src/ZF/Constructible/Formula.thy
author paulson
Tue, 10 Sep 2002 16:51:31 +0200
changeset 13564 1500a2e48d44
parent 13535 007559e981c7
child 13634 99a593b49b04
permissions -rw-r--r--
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
13505
52a16cb7fefb Relativized right up to L satisfies V=L!
paulson
parents: 13398
diff changeset
     1
(*  Title:      ZF/Constructible/Formula.thy
52a16cb7fefb Relativized right up to L satisfies V=L!
paulson
parents: 13398
diff changeset
     2
    ID: $Id$
52a16cb7fefb Relativized right up to L satisfies V=L!
paulson
parents: 13398
diff changeset
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
52a16cb7fefb Relativized right up to L satisfies V=L!
paulson
parents: 13398
diff changeset
     4
    Copyright   2002  University of Cambridge
52a16cb7fefb Relativized right up to L satisfies V=L!
paulson
parents: 13398
diff changeset
     5
*)
52a16cb7fefb Relativized right up to L satisfies V=L!
paulson
parents: 13398
diff changeset
     6
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
     7
header {* First-Order Formulas and the Definition of the Class L *}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
     8
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
     9
theory Formula = Main:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    10
13291
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
    11
subsection{*Internalized formulas of FOL*}
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
    12
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
    13
text{*De Bruijn representation.
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
    14
  Unbound variables get their denotations from an environment.*}
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    15
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    16
consts   formula :: i
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    17
datatype
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    18
  "formula" = Member ("x: nat", "y: nat")
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    19
            | Equal  ("x: nat", "y: nat")
13398
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
    20
            | Nand ("p: formula", "q: formula")
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    21
            | Forall ("p: formula")
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    22
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    23
declare formula.intros [TC]
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    24
13398
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
    25
constdefs Neg :: "i=>i"
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
    26
    "Neg(p) == Nand(p,p)"
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
    27
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
    28
constdefs And :: "[i,i]=>i"
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
    29
    "And(p,q) == Neg(Nand(p,q))"
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
    30
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    31
constdefs Or :: "[i,i]=>i"
13398
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
    32
    "Or(p,q) == Nand(Neg(p),Neg(q))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    33
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    34
constdefs Implies :: "[i,i]=>i"
13398
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
    35
    "Implies(p,q) == Nand(p,Neg(q))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    36
13291
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
    37
constdefs Iff :: "[i,i]=>i"
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
    38
    "Iff(p,q) == And(Implies(p,q), Implies(q,p))"
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
    39
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    40
constdefs Exists :: "i=>i"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    41
    "Exists(p) == Neg(Forall(Neg(p)))";
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    42
13398
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
    43
lemma Neg_type [TC]: "p \<in> formula ==> Neg(p) \<in> formula"
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
    44
by (simp add: Neg_def) 
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
    45
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
    46
lemma And_type [TC]: "[| p \<in> formula; q \<in> formula |] ==> And(p,q) \<in> formula"
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
    47
by (simp add: And_def) 
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
    48
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    49
lemma Or_type [TC]: "[| p \<in> formula; q \<in> formula |] ==> Or(p,q) \<in> formula"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    50
by (simp add: Or_def) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    51
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    52
lemma Implies_type [TC]:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    53
     "[| p \<in> formula; q \<in> formula |] ==> Implies(p,q) \<in> formula"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    54
by (simp add: Implies_def) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    55
13291
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
    56
lemma Iff_type [TC]:
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
    57
     "[| p \<in> formula; q \<in> formula |] ==> Iff(p,q) \<in> formula"
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
    58
by (simp add: Iff_def) 
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
    59
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    60
lemma Exists_type [TC]: "p \<in> formula ==> Exists(p) \<in> formula"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    61
by (simp add: Exists_def) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    62
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    63
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    64
consts   satisfies :: "[i,i]=>i"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    65
primrec (*explicit lambda is required because the environment varies*)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    66
  "satisfies(A,Member(x,y)) = 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    67
      (\<lambda>env \<in> list(A). bool_of_o (nth(x,env) \<in> nth(y,env)))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    68
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    69
  "satisfies(A,Equal(x,y)) = 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    70
      (\<lambda>env \<in> list(A). bool_of_o (nth(x,env) = nth(y,env)))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    71
13398
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
    72
  "satisfies(A,Nand(p,q)) =
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
    73
      (\<lambda>env \<in> list(A). not ((satisfies(A,p)`env) and (satisfies(A,q)`env)))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    74
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    75
  "satisfies(A,Forall(p)) = 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    76
      (\<lambda>env \<in> list(A). bool_of_o (\<forall>x\<in>A. satisfies(A,p) ` (Cons(x,env)) = 1))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    77
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    78
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    79
lemma "p \<in> formula ==> satisfies(A,p) \<in> list(A) -> bool"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    80
by (induct_tac p, simp_all) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    81
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    82
syntax sats :: "[i,i,i] => o"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    83
translations "sats(A,p,env)" == "satisfies(A,p)`env = 1"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    84
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    85
lemma [simp]:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    86
  "env \<in> list(A) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    87
   ==> sats(A, Member(x,y), env) <-> nth(x,env) \<in> nth(y,env)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    88
by simp
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    89
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    90
lemma [simp]:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    91
  "env \<in> list(A) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    92
   ==> sats(A, Equal(x,y), env) <-> nth(x,env) = nth(y,env)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    93
by simp
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    94
13398
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
    95
lemma sats_Nand_iff [simp]:
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    96
  "env \<in> list(A) 
13398
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
    97
   ==> (sats(A, Nand(p,q), env)) <-> ~ (sats(A,p,env) & sats(A,q,env))" 
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
    98
by (simp add: Bool.and_def Bool.not_def cond_def) 
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
    99
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   100
lemma sats_Forall_iff [simp]:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   101
  "env \<in> list(A) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   102
   ==> sats(A, Forall(p), env) <-> (\<forall>x\<in>A. sats(A, p, Cons(x,env)))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   103
by simp
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   104
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   105
declare satisfies.simps [simp del]; 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   106
13298
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   107
subsection{*Dividing line between primitive and derived connectives*}
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   108
13398
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
   109
lemma sats_Neg_iff [simp]:
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
   110
  "env \<in> list(A) 
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
   111
   ==> sats(A, Neg(p), env) <-> ~ sats(A,p,env)"
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
   112
by (simp add: Neg_def) 
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
   113
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
   114
lemma sats_And_iff [simp]:
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
   115
  "env \<in> list(A) 
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
   116
   ==> (sats(A, And(p,q), env)) <-> sats(A,p,env) & sats(A,q,env)"
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
   117
by (simp add: And_def) 
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
   118
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   119
lemma sats_Or_iff [simp]:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   120
  "env \<in> list(A) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   121
   ==> (sats(A, Or(p,q), env)) <-> sats(A,p,env) | sats(A,q,env)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   122
by (simp add: Or_def)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   123
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   124
lemma sats_Implies_iff [simp]:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   125
  "env \<in> list(A) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   126
   ==> (sats(A, Implies(p,q), env)) <-> (sats(A,p,env) --> sats(A,q,env))"
13291
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   127
by (simp add: Implies_def, blast) 
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   128
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   129
lemma sats_Iff_iff [simp]:
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   130
  "env \<in> list(A) 
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   131
   ==> (sats(A, Iff(p,q), env)) <-> (sats(A,p,env) <-> sats(A,q,env))"
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   132
by (simp add: Iff_def, blast) 
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   133
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   134
lemma sats_Exists_iff [simp]:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   135
  "env \<in> list(A) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   136
   ==> sats(A, Exists(p), env) <-> (\<exists>x\<in>A. sats(A, p, Cons(x,env)))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   137
by (simp add: Exists_def)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   138
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   139
13291
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   140
