31379
|
1 |
|
|
2 |
(* Author: Andreas Lochbihler, Uni Karlsruhe *)
|
|
3 |
|
|
4 |
header {* Almost everywhere constant functions *}
|
|
5 |
|
|
6 |
theory Fin_Fun
|
|
7 |
imports Main Infinite_Set Enum
|
|
8 |
begin
|
|
9 |
|
|
10 |
text {*
|
|
11 |
This theory defines functions which are constant except for finitely
|
|
12 |
many points (FinFun) and introduces a type finfin along with a
|
|
13 |
number of operators for them. The code generator is set up such that
|
|
14 |
such functions can be represented as data in the generated code and
|
|
15 |
all operators are executable.
|
|
16 |
|
|
17 |
For details, see Formalising FinFuns - Generating Code for Functions as Data by A. Lochbihler in TPHOLs 2009.
|
|
18 |
*}
|
|
19 |
|
31380
|
20 |
|
|
21 |
subsection {* The @{text "map_default"} operation *}
|
31379
|
22 |
|
|
23 |
definition map_default :: "'b \<Rightarrow> ('a \<rightharpoonup> 'b) \<Rightarrow> 'a \<Rightarrow> 'b"
|
|
24 |
where "map_default b f a \<equiv> case f a of None \<Rightarrow> b | Some b' \<Rightarrow> b'"
|
|
25 |
|
|
26 |
lemma map_default_delete [simp]:
|
|
27 |
"map_default b (f(a := None)) = (map_default b f)(a := b)"
|
|
28 |
by(simp add: map_default_def expand_fun_eq)
|
|
29 |
|
|
30 |
lemma map_default_insert:
|
|
31 |
"map_default b (f(a \<mapsto> b')) = (map_default b f)(a := b')"
|
|
32 |
by(simp add: map_default_def expand_fun_eq)
|
|
33 |
|
|
34 |
lemma map_default_empty [simp]: "map_default b empty = (\<lambda>a. b)"
|
|
35 |
by(simp add: expand_fun_eq map_default_def)
|
|
36 |
|
|
37 |
lemma map_default_inject:
|
|
38 |
fixes g g' :: "'a \<rightharpoonup> 'b"
|
|
39 |
assumes infin_eq: "\<not> finite (UNIV :: 'a set) \<or> b = b'"
|
|
40 |
and fin: "finite (dom g)" and b: "b \<notin> ran g"
|
|
41 |
and fin': "finite (dom g')" and b': "b' \<notin> ran g'"
|
|
42 |
and eq': "map_default b g = map_default b' g'"
|
|
43 |
shows "b = b'" "g = g'"
|
|
44 |
proof -
|
|
45 |
from infin_eq show bb': "b = b'"
|
|
46 |
proof
|
|
47 |
assume infin: "\<not> finite (UNIV :: 'a set)"
|
|
48 |
from fin fin' have "finite (dom g \<union> dom g')" by auto
|
|
49 |
with infin have "UNIV - (dom g \<union> dom g') \<noteq> {}" by(auto dest: finite_subset)
|
|
50 |
then obtain a where a: "a \<notin> dom g \<union> dom g'" by auto
|
|
51 |
hence "map_default b g a = b" "map_default b' g' a = b'" by(auto simp add: map_default_def)
|
|
52 |
with eq' show "b = b'" by simp
|
|
53 |
qed
|
|
54 |
|
|
55 |
show "g = g'"
|
|
56 |
proof
|
|
57 |
fix x
|
|
58 |
show "g x = g' x"
|
|
59 |
proof(cases "g x")
|
|
60 |
case None
|
|
61 |
hence "map_default b g x = b" by(simp add: map_default_def)
|
|
62 |
with bb' eq' have "map_default b' g' x = b'" by simp
|
|
63 |
with b' have "g' x = None" by(simp add: map_default_def ran_def split: option.split_asm)
|
|
64 |
with None show ?thesis by simp
|
|
65 |
next
|
