p)) else arity(p))"  | 
|
358  | 
apply (insert arity_incr_bv_lemma [of p 0])  | 
|
359  | 
apply (simp add: incr_boundvars_def)  | 
|
360  | 
done  | 
|
361  | 
||
362  | 
lemma arity_iterates_incr_boundvars_eq:  | 
|
363  | 
"[| p \<in> formula; n \<in> nat |]  | 
|
364  | 
==> arity(incr_boundvars^n(p)) =  | 
|
365  | 
(if 0 < arity(p) then n #+ arity(p) else arity(p))"  | 
|
366  | 
apply (induct_tac n)  | 
|
367  | 
apply (simp_all add: arity_incr_boundvars_eq not_lt_iff_le)  | 
|
368  | 
done  | 
|
369  | 
||
370  | 
||
| 13298 | 371  | 
subsection{*Renaming all but the first bound variable*}
 | 
| 13223 | 372  | 
|
373  | 
constdefs incr_bv1 :: "i => i"  | 
|
374  | 
"incr_bv1(p) == incr_bv(p)`1"  | 
|
375  | 
||
376  | 
||
377  | 
lemma incr_bv1_type [TC]: "p \<in> formula ==> incr_bv1(p) \<in> formula"  | 
|
378  | 
by (simp add: incr_bv1_def)  | 
|
379  | 
||
380  | 
(*For renaming all but the bound variable at level 0*)  | 
|
381  | 
lemma sats_incr_bv1_iff [rule_format]:  | 
|
382  | 
"[| p \<in> formula; env \<in> list(A); x \<in> A; y \<in> A |]  | 
|
383  | 
==> sats(A, incr_bv1(p), Cons(x, Cons(y, env))) <->  | 
|
384  | 
sats(A, p, Cons(x,env))"  | 
|
385  | 
apply (insert sats_incr_bv_iff [of p env A y "Cons(x,Nil)"])  | 
|
386  | 
apply (simp add: incr_bv1_def)  | 
|
387  | 
done  | 
|
388  | 
||
389  | 
lemma formula_add_params1 [rule_format]:  | 
|
390  | 
"[| p \<in> formula; n \<in> nat; x \<in> A |]  | 
|
391  | 
==> \<forall>bvs \<in> list(A). \<forall>env \<in> list(A).  | 
|
392  | 
length(bvs) = n -->  | 
|
393  | 
sats(A, iterates(incr_bv1, n, p), Cons(x, bvs@env)) <->  | 
|
394  | 
sats(A, p, Cons(x,env))"  | 
|
395  | 
apply (induct_tac n, simp, clarify)  | 
|
396  | 
apply (erule list.cases)  | 
|
397  | 
apply (simp_all add: sats_incr_bv1_iff)  | 
|
398  | 
done  | 
|
399  | 
||
400  | 
||
401  | 
lemma arity_incr_bv1_eq:  | 
|
402  | 
"p \<in> formula  | 
|
403  | 
==> arity(incr_bv1(p)) =  | 
|
404  | 
(if 1 < arity(p) then succ(arity(p)) else arity(p))"  | 
|
405  | 
apply (insert arity_incr_bv_lemma [of p 1])  | 
|
406  | 
apply (simp add: incr_bv1_def)  | 
|
407  | 
done  | 
|
408  | 
||
409  | 
lemma arity_iterates_incr_bv1_eq:  | 
|
410  | 
"[| p \<in> formula; n \<in> nat |]  | 
|
411  | 
==> arity(incr_bv1^n(p)) =  | 
|
412  | 
(if 1 < arity(p) then n #+ arity(p) else arity(p))"  | 
|
413  | 
apply (induct_tac n)  | 
|
| 13298 | 414  | 
apply (simp_all add: arity_incr_bv1_eq)  | 
| 13223 | 415  | 
apply (simp add: not_lt_iff_le)  | 
416  | 
apply (blast intro: le_trans add_le_self2 arity_type)  | 
|
417  | 
done  | 
|
418  | 
||
419  | 
||
420  | 
(*Definable powerset operation: Kunen's definition 1.1, page 165.*)  | 
|
421  | 
constdefs DPow :: "i => i"  | 
|
422  | 
  "DPow(A) == {X \<in> Pow(A). 
 | 
|
423  | 
\<exists>env \<in> list(A). \<exists>p \<in> formula.  | 
|
424  | 
arity(p) \<le> succ(length(env)) &  | 
|
425  | 
                 X = {x\<in>A. sats(A, p, Cons(x,env))}}"
 | 
|
426  | 
||
427  | 
lemma DPowI:  | 
|
| 13291 | 428  | 
"[|env \<in> list(A); p \<in> formula; arity(p) \<le> succ(length(env))|]  | 
| 13223 | 429  | 
   ==> {x\<in>A. sats(A, p, Cons(x,env))} \<in> DPow(A)"
 | 
430  | 
by (simp add: DPow_def, blast)  | 
|
431  | 
||
| 13291 | 432  | 
text{*With this rule we can specify @{term p} later.*}
 | 
433  | 
lemma DPowI2 [rule_format]:  | 
|
434  | 
"[|\<forall>x\<in>A. P(x) <-> sats(A, p, Cons(x,env));  | 
|
435  | 
env \<in> list(A); p \<in> formula; arity(p) \<le> succ(length(env))|]  | 
|
436  | 
   ==> {x\<in>A. P(x)} \<in> DPow(A)"
 | 
|
437  | 
by (simp add: DPow_def, blast)  | 
|
438  | 
||
| 13223 | 439  | 
lemma DPowD:  | 
440  | 
"X \<in> DPow(A)  | 
|
441  | 
==> X <= A &  | 
|
442  | 
(\<exists>env \<in> list(A).  | 
|
443  | 
\<exists>p \<in> formula. arity(p) \<le> succ(length(env)) &  | 
|
444  | 
                      X = {x\<in>A. sats(A, p, Cons(x,env))})"
 | 
|
445  | 
by (simp add: DPow_def)  | 
|
446  | 
||
447  | 
lemmas DPow_imp_subset = DPowD [THEN conjunct1]  | 
|
448  | 
||
449  | 
(*Lemma 1.2*)  | 
|
450  | 
lemma "[| p \<in> formula; env \<in> list(A); arity(p) \<le> succ(length(env)) |]  | 
|
451  | 
       ==> {x\<in>A. sats(A, p, Cons(x,env))} \<in> DPow(A)"
 | 
|
452  | 
by (blast intro: DPowI)  | 
|
453  | 
||
454  | 
lemma DPow_subset_Pow: "DPow(A) <= Pow(A)"  | 
|
455  | 
by (simp add: DPow_def, blast)  | 
|
456  | 
||
457  | 
lemma empty_in_DPow: "0 \<in> DPow(A)"  | 
|
458  | 
apply (simp add: DPow_def)  | 
|
| 
13339
 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 
paulson 
parents: 
13328 
diff
changeset
 | 
459  | 
apply (rule_tac x=Nil in bexI)  | 
| 13223 | 460  | 
apply (rule_tac x="Neg(Equal(0,0))" in bexI)  | 
461  | 
apply (auto simp add: Un_least_lt_iff)  | 