subsubsection{*Derived rules to help build up formulas*}
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   141
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   142
lemma mem_iff_sats:
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   143
      "[| nth(i,env) = x; nth(j,env) = y; env \<in> list(A)|]
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   144
       ==> (x\<in>y) <-> sats(A, Member(i,j), env)" 
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   145
by (simp add: satisfies.simps)
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   146
13298
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   147
lemma equal_iff_sats:
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   148
      "[| nth(i,env) = x; nth(j,env) = y; env \<in> list(A)|]
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   149
       ==> (x=y) <-> sats(A, Equal(i,j), env)" 
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   150
by (simp add: satisfies.simps)
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   151
13316
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13306
diff changeset
   152
lemma not_iff_sats:
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13306
diff changeset
   153
      "[| P <-> sats(A,p,env); env \<in> list(A)|]
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13306
diff changeset
   154
       ==> (~P) <-> sats(A, Neg(p), env)"
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13306
diff changeset
   155
by simp
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13306
diff changeset
   156
13291
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   157
lemma conj_iff_sats:
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   158
      "[| P <-> sats(A,p,env); Q <-> sats(A,q,env); env \<in> list(A)|]
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   159
       ==> (P & Q) <-> sats(A, And(p,q), env)"
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   160
by (simp add: sats_And_iff)
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   161
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   162
lemma disj_iff_sats:
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   163
      "[| P <-> sats(A,p,env); Q <-> sats(A,q,env); env \<in> list(A)|]
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   164
       ==> (P | Q) <-> sats(A, Or(p,q), env)"
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   165
by (simp add: sats_Or_iff)
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   166
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   167
lemma iff_iff_sats:
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   168
      "[| P <-> sats(A,p,env); Q <-> sats(A,q,env); env \<in> list(A)|]
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   169
       ==> (P <-> Q) <-> sats(A, Iff(p,q), env)"
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   170
by (simp add: sats_Forall_iff) 
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   171
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   172
lemma imp_iff_sats:
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   173
      "[| P <-> sats(A,p,env); Q <-> sats(A,q,env); env \<in> list(A)|]
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   174
       ==> (P --> Q) <-> sats(A, Implies(p,q), env)"
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   175
by (simp add: sats_Forall_iff) 
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   176
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   177
lemma ball_iff_sats:
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   178
      "[| !!x. x\<in>A ==> P(x) <-> sats(A, p, Cons(x, env)); env \<in> list(A)|]
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   179
       ==> (\<forall>x\<in>A. P(x)) <-> sats(A, Forall(p), env)"
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   180
by (simp add: sats_Forall_iff) 
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   181
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   182
lemma bex_iff_sats:
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   183
      "[| !!x. x\<in>A ==> P(x) <-> sats(A, p, Cons(x, env)); env \<in> list(A)|]
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   184
       ==> (\<exists>x\<in>A. P(x)) <-> sats(A, Exists(p), env)"
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   185
by (simp add: sats_Exists_iff) 
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   186
13316
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13306
diff changeset
   187
lemmas FOL_iff_sats = 
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13306
diff changeset
   188
        mem_iff_sats equal_iff_sats not_iff_sats conj_iff_sats
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13306
diff changeset
   189
        disj_iff_sats imp_iff_sats iff_iff_sats imp_iff_sats ball_iff_sats
d16629fd0f95 more and simpler separation proofs
paulson
parents: 13306
diff changeset
   190
        bex_iff_sats
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   191
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   192
constdefs incr_var :: "[i,i]=>i"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   193
    "incr_var(x,lev) == if x<lev then x else succ(x)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   194
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   195
lemma incr_var_lt: "x<lev ==> incr_var(x,lev) = x"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   196
by (simp add: incr_var_def)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   197
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   198
lemma incr_var_le: "lev\<le>x ==> incr_var(x,lev) = succ(x)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   199
apply (simp add: incr_var_def) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   200
apply (blast dest: lt_trans1) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   201
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   202
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   203
consts   incr_bv :: "i=>i"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   204
primrec
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   205
  "incr_bv(Member(x,y)) = 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   206
      (\<lambda>lev \<in> nat. Member (incr_var(x,lev), incr_var(y,lev)))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   207
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   208
  "incr_bv(Equal(x,y)) = 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   209
      (\<lambda>lev \<in> nat. Equal (incr_var(x,lev), incr_var(y,lev)))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   210
13398
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
   211
  "incr_bv(Nand(p,q)) =
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
   212
      (\<lambda>lev \<in> nat. Nand (incr_bv(p)`lev, incr_bv(q)`lev))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   213
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   214
  "incr_bv(Forall(p)) = 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   215
      (\<lambda>lev \<in> nat. Forall (incr_bv(p) ` succ(lev)))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   216
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   217
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   218
constdefs incr_boundvars :: "i => i"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   219
    "incr_boundvars(p) == incr_bv(p)`0"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   220
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   221
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   222
lemma [TC]: "x \<in> nat ==> incr_var(x,lev) \<in> nat"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   223
by (simp add: incr_var_def) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   224
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   225
lemma incr_bv_type [TC]: "p \<in> formula ==> incr_bv(p) \<in> nat -> formula"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   226
by (induct_tac p, simp_all) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   227
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   228
lemma incr_boundvars_type [TC]: "p \<in> formula ==> incr_boundvars(p) \<in> formula"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   229
by (simp add: incr_boundvars_def) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   230
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   231
(*Obviously DPow is closed under complements and finite intersections and
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   232
unions.  Needs an inductive lemma to allow two lists of parameters to 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   233
be combined.*)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   234
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   235
lemma sats_incr_bv_iff [rule_format]:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   236
  "[| p \<in> formula; env \<in> list(A); x \<in> A |]
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   237
   ==> \<forall>bvs \<in> list(A). 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   238
           sats(A, incr_bv(p) ` length(bvs), bvs @ Cons(x,env)) <-> 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   239
           sats(A, p, bvs@env)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   240
apply (induct_tac p)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   241
apply (simp_all add: incr_var_def nth_append succ_lt_iff length_type)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   242
apply (auto simp add: diff_succ not_lt_iff_le)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   243
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   244
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   245
(*UNUSED*)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   246
lemma sats_incr_boundvars_iff:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   247
  "[| p \<in> formula; env \<in> list(A); x \<in> A |]
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   248
   ==> sats(A, incr_boundvars(p), Cons(x,env)) <-> sats(A, p, env)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   249
apply (insert sats_incr_bv_iff [of p env A x Nil])
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   250
apply (simp add: incr_boundvars_def) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   251
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   252
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   253
(*UNUSED
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   254
lemma formula_add_params [rule_format]:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   255
  "[| p \<in> formula; n \<in> nat |]
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   256
   ==> \<forall>bvs \<in> list(A). \<forall>env \<in> list(A). 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   257
         length(bvs) = n --> 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   258
         sats(A, iterates(incr_boundvars,n,p), bvs@env) <-> sats(A, p, env)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   259
apply (induct_tac n, simp, clarify) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   260
apply (erule list.cases)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   261
apply (auto simp add: sats_incr_boundvars_iff)  
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   262
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   263
*)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   264
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   265
consts   arity :: "i=>i"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   266
primrec
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   267
  "arity(Member(x,y)) = succ(x) \<union> succ(y)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   268
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   269
  "arity(Equal(x,y)) = succ(x) \<union> succ(y)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   270
13398
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
   271
  "arity(Nand(p,q)) = arity(p) \<union> arity(q)"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   272
13269
3ba9be497c33 Tidying and introduction of various new theorems
paulson
parents: 13245
diff changeset
   273
  "arity(Forall(p)) = nat_case(0, %x. x, arity(p))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   274
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   275
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   276
lemma arity_type [TC]: "p \<in> formula ==> arity(p) \<in> nat"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   277
by (induct_tac p, simp_all) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   278