|
66 |
case (Some c)
|
|
67 |
with b have cb: "c \<noteq> b" by(auto simp add: ran_def)
|
|
68 |
moreover from Some have "map_default b g x = c" by(simp add: map_default_def)
|
|
69 |
with eq' have "map_default b' g' x = c" by simp
|
|
70 |
ultimately have "g' x = Some c" using b' bb' by(auto simp add: map_default_def split: option.splits)
|
|
71 |
with Some show ?thesis by simp
|
|
72 |
qed
|
|
73 |
qed
|
|
74 |
qed
|
|
75 |
|
|
76 |
subsection {* The finfun type *}
|
|
77 |
|
|
78 |
typedef ('a,'b) finfun = "{f::'a\<Rightarrow>'b. \<exists>b. finite {a. f a \<noteq> b}}"
|
31633
|
79 |
proof -
|
|
80 |
have "\<exists>f. finite {x. f x \<noteq> undefined}"
|
|
81 |
proof
|
|
82 |
show "finite {x. (\<lambda>y. undefined) x \<noteq> undefined}" by auto
|
|
83 |
qed
|
|
84 |
then show ?thesis by auto
|
|
85 |
qed
|
31379
|
86 |
|
|
87 |
syntax
|
|
88 |
"finfun" :: "type \<Rightarrow> type \<Rightarrow> type" ("(_ \<Rightarrow>\<^isub>f /_)" [22, 21] 21)
|
|
89 |
|
|
90 |
lemma fun_upd_finfun: "y(a := b) \<in> finfun \<longleftrightarrow> y \<in> finfun"
|
|
91 |
proof -
|
|
92 |
{ fix b'
|
|
93 |
have "finite {a'. (y(a := b)) a' \<noteq> b'} = finite {a'. y a' \<noteq> b'}"
|
|
94 |
proof(cases "b = b'")
|
|
95 |
case True
|
|
96 |
hence "{a'. (y(a := b)) a' \<noteq> b'} = {a'. y a' \<noteq> b'} - {a}" by auto
|
|
97 |
thus ?thesis by simp
|
|
98 |
next
|
|
99 |
case False
|
|
100 |
hence "{a'. (y(a := b)) a' \<noteq> b'} = insert a {a'. y a' \<noteq> b'}" by auto
|
|
101 |
thus ?thesis by simp
|
|
102 |
qed }
|
|
103 |
thus ?thesis unfolding finfun_def by blast
|
|
104 |
qed
|
|
105 |
|
|
106 |
lemma const_finfun: "(\<lambda>x. a) \<in> finfun"
|
|
107 |
by(auto simp add: finfun_def)
|
|
108 |
|
|
109 |
lemma finfun_left_compose:
|
|
110 |
assumes "y \<in> finfun"
|
|
111 |
shows "g \<circ> y \<in> finfun"
|
|
112 |
proof -
|
|
113 |
from assms obtain b where "finite {a. y a \<noteq> b}"
|
|
114 |
unfolding finfun_def by blast
|
|
115 |
hence "finite {c. g (y c) \<noteq> g b}"
|
|
116 |
proof(induct x\<equiv>"{a. y a \<noteq> b}" arbitrary: y)
|
|
117 |
case empty
|
|
118 |
hence "y = (\<lambda>a. b)" by(auto intro: ext)
|
|
119 |
thus ?case by(simp)
|
|
120 |
next
|
|
121 |
case (insert x F)
|
|
122 |
note IH = `\<And>y. F = {a. y a \<noteq> b} \<Longrightarrow> finite {c. g (y c) \<noteq> g b}`
|
|
123 |
from `insert x F = {a. y a \<noteq> b}` `x \<notin> F`
|
|
124 |
have F: "F = {a. (y(x := b)) a \<noteq> b}" by(auto)
|
|
125 |
show ?case
|
|
126 |
proof(cases "g (y x) = g b")
|
|
127 |
case True
|
|
128 |
hence "{c. g ((y(x := b)) c) \<noteq> g b} = {c. g (y c) \<noteq> g b}" by auto
|
|
129 |
with IH[OF F] show ?thesis by simp
|
|
130 |
next
|
|
131 |
case False
|
|
132 |
hence "{c. g (y c) \<noteq> g b} = insert x {c. g ((y(x := b)) c) \<noteq> g b}" by auto
|
|
133 |
with IH[OF F] show ?thesis by(simp)