|
462  | 
done  | 
|
463  | 
||
464  | 
lemma Compl_in_DPow: "X \<in> DPow(A) ==> (A-X) \<in> DPow(A)"  | 
|
465  | 
apply (simp add: DPow_def, clarify, auto)  | 
|
466  | 
apply (rule bexI)  | 
|
467  | 
apply (rule_tac x="Neg(p)" in bexI)  | 
|
468  | 
apply auto  | 
|
469  | 
done  | 
|
470  | 
||
471  | 
lemma Int_in_DPow: "[| X \<in> DPow(A); Y \<in> DPow(A) |] ==> X Int Y \<in> DPow(A)"  | 
|
472  | 
apply (simp add: DPow_def, auto)  | 
|
473  | 
apply (rename_tac envp p envq q)  | 
|
474  | 
apply (rule_tac x="envp@envq" in bexI)  | 
|
475  | 
apply (rule_tac x="And(p, iterates(incr_bv1,length(envp),q))" in bexI)  | 
|
476  | 
apply typecheck  | 
|
477  | 
apply (rule conjI)  | 
|
478  | 
(*finally check the arity!*)  | 
|
479  | 
apply (simp add: arity_iterates_incr_bv1_eq length_app Un_least_lt_iff)  | 
|
480  | 
apply (force intro: add_le_self le_trans)  | 
|
481  | 
apply (simp add: arity_sats1_iff formula_add_params1, blast)  | 
|
482  | 
done  | 
|
483  | 
||
484  | 
lemma Un_in_DPow: "[| X \<in> DPow(A); Y \<in> DPow(A) |] ==> X Un Y \<in> DPow(A)"  | 
|
485  | 
apply (subgoal_tac "X Un Y = A - ((A-X) Int (A-Y))")  | 
|
486  | 
apply (simp add: Int_in_DPow Compl_in_DPow)  | 
|
487  | 
apply (simp add: DPow_def, blast)  | 
|
488  | 
done  | 
|
489  | 
||
490  | 
lemma singleton_in_DPow: "x \<in> A ==> {x} \<in> DPow(A)"
 | 
|
491  | 
apply (simp add: DPow_def)  | 
|
492  | 
apply (rule_tac x="Cons(x,Nil)" in bexI)  | 
|
493  | 
apply (rule_tac x="Equal(0,1)" in bexI)  | 
|
494  | 
apply typecheck  | 
|
495  | 
apply (force simp add: succ_Un_distrib [symmetric])  | 
|
496  | 
done  | 
|
497  | 
||
498  | 
lemma cons_in_DPow: "[| a \<in> A; X \<in> DPow(A) |] ==> cons(a,X) \<in> DPow(A)"  | 
|
499  | 
apply (rule cons_eq [THEN subst])  | 
|
500  | 
apply (blast intro: singleton_in_DPow Un_in_DPow)  | 
|
501  | 
done  | 
|
502  | 
||
503  | 
(*Part of Lemma 1.3*)  | 
|
504  | 
lemma Fin_into_DPow: "X \<in> Fin(A) ==> X \<in> DPow(A)"  | 
|
505  | 
apply (erule Fin.induct)  | 
|
506  | 
apply (rule empty_in_DPow)  | 
|
507  | 
apply (blast intro: cons_in_DPow)  | 
|
508  | 
done  | 
|
509  | 
||
510  | 
(*DPow is not monotonic. For example, let A be some non-constructible set  | 
|
511  | 
of natural numbers, and let B be nat. Then A<=B and obviously A : DPow(A)  | 
|
512  | 
but A ~: DPow(B).*)  | 
|
513  | 
lemma DPow_mono: "A : DPow(B) ==> DPow(A) <= DPow(B)"  | 
|
514  | 
apply (simp add: DPow_def, auto)  | 
|
515  | 
(*must use the formula defining A in B to relativize the new formula...*)  | 
|
516  | 
oops  | 
|
517  | 
||
518  | 
lemma DPow_0: "DPow(0) = {0}" 
 | 
|
519  | 
by (blast intro: empty_in_DPow dest: DPow_imp_subset)  | 
|
520  | 
||
521  | 
lemma Finite_Pow_subset_Pow: "Finite(A) ==> Pow(A) <= DPow(A)"  | 
|
522  | 
by (blast intro: Fin_into_DPow Finite_into_Fin Fin_subset)  | 
|
523  | 
||
524  | 
lemma Finite_DPow_eq_Pow: "Finite(A) ==> DPow(A) = Pow(A)"  | 
|
525  | 
apply (rule equalityI)  | 
|
526  | 
apply (rule DPow_subset_Pow)  | 
|
527  | 
apply (erule Finite_Pow_subset_Pow)  | 
|
528  | 
done  | 
|
529  | 
||
530  | 
(*This may be true but the proof looks difficult, requiring relativization  | 
|
531  | 
lemma DPow_insert: "DPow (cons(a,A)) = DPow(A) Un {cons(a,X) . X: DPow(A)}"
 | 
|
532  | 
apply (rule equalityI, safe)  | 
|
533  | 
oops  | 
|
534  | 
*)  | 
|
535  | 
||
| 13298 | 536  | 
|
537  | 
subsection{*Internalized formulas for basic concepts*}
 | 
|
538  | 
||
539  | 
subsubsection{*The subset relation*}
 | 
|
540  | 
||
541  | 
constdefs subset_fm :: "[i,i]=>i"  | 
|
542  | 
"subset_fm(x,y) == Forall(Implies(Member(0,succ(x)), Member(0,succ(y))))"  | 
|
543  | 
||
544  | 
lemma subset_type [TC]: "[| x \<in> nat; y \<in> nat |] ==> subset_fm(x,y) \<in> formula"  | 
|
545  | 
by (simp add: subset_fm_def)  | 
|
546  | 
||
547  | 
lemma arity_subset_fm [simp]:  | 
|
548  | 
"[| x \<in> nat; y \<in> nat |] ==> arity(subset_fm(x,y)) = succ(x) \<union> succ(y)"  | 
|
549  | 
by (simp add: subset_fm_def succ_Un_distrib [symmetric])  | 
|
550  | 
||
551  | 
lemma sats_subset_fm [simp]:  | 
|
552  | 
"[|x < length(env); y \<in> nat; env \<in> list(A); Transset(A)|]  | 
|
553  | 
==> sats(A, subset_fm(x,y), env) <-> nth(x,env) \<subseteq> nth(y,env)"  | 
|
554  | 
apply (frule lt_length_in_nat, assumption)  | 
|
555  | 
apply (simp add: subset_fm_def Transset_def)  | 
|
556  | 
apply (blast intro: nth_type)  | 
|
557  | 
done  | 
|
558  | 
||
559  | 
subsubsection{*Transitive sets*}
 | 
|
560  | 
||
561  | 
constdefs transset_fm :: "i=>i"  | 
|
562  | 
"transset_fm(x) == Forall(Implies(Member(0,succ(x)), subset_fm(0,succ(x))))"  | 
|
563  | 
||
564  | 
lemma transset_type [TC]: "x \<in> nat ==> transset_fm(x) \<in> formula"  | 