13398
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
   279
lemma arity_Neg [simp]: "arity(Neg(p)) = arity(p)"
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
   280
by (simp add: Neg_def) 
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
   281
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
   282
lemma arity_And [simp]: "arity(And(p,q)) = arity(p) \<union> arity(q)"
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
   283
by (simp add: And_def) 
1cadd412da48 Towards relativization and absoluteness of formula_rec
paulson
parents: 13385
diff changeset
   284
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   285
lemma arity_Or [simp]: "arity(Or(p,q)) = arity(p) \<union> arity(q)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   286
by (simp add: Or_def) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   287
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   288
lemma arity_Implies [simp]: "arity(Implies(p,q)) = arity(p) \<union> arity(q)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   289
by (simp add: Implies_def) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   290
13291
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   291
lemma arity_Iff [simp]: "arity(Iff(p,q)) = arity(p) \<union> arity(q)"
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   292
by (simp add: Iff_def, blast)
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   293
13269
3ba9be497c33 Tidying and introduction of various new theorems
paulson
parents: 13245
diff changeset
   294
lemma arity_Exists [simp]: "arity(Exists(p)) = nat_case(0, %x. x, arity(p))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   295
by (simp add: Exists_def) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   296
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   297
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   298
lemma arity_sats_iff [rule_format]:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   299
  "[| p \<in> formula; extra \<in> list(A) |]
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   300
   ==> \<forall>env \<in> list(A). 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   301
           arity(p) \<le> length(env) --> 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   302
           sats(A, p, env @ extra) <-> sats(A, p, env)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   303
apply (induct_tac p)
13269
3ba9be497c33 Tidying and introduction of various new theorems
paulson
parents: 13245
diff changeset
   304
apply (simp_all add: nth_append Un_least_lt_iff arity_type nat_imp_quasinat
3ba9be497c33 Tidying and introduction of various new theorems
paulson
parents: 13245
diff changeset
   305
                split: split_nat_case, auto) 
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   306
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   307
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   308
lemma arity_sats1_iff:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   309
  "[| arity(p) \<le> succ(length(env)); p \<in> formula; x \<in> A; env \<in> list(A); 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   310
    extra \<in> list(A) |]
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   311
   ==> sats(A, p, Cons(x, env @ extra)) <-> sats(A, p, Cons(x, env))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   312
apply (insert arity_sats_iff [of p extra A "Cons(x,env)"])
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   313
apply simp 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   314
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   315
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   316
(*the following two lemmas prevent huge case splits in arity_incr_bv_lemma*)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   317
lemma incr_var_lemma:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   318
     "[| x \<in> nat; y \<in> nat; lev \<le> x |]
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   319
      ==> succ(x) \<union> incr_var(y,lev) = succ(x \<union> y)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   320
apply (simp add: incr_var_def Ord_Un_if, auto)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   321
  apply (blast intro: leI)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   322
 apply (simp add: not_lt_iff_le)  
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   323
 apply (blast intro: le_anti_sym) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   324
apply (blast dest: lt_trans2) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   325
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   326
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   327
lemma incr_And_lemma:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   328
     "y < x ==> y \<union> succ(x) = succ(x \<union> y)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   329
apply (simp add: Ord_Un_if lt_Ord lt_Ord2 succ_lt_iff) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   330
apply (blast dest: lt_asym) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   331
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   332
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   333
lemma arity_incr_bv_lemma [rule_format]:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   334
  "p \<in> formula 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   335
   ==> \<forall>n \<in> nat. arity (incr_bv(p) ` n) = 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   336
                 (if n < arity(p) then succ(arity(p)) else arity(p))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   337
apply (induct_tac p) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   338
apply (simp_all add: imp_disj not_lt_iff_le Un_least_lt_iff lt_Un_iff le_Un_iff
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   339
                     succ_Un_distrib [symmetric] incr_var_lt incr_var_le
13269
3ba9be497c33 Tidying and introduction of various new theorems
paulson
parents: 13245
diff changeset
   340
                     Un_commute incr_var_lemma arity_type nat_imp_quasinat
3ba9be497c33 Tidying and introduction of various new theorems
paulson
parents: 13245
diff changeset
   341
            split: split_nat_case) 
3ba9be497c33 Tidying and introduction of various new theorems
paulson
parents: 13245
diff changeset
   342
 txt{*the Forall case reduces to linear arithmetic*}
3ba9be497c33 Tidying and introduction of various new theorems
paulson
parents: 13245
diff changeset
   343
 prefer 2
3ba9be497c33 Tidying and introduction of various new theorems
paulson
parents: 13245
diff changeset
   344
 apply clarify 
3ba9be497c33 Tidying and introduction of various new theorems
paulson
parents: 13245
diff changeset
   345
 apply (blast dest: lt_trans1) 
3ba9be497c33 Tidying and introduction of various new theorems
paulson
parents: 13245
diff changeset
   346
txt{*left with the And case*}
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   347
apply safe
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   348
 apply (blast intro: incr_And_lemma lt_trans1) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   349
apply (subst incr_And_lemma)
13269
3ba9be497c33 Tidying and introduction of various new theorems
paulson
parents: 13245
diff changeset
   350
 apply (blast intro: lt_trans1) 
3ba9be497c33 Tidying and introduction of various new theorems
paulson
parents: 13245
diff changeset
   351
apply (simp add: Un_commute)
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   352
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   353
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   354
lemma arity_incr_boundvars_eq:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   355
  "p \<in> formula
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   356
   ==> arity(incr_boundvars(p)) =
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   357
        (if 0 < arity(p) then succ(arity(p)) else arity(p))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   358
apply (insert arity_incr_bv_lemma [of p 0])
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   359
apply (simp add: incr_boundvars_def) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   360
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   361
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   362
lemma arity_iterates_incr_boundvars_eq:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   363
  "[| p \<in> formula; n \<in> nat |]
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   364
   ==> arity(incr_boundvars^n(p)) =
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   365
         (if 0 < arity(p) then n #+ arity(p) else arity(p))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   366
apply (induct_tac n) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   367
apply (simp_all add: arity_incr_boundvars_eq not_lt_iff_le) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   368
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   369
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   370
13298
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   371
subsection{*Renaming all but the first bound variable*}
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   372
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   373
constdefs incr_bv1 :: "i => i"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   374
    "incr_bv1(p) == incr_bv(p)`1"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   375
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   376
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   377
lemma incr_bv1_type [TC]: "p \<in> formula ==> incr_bv1(p) \<in> formula"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   378
by (simp add: incr_bv1_def) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   379
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   380
(*For renaming all but the bound variable at level 0*)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   381
lemma sats_incr_bv1_iff [rule_format]:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   382
  "[| p \<in> formula; env \<in> list(A); x \<in> A; y \<in> A |]
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   383
   ==> sats(A, incr_bv1(p), Cons(x, Cons(y, env))) <-> 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   384
       sats(A, p, Cons(x,env))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   385
apply (insert sats_incr_bv_iff [of p env A y "Cons(x,Nil)"])
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   386
apply (simp add: incr_bv1_def) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   387
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   388
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   389
lemma formula_add_params1 [rule_format]:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   390
  "[| p \<in> formula; n \<in> nat; x \<in> A |]
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   391
   ==> \<forall>bvs \<in> list(A). \<forall>env \<in> list(A). 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   392
          length(bvs) = n --> 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   393
          sats(A, iterates(incr_bv1, n, p), Cons(x, bvs@env)) <-> 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   394
          sats(A, p, Cons(x,env))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   395
apply (induct_tac n, simp, clarify) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   396
apply (erule list.cases)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   397
apply (simp_all add: sats_incr_bv1_iff) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   398
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   399
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   400
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   401
lemma arity_incr_bv1_eq:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   402
  "p \<in> formula
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   403
   ==> arity(incr_bv1(p)) =
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   404
        (if 1 < arity(p) then succ(arity(p)) else arity(p))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   405
apply (insert arity_incr_bv_lemma [of p 1])
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   406
apply (simp add: incr_bv1_def) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   407
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   408
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   409
lemma arity_iterates_incr_bv1_eq:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   410
  "[| p \<in> formula; n \<in> nat |]
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   411