|
|
134 |
qed
|
|
135 |
qed
|
|
136 |
thus ?thesis unfolding finfun_def by auto
|
|
137 |
qed
|
|
138 |
|
|
139 |
lemma assumes "y \<in> finfun"
|
|
140 |
shows fst_finfun: "fst \<circ> y \<in> finfun"
|
|
141 |
and snd_finfun: "snd \<circ> y \<in> finfun"
|
|
142 |
proof -
|
|
143 |
from assms obtain b c where bc: "finite {a. y a \<noteq> (b, c)}"
|
|
144 |
unfolding finfun_def by auto
|
|
145 |
have "{a. fst (y a) \<noteq> b} \<subseteq> {a. y a \<noteq> (b, c)}"
|
|
146 |
and "{a. snd (y a) \<noteq> c} \<subseteq> {a. y a \<noteq> (b, c)}" by auto
|
|
147 |
hence "finite {a. fst (y a) \<noteq> b}"
|
|
148 |
and "finite {a. snd (y a) \<noteq> c}" using bc by(auto intro: finite_subset)
|
|
149 |
thus "fst \<circ> y \<in> finfun" "snd \<circ> y \<in> finfun"
|
|
150 |
unfolding finfun_def by auto
|
|
151 |
qed
|
|
152 |
|
|
153 |
lemma map_of_finfun: "map_of xs \<in> finfun"
|
|
154 |
unfolding finfun_def
|
|
155 |
by(induct xs)(auto simp add: Collect_neg_eq Collect_conj_eq Collect_imp_eq intro: finite_subset)
|
|
156 |
|
|
157 |
lemma Diag_finfun: "(\<lambda>x. (f x, g x)) \<in> finfun \<longleftrightarrow> f \<in> finfun \<and> g \<in> finfun"
|
|
158 |
by(auto intro: finite_subset simp add: Collect_neg_eq Collect_imp_eq Collect_conj_eq finfun_def)
|
|
159 |
|
|
160 |
lemma finfun_right_compose:
|
|
161 |
assumes g: "g \<in> finfun" and inj: "inj f"
|
|
162 |
shows "g o f \<in> finfun"
|
|
163 |
proof -
|
|
164 |
from g obtain b where b: "finite {a. g a \<noteq> b}" unfolding finfun_def by blast
|
|
165 |
moreover have "f ` {a. g (f a) \<noteq> b} \<subseteq> {a. g a \<noteq> b}" by auto
|
|
166 |
moreover from inj have "inj_on f {a. g (f a) \<noteq> b}" by(rule subset_inj_on) blast
|
|
167 |
ultimately have "finite {a. g (f a) \<noteq> b}"
|
|
168 |
by(blast intro: finite_imageD[where f=f] finite_subset)
|
|
169 |
thus ?thesis unfolding finfun_def by auto
|
|
170 |
qed
|
|
171 |
|
|
172 |
lemma finfun_curry:
|
|
173 |
assumes fin: "f \<in> finfun"
|
|
174 |
shows "curry f \<in> finfun" "curry f a \<in> finfun"
|
|
175 |
proof -
|
|
176 |
from fin obtain c where c: "finite {ab. f ab \<noteq> c}" unfolding finfun_def by blast
|
|
177 |
moreover have "{a. \<exists>b. f (a, b) \<noteq> c} = fst ` {ab. f ab \<noteq> c}" by(force)
|
|
178 |
hence "{a. curry f a \<noteq> (\<lambda>b. c)} = fst ` {ab. f ab \<noteq> c}"
|
|
179 |
by(auto simp add: curry_def expand_fun_eq)
|
|
180 |
ultimately have "finite {a. curry f a \<noteq> (\<lambda>b. c)}" by simp
|
|
181 |
thus "curry f \<in> finfun" unfolding finfun_def by blast
|
|
182 |
|
|
183 |
have "snd ` {ab. f ab \<noteq> c} = {b. \<exists>a. f (a, b) \<noteq> c}" by(force)
|
|
184 |
hence "{b. f (a, b) \<noteq> c} \<subseteq> snd ` {ab. f ab \<noteq> c}" by auto
|
|
185 |
hence "finite {b. f (a, b) \<noteq> c}" by(rule finite_subset)(rule finite_imageI[OF c])
|
|
186 |