|
565  | 
by (simp add: transset_fm_def)  | 
|
566  | 
||
567  | 
lemma arity_transset_fm [simp]:  | 
|
568  | 
"x \<in> nat ==> arity(transset_fm(x)) = succ(x)"  | 
|
569  | 
by (simp add: transset_fm_def succ_Un_distrib [symmetric])  | 
|
570  | 
||
571  | 
lemma sats_transset_fm [simp]:  | 
|
572  | 
"[|x < length(env); env \<in> list(A); Transset(A)|]  | 
|
573  | 
==> sats(A, transset_fm(x), env) <-> Transset(nth(x,env))"  | 
|
574  | 
apply (frule lt_nat_in_nat, erule length_type)  | 
|
575  | 
apply (simp add: transset_fm_def Transset_def)  | 
|
576  | 
apply (blast intro: nth_type)  | 
|
577  | 
done  | 
|
578  | 
||
579  | 
subsubsection{*Ordinals*}
 | 
|
580  | 
||
581  | 
constdefs ordinal_fm :: "i=>i"  | 
|
582  | 
"ordinal_fm(x) ==  | 
|
583  | 
And(transset_fm(x), Forall(Implies(Member(0,succ(x)), transset_fm(0))))"  | 
|
584  | 
||
585  | 
lemma ordinal_type [TC]: "x \<in> nat ==> ordinal_fm(x) \<in> formula"  | 
|
586  | 
by (simp add: ordinal_fm_def)  | 
|
587  | 
||
588  | 
lemma arity_ordinal_fm [simp]:  | 
|
589  | 
"x \<in> nat ==> arity(ordinal_fm(x)) = succ(x)"  | 
|
590  | 
by (simp add: ordinal_fm_def succ_Un_distrib [symmetric])  | 
|
591  | 
||
| 13306 | 592  | 
lemma sats_ordinal_fm:  | 
| 13298 | 593  | 
"[|x < length(env); env \<in> list(A); Transset(A)|]  | 
594  | 
==> sats(A, ordinal_fm(x), env) <-> Ord(nth(x,env))"  | 
|
595  | 
apply (frule lt_nat_in_nat, erule length_type)  | 
|
596  | 
apply (simp add: ordinal_fm_def Ord_def Transset_def)  | 
|
597  | 
apply (blast intro: nth_type)  | 
|
598  | 
done  | 
|
599  | 
||
600  | 
||
| 13223 | 601  | 
subsection{* Constant Lset: Levels of the Constructible Universe *}
 | 
602  | 
||
603  | 
constdefs Lset :: "i=>i"  | 
|
604  | 
"Lset(i) == transrec(i, %x f. \<Union>y\<in>x. DPow(f`y))"  | 
|
605  | 
||
606  | 
text{*NOT SUITABLE FOR REWRITING -- RECURSIVE!*}
 | 
|
607  | 
lemma Lset: "Lset(i) = (UN j:i. DPow(Lset(j)))"  | 
|
608  | 
by (subst Lset_def [THEN def_transrec], simp)  | 
|
609  | 
||
610  | 
lemma LsetI: "[|y\<in>x; A \<in> DPow(Lset(y))|] ==> A \<in> Lset(x)";  | 
|
611  | 
by (subst Lset, blast)  | 
|
612  | 
||
613  | 
lemma LsetD: "A \<in> Lset(x) ==> \<exists>y\<in>x. A \<in> DPow(Lset(y))";  | 
|
614  | 
apply (insert Lset [of x])  | 
|
615  | 
apply (blast intro: elim: equalityE)  | 
|
616  | 
done  | 
|
617  | 
||
618  | 
subsubsection{* Transitivity *}
 | 
|
619  | 
||
620  | 
lemma elem_subset_in_DPow: "[|X \<in> A; X \<subseteq> A|] ==> X \<in> DPow(A)"  | 
|
621  | 
apply (simp add: Transset_def DPow_def)  | 
|
622  | 
apply (rule_tac x="[X]" in bexI)  | 
|
623  | 
apply (rule_tac x="Member(0,1)" in bexI)  | 
|
624  | 
apply (auto simp add: Un_least_lt_iff)  | 
|
625  | 
done  | 
|
626  | 
||
627  | 
lemma Transset_subset_DPow: "Transset(A) ==> A <= DPow(A)"  | 
|
628  | 
apply clarify  | 
|
629  | 
apply (simp add: Transset_def)  | 
|
630  | 
apply (blast intro: elem_subset_in_DPow)  | 
|
631  | 
done  | 
|
632  | 
||
633  | 
lemma Transset_DPow: "Transset(A) ==> Transset(DPow(A))"  | 
|
634  | 
apply (simp add: Transset_def)  | 
|
635  | 
apply (blast intro: elem_subset_in_DPow dest: DPowD)  | 
|
636  | 
done  | 
|
637  | 
||
638  | 
text{*Kunen's VI, 1.6 (a)*}
 | 
|
639  | 
lemma Transset_Lset: "Transset(Lset(i))"  | 
|
640  | 
apply (rule_tac a=i in eps_induct)  | 
|
641  | 
apply (subst Lset)  | 
|
642  | 
apply (blast intro!: Transset_Union_family Transset_Un Transset_DPow)  | 
|
643  | 
done  | 
|
644  | 
||
| 13291 | 645  | 
lemma mem_Lset_imp_subset_Lset: "a \<in> Lset(i) ==> a \<subseteq> Lset(i)"  | 
646  | 
apply (insert Transset_Lset)  | 
|
647  | 
apply (simp add: Transset_def)  | 
|
648  | 
done  | 
|
649  | 
||
| 13223 | 650  | 
subsubsection{* Monotonicity *}
 | 
651  | 
||
652  | 
text{*Kunen's VI, 1.6 (b)*}
 | 
|
653  | 
lemma Lset_mono [rule_format]:  | 
|
654  | 
"ALL j. i<=j --> Lset(i) <= Lset(j)"  | 
|
655  | 
apply (rule_tac a=i in eps_induct)  | 
|
656  | 
apply (rule impI [THEN allI])  | 
|
657  | 
apply (subst Lset)  | 
|
658  | 
apply (subst Lset, blast)  | 
|
659  | 
done  | 
|
660  | 
||
661  | 
text{*This version lets us remove the premise @{term "Ord(i)"} sometimes.*}
 | 
|
662  | 
lemma Lset_mono_mem [rule_format]:  | 
|
663  | 
"ALL j. i:j --> Lset(i) <= Lset(j)"  | 
|
664  | 
apply (rule_tac a=i in eps_induct)  | 
|
665  | 
apply (rule impI [THEN allI])  | 
|
666  | 
apply (subst Lset, auto)  | 
|
667  | 
apply (rule rev_bexI, assumption)  | 
|
668  | 
apply (blast intro: elem_subset_in_DPow dest: LsetD DPowD)  | 
|
669  | 
done  | 
|
670  | 
||
| 13291 | 671  | 
text{*Useful with Reflection to bump up the ordinal*}
 | 
672  | 
lemma subset_Lset_ltD: "[|A \<subseteq> Lset(i); i < j|] ==> A \<subseteq> Lset(j)"  | 