   ==> arity(incr_bv1^n(p)) =
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   412
         (if 1 < arity(p) then n #+ arity(p) else arity(p))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   413
apply (induct_tac n) 
13298
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   414
apply (simp_all add: arity_incr_bv1_eq)
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   415
apply (simp add: not_lt_iff_le)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   416
apply (blast intro: le_trans add_le_self2 arity_type) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   417
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   418
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   419
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   420
(*Definable powerset operation: Kunen's definition 1.1, page 165.*)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   421
constdefs DPow :: "i => i"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   422
  "DPow(A) == {X \<in> Pow(A). 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   423
               \<exists>env \<in> list(A). \<exists>p \<in> formula. 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   424
                 arity(p) \<le> succ(length(env)) & 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   425
                 X = {x\<in>A. sats(A, p, Cons(x,env))}}"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   426
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   427
lemma DPowI:
13291
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   428
  "[|env \<in> list(A);  p \<in> formula;  arity(p) \<le> succ(length(env))|]
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   429
   ==> {x\<in>A. sats(A, p, Cons(x,env))} \<in> DPow(A)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   430
by (simp add: DPow_def, blast) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   431
13291
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   432
text{*With this rule we can specify @{term p} later.*}
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   433
lemma DPowI2 [rule_format]:
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   434
  "[|\<forall>x\<in>A. P(x) <-> sats(A, p, Cons(x,env));
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   435
     env \<in> list(A);  p \<in> formula;  arity(p) \<le> succ(length(env))|]
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   436
   ==> {x\<in>A. P(x)} \<in> DPow(A)"
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   437
by (simp add: DPow_def, blast) 
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   438
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   439
lemma DPowD:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   440
  "X \<in> DPow(A) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   441
   ==> X <= A &
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   442
       (\<exists>env \<in> list(A). 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   443
        \<exists>p \<in> formula. arity(p) \<le> succ(length(env)) & 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   444
                      X = {x\<in>A. sats(A, p, Cons(x,env))})"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   445
by (simp add: DPow_def) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   446
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   447
lemmas DPow_imp_subset = DPowD [THEN conjunct1]
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   448
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   449
(*Lemma 1.2*)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   450
lemma "[| p \<in> formula; env \<in> list(A); arity(p) \<le> succ(length(env)) |] 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   451
       ==> {x\<in>A. sats(A, p, Cons(x,env))} \<in> DPow(A)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   452
by (blast intro: DPowI)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   453
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   454
lemma DPow_subset_Pow: "DPow(A) <= Pow(A)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   455
by (simp add: DPow_def, blast)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   456
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   457
lemma empty_in_DPow: "0 \<in> DPow(A)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   458
apply (simp add: DPow_def)
13339
0f89104dd377 Fixed quantified variable name preservation for ball and bex (bounded quants)
paulson
parents: 13328
diff changeset
   459
apply (rule_tac x=Nil in bexI) 
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   460
 apply (rule_tac x="Neg(Equal(0,0))" in bexI) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   461
  apply (auto simp add: Un_least_lt_iff) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   462
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   463
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   464
lemma Compl_in_DPow: "X \<in> DPow(A) ==> (A-X) \<in> DPow(A)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   465
apply (simp add: DPow_def, clarify, auto) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   466
apply (rule bexI) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   467
 apply (rule_tac x="Neg(p)" in bexI) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   468
  apply auto 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   469
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   470
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   471
lemma Int_in_DPow: "[| X \<in> DPow(A); Y \<in> DPow(A) |] ==> X Int Y \<in> DPow(A)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   472
apply (simp add: DPow_def, auto) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   473
apply (rename_tac envp p envq q) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   474
apply (rule_tac x="envp@envq" in bexI) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   475
 apply (rule_tac x="And(p, iterates(incr_bv1,length(envp),q))" in bexI)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   476
  apply typecheck
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   477
apply (rule conjI) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   478
(*finally check the arity!*)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   479
 apply (simp add: arity_iterates_incr_bv1_eq length_app Un_least_lt_iff)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   480
 apply (force intro: add_le_self le_trans) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   481
apply (simp add: arity_sats1_iff formula_add_params1, blast) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   482
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   483
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   484
lemma Un_in_DPow: "[| X \<in> DPow(A); Y \<in> DPow(A) |] ==> X Un Y \<in> DPow(A)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   485
apply (subgoal_tac "X Un Y = A - ((A-X) Int (A-Y))") 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   486
apply (simp add: Int_in_DPow Compl_in_DPow) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   487
apply (simp add: DPow_def, blast) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   488
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   489
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   490
lemma singleton_in_DPow: "x \<in> A ==> {x} \<in> DPow(A)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   491
apply (simp add: DPow_def)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   492
apply (rule_tac x="Cons(x,Nil)" in bexI) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   493
 apply (rule_tac x="Equal(0,1)" in bexI) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   494
  apply typecheck
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   495
apply (force simp add: succ_Un_distrib [symmetric])  
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   496
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   497
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   498
lemma cons_in_DPow: "[| a \<in> A; X \<in> DPow(A) |] ==> cons(a,X) \<in> DPow(A)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   499
apply (rule cons_eq [THEN subst]) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   500
apply (blast intro: singleton_in_DPow Un_in_DPow) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   501
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   502
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   503
(*Part of Lemma 1.3*)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   504
lemma Fin_into_DPow: "X \<in> Fin(A) ==> X \<in> DPow(A)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   505
apply (erule Fin.induct) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   506
 apply (rule empty_in_DPow) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   507
apply (blast intro: cons_in_DPow) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   508
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   509
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   510
(*DPow is not monotonic.  For example, let A be some non-constructible set
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   511
  of natural numbers, and let B be nat.  Then A<=B and obviously A : DPow(A)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   512
  but A ~: DPow(B).*)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   513
lemma DPow_mono: "A : DPow(B) ==> DPow(A) <= DPow(B)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   514
apply (simp add: DPow_def, auto) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   515
(*must use the formula defining A in B to relativize the new formula...*)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   516
oops
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   517
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   518
lemma DPow_0: "DPow(0) = {0}" 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   519
by (blast intro: empty_in_DPow dest: DPow_imp_subset)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   520
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   521
lemma Finite_Pow_subset_Pow: "Finite(A) ==> Pow(A) <= DPow(A)" 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   522
by (blast intro: Fin_into_DPow Finite_into_Fin Fin_subset)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   523
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   524
lemma Finite_DPow_eq_Pow: "Finite(A) ==> DPow(A) = Pow(A)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   525
apply (rule equalityI) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   526
apply (rule DPow_subset_Pow) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   527
apply (erule Finite_Pow_subset_Pow) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   528
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   529
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   530
(*This may be true but the proof looks difficult, requiring relativization 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   531
lemma DPow_insert: "DPow (cons(a,A)) = DPow(A) Un {cons(a,X) . X: DPow(A)}"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   532
apply (rule equalityI, safe)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   533
oops
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   534
*)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   535
13298
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   536
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   537
subsection{*Internalized formulas for basic concepts*}
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   538
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   539
subsubsection{*The subset relation*}
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   540
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   541
constdefs subset_fm :: "[i,i]=>i"
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   542
    "subset_fm(x,y) == Forall(Implies(Member(0,succ(x)), Member(0,succ(y))))"
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   543
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   544
lemma subset_type [TC]: "[| x \<in> nat; y \<in> nat |] ==> subset_fm(x,y) \<in> formula"
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   545
by (simp add: subset_fm_def) 
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   546
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   547
lemma arity_subset_fm [simp]:
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   548
     "[| x \<in> nat; y \<in> nat |] ==> arity(subset_fm(x,y)) = succ(x) \<union> succ(y)"
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   549