|
673  | 
by (blast dest: ltD [THEN Lset_mono_mem])  | 
|
674  | 
||
| 13223 | 675  | 
subsubsection{* 0, successor and limit equations fof Lset *}
 | 
676  | 
||
677  | 
lemma Lset_0 [simp]: "Lset(0) = 0"  | 
|
678  | 
by (subst Lset, blast)  | 
|
679  | 
||
680  | 
lemma Lset_succ_subset1: "DPow(Lset(i)) <= Lset(succ(i))"  | 
|
681  | 
by (subst Lset, rule succI1 [THEN RepFunI, THEN Union_upper])  | 
|
682  | 
||
683  | 
lemma Lset_succ_subset2: "Lset(succ(i)) <= DPow(Lset(i))"  | 
|
684  | 
apply (subst Lset, rule UN_least)  | 
|
685  | 
apply (erule succE)  | 
|
686  | 
apply blast  | 
|
687  | 
apply clarify  | 
|
688  | 
apply (rule elem_subset_in_DPow)  | 
|
689  | 
apply (subst Lset)  | 
|
690  | 
apply blast  | 
|
691  | 
apply (blast intro: dest: DPowD Lset_mono_mem)  | 
|
692  | 
done  | 
|
693  | 
||
694  | 
lemma Lset_succ: "Lset(succ(i)) = DPow(Lset(i))"  | 
|
695  | 
by (intro equalityI Lset_succ_subset1 Lset_succ_subset2)  | 
|
696  | 
||
697  | 
lemma Lset_Union [simp]: "Lset(\<Union>(X)) = (\<Union>y\<in>X. Lset(y))"  | 
|
698  | 
apply (subst Lset)  | 
|
699  | 
apply (rule equalityI)  | 
|
700  | 
 txt{*first inclusion*}
 | 
|
701  | 
apply (rule UN_least)  | 
|
702  | 
apply (erule UnionE)  | 
|
703  | 
apply (rule subset_trans)  | 
|
704  | 
apply (erule_tac [2] UN_upper, subst Lset, erule UN_upper)  | 
|
705  | 
txt{*opposite inclusion*}
 | 
|
706  | 
apply (rule UN_least)  | 
|
707  | 
apply (subst Lset, blast)  | 
|
708  | 
done  | 
|
709  | 
||
710  | 
subsubsection{* Lset applied to Limit ordinals *}
 | 
|
711  | 
||
712  | 
lemma Limit_Lset_eq:  | 
|
713  | 
"Limit(i) ==> Lset(i) = (\<Union>y\<in>i. Lset(y))"  | 
|
714  | 
by (simp add: Lset_Union [symmetric] Limit_Union_eq)  | 
|
715  | 
||
716  | 
lemma lt_LsetI: "[| a: Lset(j); j<i |] ==> a : Lset(i)"  | 
|
717  | 
by (blast dest: Lset_mono [OF le_imp_subset [OF leI]])  | 
|
718  | 
||
719  | 
lemma Limit_LsetE:  | 
|
720  | 
"[| a: Lset(i); ~R ==> Limit(i);  | 
|
721  | 
!!x. [| x<i; a: Lset(x) |] ==> R  | 
|
722  | 
|] ==> R"  | 
|
723  | 
apply (rule classical)  | 
|
724  | 
apply (rule Limit_Lset_eq [THEN equalityD1, THEN subsetD, THEN UN_E])  | 
|
725  | 
prefer 2 apply assumption  | 
|
726  | 
apply blast  | 
|
727  | 
apply (blast intro: ltI Limit_is_Ord)  | 
|
728  | 
done  | 
|
729  | 
||
730  | 
subsubsection{* Basic closure properties *}
 | 
|
731  | 
||
732  | 
lemma zero_in_Lset: "y:x ==> 0 : Lset(x)"  | 
|
733  | 
by (subst Lset, blast intro: empty_in_DPow)  | 
|
734  | 
||
735  | 
lemma notin_Lset: "x \<notin> Lset(x)"  | 
|
736  | 
apply (rule_tac a=x in eps_induct)  | 
|
737  | 
apply (subst Lset)  | 
|
738  | 
apply (blast dest: DPowD)  | 
|
739  | 
done  | 
|
740  | 
||
741  | 
||
| 13298 | 742  | 
subsection{*Constructible Ordinals: Kunen's VI, 1.9 (b)*}
 | 
| 13223 | 743  | 
|
744  | 
text{*The subset consisting of the ordinals is definable.*}
 | 
|
745  | 
lemma Ords_in_DPow: "Transset(A) ==> {x \<in> A. Ord(x)} \<in> DPow(A)"
 | 
|
746  | 
apply (simp add: DPow_def Collect_subset)  | 
|
| 
13339
 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 
paulson 
parents: 
13328 
diff
changeset
 | 
747  | 
apply (rule_tac x=Nil in bexI)  | 
| 13223 | 748  | 
apply (rule_tac x="ordinal_fm(0)" in bexI)  | 
749  | 
apply (simp_all add: sats_ordinal_fm)  | 
|
750  | 
done  | 
|
751  | 
||
752  | 
lemma Ords_of_Lset_eq: "Ord(i) ==> {x\<in>Lset(i). Ord(x)} = i"
 | 
|
753  | 
apply (erule trans_induct3)  | 
|
754  | 
apply (simp_all add: Lset_succ Limit_Lset_eq Limit_Union_eq)  | 
|
755  | 
txt{*The successor case remains.*} 
 | 
|
756  | 
apply (rule equalityI)  | 
|
757  | 
txt{*First inclusion*}
 | 
|
758  | 
apply clarify  | 
|
759  | 
apply (erule Ord_linear_lt, assumption)  | 
|
760  | 
apply (blast dest: DPow_imp_subset ltD notE [OF notin_Lset])  | 
|
761  | 
apply blast  | 
|
762  | 
apply (blast dest: ltD)  | 
|
763  | 
txt{*Opposite inclusion, @{term "succ(x) \<subseteq> DPow(Lset(x)) \<inter> ON"}*}
 | 
|
764  | 
apply auto  | 
|
765  | 
txt{*Key case: *}
 | 
|
766  | 
apply (erule subst, rule Ords_in_DPow [OF Transset_Lset])  | 
|
767  | 
apply (blast intro: elem_subset_in_DPow dest: OrdmemD elim: equalityE)  | 
|
768  | 
apply (blast intro: Ord_in_Ord)  | 
|
769  | 
done  | 
|
770  | 
||
771  | 
||
772  | 
lemma Ord_subset_Lset: "Ord(i) ==> i \<subseteq> Lset(i)"  | 
|
773  | 
by (subst Ords_of_Lset_eq [symmetric], assumption, fast)  | 
|
774  | 
||
775  | 
lemma Ord_in_Lset: "Ord(i) ==> i \<in> Lset(succ(i))"  | 
|
776  | 
apply (simp add: Lset_succ)  | 
|
777  | 
apply (subst Ords_of_Lset_eq [symmetric], assumption,  | 
|
778  | 
rule Ords_in_DPow [OF Transset_Lset])  | 
|
779  | 
done  | 
|
780  | 
||
781  | 
subsubsection{* Unions *}
 | 
|
782  | 