by (simp add: subset_fm_def succ_Un_distrib [symmetric]) 
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   550
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   551
lemma sats_subset_fm [simp]:
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   552
   "[|x < length(env); y \<in> nat; env \<in> list(A); Transset(A)|]
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   553
    ==> sats(A, subset_fm(x,y), env) <-> nth(x,env) \<subseteq> nth(y,env)"
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   554
apply (frule lt_length_in_nat, assumption)  
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   555
apply (simp add: subset_fm_def Transset_def) 
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   556
apply (blast intro: nth_type) 
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   557
done
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   558
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   559
subsubsection{*Transitive sets*}
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   560
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   561
constdefs transset_fm :: "i=>i"
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   562
   "transset_fm(x) == Forall(Implies(Member(0,succ(x)), subset_fm(0,succ(x))))"
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   563
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   564
lemma transset_type [TC]: "x \<in> nat ==> transset_fm(x) \<in> formula"
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   565
by (simp add: transset_fm_def) 
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   566
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   567
lemma arity_transset_fm [simp]:
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   568
     "x \<in> nat ==> arity(transset_fm(x)) = succ(x)"
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   569
by (simp add: transset_fm_def succ_Un_distrib [symmetric]) 
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   570
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   571
lemma sats_transset_fm [simp]:
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   572
   "[|x < length(env); env \<in> list(A); Transset(A)|]
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   573
    ==> sats(A, transset_fm(x), env) <-> Transset(nth(x,env))"
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   574
apply (frule lt_nat_in_nat, erule length_type) 
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   575
apply (simp add: transset_fm_def Transset_def) 
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   576
apply (blast intro: nth_type) 
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   577
done
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   578
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   579
subsubsection{*Ordinals*}
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   580
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   581
constdefs ordinal_fm :: "i=>i"
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   582
   "ordinal_fm(x) == 
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   583
      And(transset_fm(x), Forall(Implies(Member(0,succ(x)), transset_fm(0))))"
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   584
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   585
lemma ordinal_type [TC]: "x \<in> nat ==> ordinal_fm(x) \<in> formula"
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   586
by (simp add: ordinal_fm_def) 
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   587
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   588
lemma arity_ordinal_fm [simp]:
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   589
     "x \<in> nat ==> arity(ordinal_fm(x)) = succ(x)"
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   590
by (simp add: ordinal_fm_def succ_Un_distrib [symmetric]) 
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   591
13306
6eebcddee32b more internalized formulas and separation proofs
paulson
parents: 13298
diff changeset
   592
lemma sats_ordinal_fm:
13298
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   593
   "[|x < length(env); env \<in> list(A); Transset(A)|]
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   594
    ==> sats(A, ordinal_fm(x), env) <-> Ord(nth(x,env))"
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   595
apply (frule lt_nat_in_nat, erule length_type) 
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   596
apply (simp add: ordinal_fm_def Ord_def Transset_def)
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   597
apply (blast intro: nth_type) 
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   598
done
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   599
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   600
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   601
subsection{* Constant Lset: Levels of the Constructible Universe *}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   602
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   603
constdefs Lset :: "i=>i"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   604
    "Lset(i) == transrec(i, %x f. \<Union>y\<in>x. DPow(f`y))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   605
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   606
text{*NOT SUITABLE FOR REWRITING -- RECURSIVE!*}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   607
lemma Lset: "Lset(i) = (UN j:i. DPow(Lset(j)))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   608
by (subst Lset_def [THEN def_transrec], simp)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   609
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   610
lemma LsetI: "[|y\<in>x; A \<in> DPow(Lset(y))|] ==> A \<in> Lset(x)";
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   611
by (subst Lset, blast)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   612
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   613
lemma LsetD: "A \<in> Lset(x) ==> \<exists>y\<in>x. A \<in> DPow(Lset(y))";
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   614
apply (insert Lset [of x]) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   615
apply (blast intro: elim: equalityE) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   616
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   617
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   618
subsubsection{* Transitivity *}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   619
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   620
lemma elem_subset_in_DPow: "[|X \<in> A; X \<subseteq> A|] ==> X \<in> DPow(A)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   621
apply (simp add: Transset_def DPow_def)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   622
apply (rule_tac x="[X]" in bexI) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   623
 apply (rule_tac x="Member(0,1)" in bexI) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   624
  apply (auto simp add: Un_least_lt_iff) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   625
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   626
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   627
lemma Transset_subset_DPow: "Transset(A) ==> A <= DPow(A)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   628
apply clarify  
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   629
apply (simp add: Transset_def)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   630
apply (blast intro: elem_subset_in_DPow) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   631
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   632
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   633
lemma Transset_DPow: "Transset(A) ==> Transset(DPow(A))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   634
apply (simp add: Transset_def) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   635
apply (blast intro: elem_subset_in_DPow dest: DPowD) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   636
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   637
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   638
text{*Kunen's VI, 1.6 (a)*}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   639
lemma Transset_Lset: "Transset(Lset(i))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   640
apply (rule_tac a=i in eps_induct)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   641
apply (subst Lset)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   642
apply (blast intro!: Transset_Union_family Transset_Un Transset_DPow)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   643
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   644
13291
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   645
lemma mem_Lset_imp_subset_Lset: "a \<in> Lset(i) ==> a \<subseteq> Lset(i)"
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   646
apply (insert Transset_Lset) 
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   647
apply (simp add: Transset_def) 
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   648
done
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   649
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   650
subsubsection{* Monotonicity *}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   651
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   652
text{*Kunen's VI, 1.6 (b)*}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   653
lemma Lset_mono [rule_format]:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   654
     "ALL j. i<=j --> Lset(i) <= Lset(j)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   655
apply (rule_tac a=i in eps_induct)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   656
apply (rule impI [THEN allI])
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   657
apply (subst Lset)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   658
apply (subst Lset, blast) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   659
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   660
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   661
text{*This version lets us remove the premise @{term "Ord(i)"} sometimes.*}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   662
lemma Lset_mono_mem [rule_format]:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   663
     "ALL j. i:j --> Lset(i) <= Lset(j)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   664
apply (rule_tac a=i in eps_induct)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   665
apply (rule impI [THEN allI])
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   666
apply (subst Lset, auto) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   667
apply (rule rev_bexI, assumption)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   668
apply (blast intro: elem_subset_in_DPow dest: LsetD DPowD) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   669
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   670
13291
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   671
text{*Useful with Reflection to bump up the ordinal*}
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   672
lemma subset_Lset_ltD: "[|A \<subseteq> Lset(i); i < j|] ==> A \<subseteq> Lset(j)"
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   673
by (blast dest: ltD [THEN Lset_mono_mem]) 
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   674
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   675
subsubsection{* 0, successor and limit equations fof Lset *}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   676
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   677
lemma Lset_0 [simp]: "Lset(0) = 0"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   678
by (subst Lset, blast)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   679
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   680
lemma Lset_succ_subset1: "DPow(Lset(i)) <= Lset(succ(i))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   681
by (subst Lset, rule succI1 [THEN RepFunI, THEN Union_upper])
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   682
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   683
lemma Lset_succ_subset2: "Lset(succ(i)) <= DPow(Lset(i))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   684
apply (subst Lset, rule UN_least)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   685
apply (erule succE) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   686
 apply blast 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   687
apply clarify
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   688
apply (rule elem_subset_in_DPow)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   689
 apply (subst Lset)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   690