||
783  | 
lemma Union_in_Lset:  | 
|
784  | 
"X \<in> Lset(j) ==> Union(X) \<in> Lset(succ(j))"  | 
|
785  | 
apply (insert Transset_Lset)  | 
|
786  | 
apply (rule LsetI [OF succI1])  | 
|
787  | 
apply (simp add: Transset_def DPow_def)  | 
|
788  | 
apply (intro conjI, blast)  | 
|
789  | 
txt{*Now to create the formula @{term "\<exists>y. y \<in> X \<and> x \<in> y"} *}
 | 
|
790  | 
apply (rule_tac x="Cons(X,Nil)" in bexI)  | 
|
791  | 
apply (rule_tac x="Exists(And(Member(0,2), Member(1,0)))" in bexI)  | 
|
792  | 
apply typecheck  | 
|
793  | 
apply (simp add: succ_Un_distrib [symmetric], blast)  | 
|
794  | 
done  | 
|
795  | 
||
796  | 
lemma Union_in_LLimit:  | 
|
797  | 
"[| X: Lset(i); Limit(i) |] ==> Union(X) : Lset(i)"  | 
|
798  | 
apply (rule Limit_LsetE, assumption+)  | 
|
799  | 
apply (blast intro: Limit_has_succ lt_LsetI Union_in_Lset)  | 
|
800  | 
done  | 
|
801  | 
||
802  | 
subsubsection{* Finite sets and ordered pairs *}
 | 
|
803  | 
||
804  | 
lemma singleton_in_Lset: "a: Lset(i) ==> {a} : Lset(succ(i))"
 | 
|
805  | 
by (simp add: Lset_succ singleton_in_DPow)  | 
|
806  | 
||
807  | 
lemma doubleton_in_Lset:  | 
|
808  | 
     "[| a: Lset(i);  b: Lset(i) |] ==> {a,b} : Lset(succ(i))"
 | 
|
809  | 
by (simp add: Lset_succ empty_in_DPow cons_in_DPow)  | 
|
810  | 
||
811  | 
lemma Pair_in_Lset:  | 
|
812  | 
"[| a: Lset(i); b: Lset(i); Ord(i) |] ==> <a,b> : Lset(succ(succ(i)))"  | 
|
813  | 
apply (unfold Pair_def)  | 
|
814  | 
apply (blast intro: doubleton_in_Lset)  | 
|
815  | 
done  | 
|
816  | 
||
817  | 
lemma singleton_in_LLimit:  | 
|
818  | 
    "[| a: Lset(i);  Limit(i) |] ==> {a} : Lset(i)"
 | 
|
819  | 
apply (erule Limit_LsetE, assumption)  | 
|
820  | 
apply (erule singleton_in_Lset [THEN lt_LsetI])  | 
|
821  | 
apply (blast intro: Limit_has_succ)  | 
|
822  | 
done  | 
|
823  | 
||
824  | 
lemmas Lset_UnI1 = Un_upper1 [THEN Lset_mono [THEN subsetD], standard]  | 
|
825  | 
lemmas Lset_UnI2 = Un_upper2 [THEN Lset_mono [THEN subsetD], standard]  | 
|
826  | 
||
827  | 
text{*Hard work is finding a single j:i such that {a,b}<=Lset(j)*}
 | 
|
828  | 
lemma doubleton_in_LLimit:  | 
|
829  | 
    "[| a: Lset(i);  b: Lset(i);  Limit(i) |] ==> {a,b} : Lset(i)"
 | 
|
830  | 
apply (erule Limit_LsetE, assumption)  | 
|
831  | 
apply (erule Limit_LsetE, assumption)  | 
|
| 13269 | 832  | 
apply (blast intro: lt_LsetI [OF doubleton_in_Lset]  | 
833  | 
Lset_UnI1 Lset_UnI2 Limit_has_succ Un_least_lt)  | 
|
| 13223 | 834  | 
done  | 
835  | 
||
836  | 
lemma Pair_in_LLimit:  | 
|
837  | 
"[| a: Lset(i); b: Lset(i); Limit(i) |] ==> <a,b> : Lset(i)"  | 
|
838  | 
txt{*Infer that a, b occur at ordinals x,xa < i.*}
 | 
|
839  | 
apply (erule Limit_LsetE, assumption)  | 
|
840  | 
apply (erule Limit_LsetE, assumption)  | 
|
841  | 
txt{*Infer that succ(succ(x Un xa)) < i *}
 | 
|
842  | 
apply (blast intro: lt_Ord lt_LsetI [OF Pair_in_Lset]  | 
|
843  | 
Lset_UnI1 Lset_UnI2 Limit_has_succ Un_least_lt)  | 
|
844  | 
done  | 
|
845  | 
||
846  | 
lemma product_LLimit: "Limit(i) ==> Lset(i) * Lset(i) <= Lset(i)"  | 
|
847  | 
by (blast intro: Pair_in_LLimit)  | 
|
848  | 
||
849  | 
lemmas Sigma_subset_LLimit = subset_trans [OF Sigma_mono product_LLimit]  | 
|
850  | 
||
851  | 
lemma nat_subset_LLimit: "Limit(i) ==> nat \<subseteq> Lset(i)"  | 
|
852  | 
by (blast dest: Ord_subset_Lset nat_le_Limit le_imp_subset Limit_is_Ord)  | 
|
853  | 
||
854  | 
lemma nat_into_LLimit: "[| n: nat; Limit(i) |] ==> n : Lset(i)"  | 
|
855  | 
by (blast intro: nat_subset_LLimit [THEN subsetD])  | 
|
856  | 
||
857  | 
||
858  | 
subsubsection{* Closure under disjoint union *}
 | 
|
859  | 
||
860  | 
lemmas zero_in_LLimit = Limit_has_0 [THEN ltD, THEN zero_in_Lset, standard]  | 
|
861  | 
||
862  | 
lemma one_in_LLimit: "Limit(i) ==> 1 : Lset(i)"  | 
|
863  | 
by (blast intro: nat_into_LLimit)  | 
|
864  | 
||
865  | 
lemma Inl_in_LLimit:  | 
|
866  | 
"[| a: Lset(i); Limit(i) |] ==> Inl(a) : Lset(i)"  | 
|
867  | 
apply (unfold Inl_def)  | 
|
868  | 
apply (blast intro: zero_in_LLimit Pair_in_LLimit)  | 
|
869  | 
done  | 
|
870  | 
||
871  | 
lemma Inr_in_LLimit:  | 
|
872  | 
"[| b: Lset(i); Limit(i) |] ==> Inr(b) : Lset(i)"  | 
|
873  | 
apply (unfold Inr_def)  | 
|
874  | 
apply (blast intro: one_in_LLimit Pair_in_LLimit)  | 
|
875  | 
done  | 
|
876  | 
||
877  | 
lemma sum_LLimit: "Limit(i) ==> Lset(i) + Lset(i) <= Lset(i)"  | 
|
878  | 
by (blast intro!: Inl_in_LLimit Inr_in_LLimit)  | 
|
879  | 
||
880  | 
lemmas sum_subset_LLimit = subset_trans [OF sum_mono sum_LLimit]  | 
|
881  | 
||
882  | 
||
883  | 
text{*The constructible universe and its rank function*}
 | 
|
884  | 
constdefs  | 
|
885  | 
  L :: "i=>o" --{*Kunen's definition VI, 1.5, page 167*}
 | 
|
886  | 
"L(x) == \<exists>i. Ord(i) & x \<in> Lset(i)"  | 
|
887  | 
||
888  | 
  lrank :: "i=>i" --{*Kunen's definition VI, 1.7*}
 | 
|
889  | 
"lrank(x) == \<mu>i. x \<in> Lset(succ(i))"  | 
|
890  | 
||
891  | 
lemma L_I: "[|x \<in> Lset(i); Ord(i)|] ==> L(x)"  | 
|
892  | 
by (simp add: L_def, blast)  | 
|
893  | 
||
894  | 
lemma L_D: "L(x) ==> \<exists>i. Ord(i) & x \<in> Lset(i)"  | 
|
895  | 
by (simp add: L_def)  | 
|
896  | 
||
897  | 
lemma Ord_lrank [simp]: "Ord(lrank(a))"  | 
|
898  | 
by (simp add: lrank_def)  | 
|
899  | 
||
900  | 
lemma Lset_lrank_lt [rule_format]: "Ord(i) ==> x \<in> Lset(i) --> lrank(x) < i"  | 
|
901  | 
apply (erule trans_induct3)  | 
|
902  | 
apply simp  | 
|
903  | 
apply (simp only: lrank_def)  | 
|
904  | 
apply (blast intro: Least_le)  | 
|
905  | 
apply (simp_all add: Limit_Lset_eq)  | 
|
906  | 
apply (blast intro: ltI Limit_is_Ord lt_trans)  | 
|
907  | 
done  | 
|
908  | 
||
909  | 
text{*Kunen's VI, 1.8, and the proof is much less trivial than the text
 | 
|
910  | 
would suggest. For a start it need the previous lemma, proved by induction.*}  | 
|
911  | 
lemma Lset_iff_lrank_lt: "Ord(i) ==> x \<in> Lset(i) <-> L(x) & lrank(x) < i"  | 
|
912  | 
apply (simp add: L_def, auto)  | 
|
913  | 
apply (blast intro: Lset_lrank_lt)  | 
|
914  | 
apply (unfold lrank_def)  | 
|
915  | 
apply (drule succI1 [THEN Lset_mono_mem, THEN subsetD])  | 
|
916  | 
apply (drule_tac P="\<lambda>i. x \<in> Lset(succ(i))" in LeastI, assumption)  | 
|
917  | 
apply (blast intro!: le_imp_subset Lset_mono [THEN subsetD])  | 
|
918  | 
done  | 
|
919  | 
||
920  | 
lemma Lset_succ_lrank_iff [simp]: "x \<in> Lset(succ(lrank(x))) <-> L(x)"  | 
|
921  | 
by (simp add: Lset_iff_lrank_lt)  | 
|
922  | 
||
923  | 
text{*Kunen's VI, 1.9 (a)*}
 | 
|
924  | 
lemma lrank_of_Ord: "Ord(i) ==> lrank(i) = i"  | 
|
925  | 
apply (unfold lrank_def)  | 
|
926  | 
apply (rule Least_equality)  | 
|
927  | 
apply (erule Ord_in_Lset)  | 
|
928  | 
apply assumption  | 
|
929  | 
apply (insert notin_Lset [of i])  | 
|
930  | 
apply (blast intro!: le_imp_subset Lset_mono [THEN subsetD])  | 
|
931  | 
done  | 
|
932  | 
||
| 13245 | 933  | 
|
934  | 
lemma Ord_in_L: "Ord(i) ==> L(i)"  | 
|
935  | 
by (blast intro: Ord_in_Lset L_I)  | 
|
936  | 
||
| 13223 | 937  | 
text{*This is lrank(lrank(a)) = lrank(a) *}
 | 
938  | 
declare Ord_lrank [THEN lrank_of_Ord, simp]  | 
|
939  | 
||
940  | 
text{*Kunen's VI, 1.10 *}
 | 
|
941  | 
lemma Lset_in_Lset_succ: "Lset(i) \<in> Lset(succ(i))";  | 
|
942  | 
apply (simp add: Lset_succ DPow_def)  | 
|
| 
13339
 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 
paulson 
parents: 
13328 
diff
changeset
 | 
943  | 
apply (rule_tac x=Nil in bexI)  | 
| 13223 | 944  | 
apply (rule_tac x="Equal(0,0)" in bexI)  | 
945  | 
apply auto  | 
|
946  | 
done  | 
|
947  | 
||
948  | 
lemma lrank_Lset: "Ord(i) ==> lrank(Lset(i)) = i"  | 
|
949  | 
apply (unfold lrank_def)  | 
|
950  | 
apply (rule Least_equality)  | 
|
951  | 
apply (rule Lset_in_Lset_succ)  | 
|
952  | 
apply assumption  | 
|
953  | 
apply clarify  | 
|
954  | 
apply (subgoal_tac "Lset(succ(ia)) <= Lset(i)")  | 
|
955  | 
apply (blast dest: mem_irrefl)  | 
|
956  | 
apply (blast intro!: le_imp_subset Lset_mono)  | 
|
957  | 
done  | 
|
958  | 
||
959  | 
text{*Kunen's VI, 1.11 *}
 | 
|
960  | 
lemma Lset_subset_Vset: "Ord(i) ==> Lset(i) <= Vset(i)";  | 
|
961  | 
apply (erule trans_induct)  | 
|
962  | 
apply (subst Lset)  | 
|
963  | 
apply (subst Vset)  | 
|
964  | 
apply (rule UN_mono [OF subset_refl])  | 
|
965  | 
apply (rule subset_trans [OF DPow_subset_Pow])  | 
|
966  | 
apply (rule Pow_mono, blast)  | 
|
967  | 
done  | 
|
968  | 
||
969  | 
text{*Kunen's VI, 1.12 *}
 | 
|
| 13535 | 970  | 
lemma Lset_subset_Vset': "i \<in> nat ==> Lset(i) = Vset(i)";  | 
| 13223 | 971  | 
apply (erule nat_induct)  | 
972  | 
apply (simp add: Vfrom_0)  | 
|
973  | 
apply (simp add: Lset_succ Vset_succ Finite_Vset Finite_DPow_eq_Pow)  | 
|
974  | 
done  | 
|
975  | 
||
| 13291 | 976  | 
text{*Every set of constructible sets is included in some @{term Lset}*} 
 | 
977  | 
lemma subset_Lset:  | 
|
978  | 
"(\<forall>x\<in>A. L(x)) ==> \<exists>i. Ord(i) & A \<subseteq> Lset(i)"  | 
|
979  | 
by (rule_tac x = "\<Union>x\<in>A. succ(lrank(x))" in exI, force)  | 
|
980  | 
||
981  | 
lemma subset_LsetE:  | 
|
982  | 
"[|\<forall>x\<in>A. L(x);  | 
|
983  | 
!!i. [|Ord(i); A \<subseteq> Lset(i)|] ==> P|]  | 
|
984  | 
==> P"  | 
|
985  | 
by (blast dest: subset_Lset)  | 
|
986  | 
||
| 13223 | 987  | 
subsection{*For L to satisfy the ZF axioms*}
 | 
988  | 
||
| 13245 | 989  | 
theorem Union_in_L: "L(X) ==> L(Union(X))"  | 
| 13223 | 990  | 
apply (simp add: L_def, clarify)  | 