 apply blast 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   691
apply (blast intro: dest: DPowD Lset_mono_mem) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   692
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   693
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   694
lemma Lset_succ: "Lset(succ(i)) = DPow(Lset(i))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   695
by (intro equalityI Lset_succ_subset1 Lset_succ_subset2) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   696
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   697
lemma Lset_Union [simp]: "Lset(\<Union>(X)) = (\<Union>y\<in>X. Lset(y))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   698
apply (subst Lset)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   699
apply (rule equalityI)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   700
 txt{*first inclusion*}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   701
 apply (rule UN_least)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   702
 apply (erule UnionE)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   703
 apply (rule subset_trans)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   704
  apply (erule_tac [2] UN_upper, subst Lset, erule UN_upper)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   705
txt{*opposite inclusion*}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   706
apply (rule UN_least)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   707
apply (subst Lset, blast)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   708
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   709
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   710
subsubsection{* Lset applied to Limit ordinals *}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   711
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   712
lemma Limit_Lset_eq:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   713
    "Limit(i) ==> Lset(i) = (\<Union>y\<in>i. Lset(y))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   714
by (simp add: Lset_Union [symmetric] Limit_Union_eq)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   715
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   716
lemma lt_LsetI: "[| a: Lset(j);  j<i |] ==> a : Lset(i)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   717
by (blast dest: Lset_mono [OF le_imp_subset [OF leI]])
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   718
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   719
lemma Limit_LsetE:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   720
    "[| a: Lset(i);  ~R ==> Limit(i);
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   721
        !!x. [| x<i;  a: Lset(x) |] ==> R
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   722
     |] ==> R"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   723
apply (rule classical)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   724
apply (rule Limit_Lset_eq [THEN equalityD1, THEN subsetD, THEN UN_E])
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   725
  prefer 2 apply assumption
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   726
 apply blast 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   727
apply (blast intro: ltI  Limit_is_Ord)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   728
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   729
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   730
subsubsection{* Basic closure properties *}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   731
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   732
lemma zero_in_Lset: "y:x ==> 0 : Lset(x)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   733
by (subst Lset, blast intro: empty_in_DPow)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   734
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   735
lemma notin_Lset: "x \<notin> Lset(x)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   736
apply (rule_tac a=x in eps_induct)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   737
apply (subst Lset)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   738
apply (blast dest: DPowD)  
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   739
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   740
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   741
13298
b4f370679c65 Constructible: some separation axioms
paulson
parents: 13291
diff changeset
   742
subsection{*Constructible Ordinals: Kunen's VI, 1.9 (b)*}
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   743
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   744
text{*The subset consisting of the ordinals is definable.*}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   745
lemma Ords_in_DPow: "Transset(A) ==> {x \<in> A. Ord(x)} \<in> DPow(A)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   746
apply (simp add: DPow_def Collect_subset) 
13339
0f89104dd377 Fixed quantified variable name preservation for ball and bex (bounded quants)
paulson
parents: 13328
diff changeset
   747
apply (rule_tac x=Nil in bexI) 
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   748
 apply (rule_tac x="ordinal_fm(0)" in bexI) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   749
apply (simp_all add: sats_ordinal_fm)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   750
done 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   751
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   752
lemma Ords_of_Lset_eq: "Ord(i) ==> {x\<in>Lset(i). Ord(x)} = i"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   753
apply (erule trans_induct3)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   754
  apply (simp_all add: Lset_succ Limit_Lset_eq Limit_Union_eq)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   755
txt{*The successor case remains.*} 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   756
apply (rule equalityI)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   757
txt{*First inclusion*}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   758
 apply clarify  
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   759
 apply (erule Ord_linear_lt, assumption) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   760
   apply (blast dest: DPow_imp_subset ltD notE [OF notin_Lset]) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   761
  apply blast 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   762
 apply (blast dest: ltD)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   763
txt{*Opposite inclusion, @{term "succ(x) \<subseteq> DPow(Lset(x)) \<inter> ON"}*}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   764
apply auto
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   765
txt{*Key case: *}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   766
  apply (erule subst, rule Ords_in_DPow [OF Transset_Lset]) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   767
 apply (blast intro: elem_subset_in_DPow dest: OrdmemD elim: equalityE) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   768
apply (blast intro: Ord_in_Ord) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   769
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   770
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   771
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   772
lemma Ord_subset_Lset: "Ord(i) ==> i \<subseteq> Lset(i)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   773
by (subst Ords_of_Lset_eq [symmetric], assumption, fast)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   774
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   775
lemma Ord_in_Lset: "Ord(i) ==> i \<in> Lset(succ(i))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   776
apply (simp add: Lset_succ)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   777
apply (subst Ords_of_Lset_eq [symmetric], assumption, 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   778
       rule Ords_in_DPow [OF Transset_Lset]) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   779
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   780
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   781
subsubsection{* Unions *}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   782
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   783
lemma Union_in_Lset:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   784
     "X \<in> Lset(j) ==> Union(X) \<in> Lset(succ(j))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   785
apply (insert Transset_Lset)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   786
apply (rule LsetI [OF succI1])
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   787
apply (simp add: Transset_def DPow_def) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   788
apply (intro conjI, blast)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   789
txt{*Now to create the formula @{term "\<exists>y. y \<in> X \<and> x \<in> y"} *}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   790
apply (rule_tac x="Cons(X,Nil)" in bexI) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   791
 apply (rule_tac x="Exists(And(Member(0,2), Member(1,0)))" in bexI) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   792
  apply typecheck
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   793
apply (simp add: succ_Un_distrib [symmetric], blast) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   794
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   795
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   796
lemma Union_in_LLimit:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   797
     "[| X: Lset(i);  Limit(i) |] ==> Union(X) : Lset(i)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   798
apply (rule Limit_LsetE, assumption+)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   799
apply (blast intro: Limit_has_succ lt_LsetI Union_in_Lset)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   800
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   801
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   802
subsubsection{* Finite sets and ordered pairs *}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   803
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   804
lemma singleton_in_Lset: "a: Lset(i) ==> {a} : Lset(succ(i))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   805
by (simp add: Lset_succ singleton_in_DPow) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   806
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   807
lemma doubleton_in_Lset:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   808
     "[| a: Lset(i);  b: Lset(i) |] ==> {a,b} : Lset(succ(i))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   809
by (simp add: Lset_succ empty_in_DPow cons_in_DPow) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   810
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   811
lemma Pair_in_Lset:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   812
    "[| a: Lset(i);  b: Lset(i); Ord(i) |] ==> <a,b> : Lset(succ(succ(i)))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   813
apply (unfold Pair_def)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   814
apply (blast intro: doubleton_in_Lset) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   815
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   816
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   817
lemma singleton_in_LLimit:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   818
    "[| a: Lset(i);  Limit(i) |] ==> {a} : Lset(i)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   819
apply (erule Limit_LsetE, assumption)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   820
apply (erule singleton_in_Lset [THEN lt_LsetI])
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   821
apply (blast intro: Limit_has_succ) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   822
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   823
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   824
lemmas Lset_UnI1 = Un_upper1 [THEN Lset_mono [THEN subsetD], standard]
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   825
lemmas Lset_UnI2 = Un_upper2 [THEN Lset_mono [THEN subsetD], standard]
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   826
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   827
text{*Hard work is finding a single j:i such that {a,b}<=Lset(j)*}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   828
lemma doubleton_in_LLimit:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   829
    "[| a: Lset(i);  b: Lset(i);  Limit(i) |] ==> {a,b} : Lset(i)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   830
apply (erule Limit_LsetE, assumption)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   831
apply (erule Limit_LsetE, assumption)