991  | 
apply (drule Ord_imp_greater_Limit)  | 
|
992  | 
apply (blast intro: lt_LsetI Union_in_LLimit Limit_is_Ord)  | 
|
993  | 
done  | 
|
994  | 
||
| 13245 | 995  | 
theorem doubleton_in_L: "[| L(a); L(b) |] ==> L({a, b})"
 | 
| 13223 | 996  | 
apply (simp add: L_def, clarify)  | 
997  | 
apply (drule Ord2_imp_greater_Limit, assumption)  | 
|
998  | 
apply (blast intro: lt_LsetI doubleton_in_LLimit Limit_is_Ord)  | 
|
999  | 
done  | 
|
1000  | 
||
1001  | 
subsubsection{*For L to satisfy Powerset *}
 | 
|
1002  | 
||
1003  | 
lemma LPow_env_typing:  | 
|
| 13511 | 1004  | 
"[| y : Lset(i); Ord(i); y \<subseteq> X |]  | 
1005  | 
==> \<exists>z \<in> Pow(X). y \<in> Lset(succ(lrank(z)))"  | 
|
| 13223 | 1006  | 
by (auto intro: L_I iff: Lset_succ_lrank_iff)  | 
1007  | 
||
1008  | 
lemma LPow_in_Lset:  | 
|
1009  | 
     "[|X \<in> Lset(i); Ord(i)|] ==> \<exists>j. Ord(j) & {y \<in> Pow(X). L(y)} \<in> Lset(j)"
 | 
|
1010  | 
apply (rule_tac x="succ(\<Union>y \<in> Pow(X). succ(lrank(y)))" in exI)  | 
|
1011  | 
apply simp  | 
|
1012  | 
apply (rule LsetI [OF succI1])  | 
|
1013  | 
apply (simp add: DPow_def)  | 
|
1014  | 
apply (intro conjI, clarify)  | 
|
| 13511 | 1015  | 
apply (rule_tac a=x in UN_I, simp+)  | 
| 13223 | 1016  | 
txt{*Now to create the formula @{term "y \<subseteq> X"} *}
 | 
1017  | 
apply (rule_tac x="Cons(X,Nil)" in bexI)  | 
|
1018  | 
apply (rule_tac x="subset_fm(0,1)" in bexI)  | 
|
1019  | 
apply typecheck  | 
|
| 13511 | 1020  | 
apply (rule conjI)  | 
| 13223 | 1021  | 
apply (simp add: succ_Un_distrib [symmetric])  | 
1022  | 
apply (rule equality_iffI)  | 
|
| 13511 | 1023  | 
apply (simp add: Transset_UN [OF Transset_Lset] LPow_env_typing)  | 
| 13223 | 1024  | 
apply (auto intro: L_I iff: Lset_succ_lrank_iff)  | 
1025  | 
done  | 
|
1026  | 
||
| 13245 | 1027  | 
theorem LPow_in_L: "L(X) ==> L({y \<in> Pow(X). L(y)})"
 | 
| 13223 | 1028  | 
by (blast intro: L_I dest: L_D LPow_in_Lset)  | 
1029  | 
||
| 
13385
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1030  | 
|
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1031  | 
subsection{*Eliminating @{term arity} from the Definition of @{term Lset}*}
 | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1032  | 
|
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1033  | 
|
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1034  | 
lemma nth_zero_eq_0: "n \<in> nat ==> nth(n,[0]) = 0"  | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1035  | 
by (induct_tac n, auto)  | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1036  | 
|
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1037  | 
lemma sats_app_0_iff [rule_format]:  | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1038  | 
"[| p \<in> formula; 0 \<in> A |]  | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1039  | 
==> \<forall>env \<in> list(A). sats(A,p, env@[0]) <-> sats(A,p,env)"  | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1040  | 
apply (induct_tac p)  | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1041  | 
apply (simp_all del: app_Cons add: app_Cons [symmetric]  | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1042  | 
add: nth_zero_eq_0 nth_append not_lt_iff_le nth_eq_0)  | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1043  | 
done  | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1044  | 
|
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1045  | 
lemma sats_app_zeroes_iff:  | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1046  | 
"[| p \<in> formula; 0 \<in> A; env \<in> list(A); n \<in> nat |]  | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1047  | 
==> sats(A,p,env @ repeat(0,n)) <-> sats(A,p,env)"  | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1048  | 
apply (induct_tac n, simp)  | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1049  | 
apply (simp del: repeat.simps  | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1050  | 
add: repeat_succ_app sats_app_0_iff app_assoc [symmetric])  | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1051  | 
done  | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1052  | 
|
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1053  | 
lemma exists_bigger_env:  | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1054  | 
"[| p \<in> formula; 0 \<in> A; env \<in> list(A) |]  | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1055  | 
==> \<exists>env' \<in> list(A). arity(p) \<le> succ(length(env')) &  | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1056  | 
(\<forall>a\<in>A. sats(A,p,Cons(a,env')) <-> sats(A,p,Cons(a,env)))"  | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1057  | 
apply (rule_tac x="env @ repeat(0,arity(p))" in bexI)  | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1058  | 