13269
3ba9be497c33 Tidying and introduction of various new theorems
paulson
parents: 13245
diff changeset
   832
apply (blast intro: lt_LsetI [OF doubleton_in_Lset]
3ba9be497c33 Tidying and introduction of various new theorems
paulson
parents: 13245
diff changeset
   833
                    Lset_UnI1 Lset_UnI2 Limit_has_succ Un_least_lt)
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   834
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   835
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   836
lemma Pair_in_LLimit:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   837
    "[| a: Lset(i);  b: Lset(i);  Limit(i) |] ==> <a,b> : Lset(i)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   838
txt{*Infer that a, b occur at ordinals x,xa < i.*}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   839
apply (erule Limit_LsetE, assumption)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   840
apply (erule Limit_LsetE, assumption)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   841
txt{*Infer that succ(succ(x Un xa)) < i *}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   842
apply (blast intro: lt_Ord lt_LsetI [OF Pair_in_Lset]
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   843
                    Lset_UnI1 Lset_UnI2 Limit_has_succ Un_least_lt)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   844
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   845
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   846
lemma product_LLimit: "Limit(i) ==> Lset(i) * Lset(i) <= Lset(i)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   847
by (blast intro: Pair_in_LLimit)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   848
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   849
lemmas Sigma_subset_LLimit = subset_trans [OF Sigma_mono product_LLimit]
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   850
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   851
lemma nat_subset_LLimit: "Limit(i) ==> nat \<subseteq> Lset(i)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   852
by (blast dest: Ord_subset_Lset nat_le_Limit le_imp_subset Limit_is_Ord)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   853
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   854
lemma nat_into_LLimit: "[| n: nat;  Limit(i) |] ==> n : Lset(i)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   855
by (blast intro: nat_subset_LLimit [THEN subsetD])
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   856
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   857
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   858
subsubsection{* Closure under disjoint union *}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   859
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   860
lemmas zero_in_LLimit = Limit_has_0 [THEN ltD, THEN zero_in_Lset, standard]
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   861
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   862
lemma one_in_LLimit: "Limit(i) ==> 1 : Lset(i)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   863
by (blast intro: nat_into_LLimit)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   864
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   865
lemma Inl_in_LLimit:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   866
    "[| a: Lset(i); Limit(i) |] ==> Inl(a) : Lset(i)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   867
apply (unfold Inl_def)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   868
apply (blast intro: zero_in_LLimit Pair_in_LLimit)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   869
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   870
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   871
lemma Inr_in_LLimit:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   872
    "[| b: Lset(i); Limit(i) |] ==> Inr(b) : Lset(i)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   873
apply (unfold Inr_def)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   874
apply (blast intro: one_in_LLimit Pair_in_LLimit)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   875
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   876
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   877
lemma sum_LLimit: "Limit(i) ==> Lset(i) + Lset(i) <= Lset(i)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   878
by (blast intro!: Inl_in_LLimit Inr_in_LLimit)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   879
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   880
lemmas sum_subset_LLimit = subset_trans [OF sum_mono sum_LLimit]
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   881
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   882
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   883
text{*The constructible universe and its rank function*}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   884
constdefs
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   885
  L :: "i=>o" --{*Kunen's definition VI, 1.5, page 167*}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   886
    "L(x) == \<exists>i. Ord(i) & x \<in> Lset(i)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   887
  
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   888
  lrank :: "i=>i" --{*Kunen's definition VI, 1.7*}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   889
    "lrank(x) == \<mu>i. x \<in> Lset(succ(i))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   890
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   891
lemma L_I: "[|x \<in> Lset(i); Ord(i)|] ==> L(x)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   892
by (simp add: L_def, blast)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   893
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   894
lemma L_D: "L(x) ==> \<exists>i. Ord(i) & x \<in> Lset(i)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   895
by (simp add: L_def)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   896
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   897
lemma Ord_lrank [simp]: "Ord(lrank(a))"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   898
by (simp add: lrank_def)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   899
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   900
lemma Lset_lrank_lt [rule_format]: "Ord(i) ==> x \<in> Lset(i) --> lrank(x) < i"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   901
apply (erule trans_induct3)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   902
  apply simp   
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   903
 apply (simp only: lrank_def) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   904
 apply (blast intro: Least_le) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   905
apply (simp_all add: Limit_Lset_eq) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   906
apply (blast intro: ltI Limit_is_Ord lt_trans) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   907
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   908
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   909
text{*Kunen's VI, 1.8, and the proof is much less trivial than the text
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   910
would suggest.  For a start it need the previous lemma, proved by induction.*}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   911
lemma Lset_iff_lrank_lt: "Ord(i) ==> x \<in> Lset(i) <-> L(x) & lrank(x) < i"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   912
apply (simp add: L_def, auto) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   913
 apply (blast intro: Lset_lrank_lt) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   914
 apply (unfold lrank_def) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   915
apply (drule succI1 [THEN Lset_mono_mem, THEN subsetD]) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   916
apply (drule_tac P="\<lambda>i. x \<in> Lset(succ(i))" in LeastI, assumption) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   917
apply (blast intro!: le_imp_subset Lset_mono [THEN subsetD]) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   918
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   919
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   920
lemma Lset_succ_lrank_iff [simp]: "x \<in> Lset(succ(lrank(x))) <-> L(x)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   921
by (simp add: Lset_iff_lrank_lt)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   922
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   923
text{*Kunen's VI, 1.9 (a)*}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   924
lemma lrank_of_Ord: "Ord(i) ==> lrank(i) = i"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   925
apply (unfold lrank_def) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   926
apply (rule Least_equality) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   927
  apply (erule Ord_in_Lset) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   928
 apply assumption
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   929
apply (insert notin_Lset [of i]) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   930
apply (blast intro!: le_imp_subset Lset_mono [THEN subsetD]) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   931
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   932
13245
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
   933
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
   934
lemma Ord_in_L: "Ord(i) ==> L(i)"
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
   935
by (blast intro: Ord_in_Lset L_I)
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
   936
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   937
text{*This is lrank(lrank(a)) = lrank(a) *}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   938
declare Ord_lrank [THEN lrank_of_Ord, simp]
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   939
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   940
text{*Kunen's VI, 1.10 *}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   941
lemma Lset_in_Lset_succ: "Lset(i) \<in> Lset(succ(i))";
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   942
apply (simp add: Lset_succ DPow_def) 
13339
0f89104dd377 Fixed quantified variable name preservation for ball and bex (bounded quants)
paulson
parents: 13328
diff changeset
   943
apply (rule_tac x=Nil in bexI) 
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   944
 apply (rule_tac x="Equal(0,0)" in bexI) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   945
apply auto 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   946
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   947
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   948
lemma lrank_Lset: "Ord(i) ==> lrank(Lset(i)) = i"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   949
apply (unfold lrank_def) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   950
apply (rule Least_equality) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   951
  apply (rule Lset_in_Lset_succ) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   952
 apply assumption
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   953
apply clarify 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   954
apply (subgoal_tac "Lset(succ(ia)) <= Lset(i)")
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   955
 apply (blast dest: mem_irrefl) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   956
apply (blast intro!: le_imp_subset Lset_mono) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   957
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   958
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   959
text{*Kunen's VI, 1.11 *}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   960
lemma Lset_subset_Vset: "Ord(i) ==> Lset(i) <= Vset(i)";
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   961
apply (erule trans_induct)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   962
apply (subst Lset) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   963
apply (subst Vset) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   964
apply (rule UN_mono [OF subset_refl]) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   965
apply (rule subset_trans [OF DPow_subset_Pow]) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   966
apply (rule Pow_mono, blast) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   967
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   968
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   969
text{*Kunen's VI, 1.12 *}
13535
007559e981c7 *** empty log message ***
wenzelm
parents: 13511
diff changeset
   970
lemma Lset_subset_Vset': "i \<in> nat ==> Lset(i) = Vset(i)";
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   971