apply (simp del: app_Cons add: app_Cons [symmetric]  | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1059  | 
add: length_repeat sats_app_zeroes_iff, typecheck)  | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1060  | 
done  | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1061  | 
|
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1062  | 
|
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1063  | 
text{*A simpler version of @{term DPow}: no arity check!*}
 | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1064  | 
constdefs DPow' :: "i => i"  | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1065  | 
  "DPow'(A) == {X \<in> Pow(A). 
 | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1066  | 
\<exists>env \<in> list(A). \<exists>p \<in> formula.  | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1067  | 
                    X = {x\<in>A. sats(A, p, Cons(x,env))}}"
 | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1068  | 
|
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1069  | 
lemma DPow_subset_DPow': "DPow(A) <= DPow'(A)";  | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1070  | 
by (simp add: DPow_def DPow'_def, blast)  | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1071  | 
|
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1072  | 
lemma DPow'_0: "DPow'(0) = {0}"
 | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1073  | 
by (auto simp add: DPow'_def)  | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1074  | 
|
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1075  | 
lemma DPow'_subset_DPow: "0 \<in> A ==> DPow'(A) \<subseteq> DPow(A)"  | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1076  | 
apply (auto simp add: DPow'_def DPow_def)  | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1077  | 
apply (frule exists_bigger_env, assumption+, force)  | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1078  | 
done  | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1079  | 
|
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1080  | 
lemma DPow_eq_DPow': "Transset(A) ==> DPow(A) = DPow'(A)"  | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1081  | 
apply (drule Transset_0_disj)  | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1082  | 
apply (erule disjE)  | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1083  | 
apply (simp add: DPow'_0 DPow_0)  | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1084  | 
apply (rule equalityI)  | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1085  | 
apply (rule DPow_subset_DPow')  | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1086  | 
apply (erule DPow'_subset_DPow)  | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1087  | 
done  | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1088  | 
|
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1089  | 
text{*And thus we can relativize @{term Lset} without bothering with
 | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1090  | 
      @{term arity} and @{term length}*}
 | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1091  | 
lemma Lset_eq_transrec_DPow': "Lset(i) = transrec(i, %x f. \<Union>y\<in>x. DPow'(f`y))"  | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1092  | 
apply (rule_tac a=i in eps_induct)  | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1093  | 
apply (subst Lset)  | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1094  | 
apply (subst transrec)  | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1095  | 
apply (simp only: DPow_eq_DPow' [OF Transset_Lset], simp)  | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1096  | 
done  | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1097  | 
|
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1098  | 
text{*With this rule we can specify @{term p} later and don't worry about
 | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1099  | 
arities at all!*}  | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1100  | 
lemma DPow_LsetI [rule_format]:  | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1101  | 
"[|\<forall>x\<in>Lset(i). P(x) <-> sats(Lset(i), p, Cons(x,env));  | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1102  | 
env \<in> list(Lset(i)); p \<in> formula|]  | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1103  | 
   ==> {x\<in>Lset(i). P(x)} \<in> DPow(Lset(i))"
 | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1104  | 
by (simp add: DPow_eq_DPow' [OF Transset_Lset] DPow'_def, blast)  | 
| 
 
31df66ca0780
Expressing Lset and L without using length and arity; simplifies Separation
 
paulson 
parents: 
13339 
diff
changeset
 | 
1105  | 
|
| 13223 | 1106  | 
end  |