apply (erule nat_induct)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   972
 apply (simp add: Vfrom_0) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   973
apply (simp add: Lset_succ Vset_succ Finite_Vset Finite_DPow_eq_Pow) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   974
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   975
13291
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   976
text{*Every set of constructible sets is included in some @{term Lset}*} 
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   977
lemma subset_Lset:
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   978
     "(\<forall>x\<in>A. L(x)) ==> \<exists>i. Ord(i) & A \<subseteq> Lset(i)"
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   979
by (rule_tac x = "\<Union>x\<in>A. succ(lrank(x))" in exI, force)
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   980
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   981
lemma subset_LsetE:
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   982
     "[|\<forall>x\<in>A. L(x);
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   983
        !!i. [|Ord(i); A \<subseteq> Lset(i)|] ==> P|]
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   984
      ==> P"
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   985
by (blast dest: subset_Lset) 
a73ab154f75c towards proving separation for L
paulson
parents: 13269
diff changeset
   986
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   987
subsection{*For L to satisfy the ZF axioms*}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   988
13245
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
   989
theorem Union_in_L: "L(X) ==> L(Union(X))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   990
apply (simp add: L_def, clarify) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   991
apply (drule Ord_imp_greater_Limit) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   992
apply (blast intro: lt_LsetI Union_in_LLimit Limit_is_Ord) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   993
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   994
13245
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
   995
theorem doubleton_in_L: "[| L(a); L(b) |] ==> L({a, b})"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   996
apply (simp add: L_def, clarify) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   997
apply (drule Ord2_imp_greater_Limit, assumption) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   998
apply (blast intro: lt_LsetI doubleton_in_LLimit Limit_is_Ord) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
   999
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
  1000
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
  1001
subsubsection{*For L to satisfy Powerset *}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
  1002
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
  1003
lemma LPow_env_typing:
13511
e4b129eaa9c6 new proof needed now
paulson
parents: 13505
diff changeset
  1004
    "[| y : Lset(i); Ord(i); y \<subseteq> X |] 
e4b129eaa9c6 new proof needed now
paulson
parents: 13505
diff changeset
  1005
     ==> \<exists>z \<in> Pow(X). y \<in> Lset(succ(lrank(z)))"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
  1006
by (auto intro: L_I iff: Lset_succ_lrank_iff) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
  1007
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
  1008
lemma LPow_in_Lset:
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
  1009
     "[|X \<in> Lset(i); Ord(i)|] ==> \<exists>j. Ord(j) & {y \<in> Pow(X). L(y)} \<in> Lset(j)"
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
  1010
apply (rule_tac x="succ(\<Union>y \<in> Pow(X). succ(lrank(y)))" in exI)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
  1011
apply simp 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
  1012
apply (rule LsetI [OF succI1])
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
  1013
apply (simp add: DPow_def) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
  1014
apply (intro conjI, clarify) 
13511
e4b129eaa9c6 new proof needed now
paulson
parents: 13505
diff changeset
  1015
 apply (rule_tac a=x in UN_I, simp+)  
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
  1016
txt{*Now to create the formula @{term "y \<subseteq> X"} *}
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
  1017
apply (rule_tac x="Cons(X,Nil)" in bexI) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
  1018
 apply (rule_tac x="subset_fm(0,1)" in bexI) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
  1019
  apply typecheck
13511
e4b129eaa9c6 new proof needed now
paulson
parents: 13505
diff changeset
  1020
 apply (rule conjI) 
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
  1021
apply (simp add: succ_Un_distrib [symmetric]) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
  1022
apply (rule equality_iffI) 
13511
e4b129eaa9c6 new proof needed now
paulson
parents: 13505
diff changeset
  1023
apply (simp add: Transset_UN [OF Transset_Lset] LPow_env_typing)
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
  1024
apply (auto intro: L_I iff: Lset_succ_lrank_iff) 
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
  1025
done
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
  1026
13245
714f7a423a15 development and tweaks
paulson
parents: 13223
diff changeset
  1027
theorem LPow_in_L: "L(X) ==> L({y \<in> Pow(X). L(y)})"
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
  1028
by (blast intro: L_I dest: L_D LPow_in_Lset)
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
  1029
13385
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1030
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1031
subsection{*Eliminating @{term arity} from the Definition of @{term Lset}*}
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1032
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1033
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1034
lemma nth_zero_eq_0: "n \<in> nat ==> nth(n,[0]) = 0"
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1035
by (induct_tac n, auto)
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1036
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1037
lemma sats_app_0_iff [rule_format]:
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1038
  "[| p \<in> formula; 0 \<in> A |]
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1039
   ==> \<forall>env \<in> list(A). sats(A,p, env@[0]) <-> sats(A,p,env)"
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1040
apply (induct_tac p)
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1041
apply (simp_all del: app_Cons add: app_Cons [symmetric]
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1042
		add: nth_zero_eq_0 nth_append not_lt_iff_le nth_eq_0)
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1043
done
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1044
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1045
lemma sats_app_zeroes_iff:
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1046
  "[| p \<in> formula; 0 \<in> A; env \<in> list(A); n \<in> nat |]
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1047
   ==> sats(A,p,env @ repeat(0,n)) <-> sats(A,p,env)"
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1048
apply (induct_tac n, simp) 
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1049
apply (simp del: repeat.simps
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1050
            add: repeat_succ_app sats_app_0_iff app_assoc [symmetric]) 
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1051
done
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1052
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1053
lemma exists_bigger_env:
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1054
  "[| p \<in> formula; 0 \<in> A; env \<in> list(A) |]
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1055
   ==> \<exists>env' \<in> list(A). arity(p) \<le> succ(length(env')) & 
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1056
              (\<forall>a\<in>A. sats(A,p,Cons(a,env')) <-> sats(A,p,Cons(a,env)))"
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1057
apply (rule_tac x="env @ repeat(0,arity(p))" in bexI) 
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1058
apply (simp del: app_Cons add: app_Cons [symmetric]
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1059
	    add: length_repeat sats_app_zeroes_iff, typecheck)
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1060
done
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1061
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1062
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1063
text{*A simpler version of @{term DPow}: no arity check!*}
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1064
constdefs DPow' :: "i => i"
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1065
  "DPow'(A) == {X \<in> Pow(A). 
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1066
                \<exists>env \<in> list(A). \<exists>p \<in> formula. 
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1067
                    X = {x\<in>A. sats(A, p, Cons(x,env))}}"
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1068
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1069
lemma DPow_subset_DPow': "DPow(A) <= DPow'(A)";
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1070
by (simp add: DPow_def DPow'_def, blast)
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1071
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1072
lemma DPow'_0: "DPow'(0) = {0}"
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1073
by (auto simp add: DPow'_def)
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1074
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1075
lemma DPow'_subset_DPow: "0 \<in> A ==> DPow'(A) \<subseteq> DPow(A)"
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1076
apply (auto simp add: DPow'_def DPow_def) 
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1077
apply (frule exists_bigger_env, assumption+, force)  
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1078
done
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1079
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1080
lemma DPow_eq_DPow': "Transset(A) ==> DPow(A) = DPow'(A)"
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1081
apply (drule Transset_0_disj) 
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1082
apply (erule disjE) 
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1083
 apply (simp add: DPow'_0 DPow_0) 
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1084
apply (rule equalityI)
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1085
 apply (rule DPow_subset_DPow') 
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1086
apply (erule DPow'_subset_DPow) 
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1087
done
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1088
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1089
text{*And thus we can relativize @{term Lset} without bothering with
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1090
      @{term arity} and @{term length}*}
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1091
lemma Lset_eq_transrec_DPow': "Lset(i) = transrec(i, %x f. \<Union>y\<in>x. DPow'(f`y))"
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1092
apply (rule_tac a=i in eps_induct)
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1093
apply (subst Lset)
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1094
apply (subst transrec)
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1095
apply (simp only: DPow_eq_DPow' [OF Transset_Lset], simp) 
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1096
done
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1097
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1098
text{*With this rule we can specify @{term p} later and don't worry about
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1099
      arities at all!*}
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1100
lemma DPow_LsetI [rule_format]:
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1101
  "[|\<forall>x\<in>Lset(i). P(x) <-> sats(Lset(i), p, Cons(x,env));
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1102
     env \<in> list(Lset(i));  p \<in> formula|]
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1103
   ==> {x\<in>Lset(i). P(x)} \<in> DPow(Lset(i))"
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1104
by (simp add: DPow_eq_DPow' [OF Transset_Lset] DPow'_def, blast) 
31df66ca0780 Expressing Lset and L without using length and arity; simplifies Separation
paulson
parents: 13339
diff changeset
  1105
13223
45be08fbdcff new theory of inner models
paulson
parents:
diff changeset
  1106
end