thus "curry f a \<in> finfun" unfolding finfun_def by auto
|
|
187 |
qed
|
|
188 |
|
|
189 |
lemmas finfun_simp =
|
|
190 |
fst_finfun snd_finfun Abs_finfun_inverse Rep_finfun_inverse Abs_finfun_inject Rep_finfun_inject Diag_finfun finfun_curry
|
|
191 |
lemmas finfun_iff = const_finfun fun_upd_finfun Rep_finfun map_of_finfun
|
|
192 |
lemmas finfun_intro = finfun_left_compose fst_finfun snd_finfun
|
|
193 |
|
|
194 |
lemma Abs_finfun_inject_finite:
|
|
195 |
fixes x y :: "'a \<Rightarrow> 'b"
|
|
196 |
assumes fin: "finite (UNIV :: 'a set)"
|
|
197 |
shows "Abs_finfun x = Abs_finfun y \<longleftrightarrow> x = y"
|
|
198 |
proof
|
|
199 |
assume "Abs_finfun x = Abs_finfun y"
|
|
200 |
moreover have "x \<in> finfun" "y \<in> finfun" unfolding finfun_def
|
|
201 |
by(auto intro: finite_subset[OF _ fin])
|
|
202 |
ultimately show "x = y" by(simp add: Abs_finfun_inject)
|
|
203 |
qed simp
|
|
204 |
|
|
205 |
lemma Abs_finfun_inject_finite_class:
|
|
206 |
fixes x y :: "('a :: finite) \<Rightarrow> 'b"
|
|
207 |
shows "Abs_finfun x = Abs_finfun y \<longleftrightarrow> x = y"
|
|
208 |
using finite_UNIV
|
|
209 |
by(simp add: Abs_finfun_inject_finite)
|
|
210 |
|
|
211 |
lemma Abs_finfun_inj_finite:
|
|
212 |
assumes fin: "finite (UNIV :: 'a set)"
|
|
213 |
shows "inj (Abs_finfun :: ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow>\<^isub>f 'b)"
|
|
214 |
proof(rule inj_onI)
|
|
215 |
fix x y :: "'a \<Rightarrow> 'b"
|
|
216 |
assume "Abs_finfun x = Abs_finfun y"
|
|
217 |
moreover have "x \<in> finfun" "y \<in> finfun" unfolding finfun_def
|
|
218 |
by(auto intro: finite_subset[OF _ fin])
|
|
219 |
ultimately show "x = y" by(simp add: Abs_finfun_inject)
|
|
220 |
qed
|
|
221 |
|
|
222 |
declare finfun_simp [simp] finfun_iff [iff] finfun_intro [intro]
|
|
223 |
|
|
224 |
lemma Abs_finfun_inverse_finite:
|
|
225 |
fixes x :: "'a \<Rightarrow> 'b"
|
|
226 |
assumes fin: "finite (UNIV :: 'a set)"
|
|
227 |
shows "Rep_finfun (Abs_finfun x) = x"
|
|
228 |
proof -
|
|
229 |
from fin have "x \<in> finfun"
|
|
230 |
by(auto simp add: finfun_def intro: finite_subset)
|
|
231 |
thus ?thesis by simp
|
|
232 |
qed
|
|
233 |
|
|
234 |
declare finfun_simp [simp del] finfun_iff [iff del] finfun_intro [rule del]
|
|
235 |
|
|
236 |
lemma Abs_finfun_inverse_finite_class:
|
|
237 |
fixes x :: "('a :: finite) \<Rightarrow> 'b"
|
|
238 |
shows "Rep_finfun (Abs_finfun x) = x"
|
|
239 |
using finite_UNIV by(simp add: Abs_finfun_inverse_finite)
|
|
240 |
|
|
241 |
lemma finfun_eq_finite_UNIV: "finite (UNIV :: 'a set) \<Longrightarrow> (finfun :: ('a \<Rightarrow> 'b) set) = UNIV"
|
|
242 |
unfolding finfun_def by(auto intro: finite_subset)
|
|
243 |
|
|
244 |
lemma finfun_finite_UNIV_class: "finfun = (UNIV :: ('a :: finite \<Rightarrow> 'b) set)"
|
|
245 |
by(simp add: finfun_eq_finite_UNIV)
|
|
246 |
|
|
247 |
lemma map_default_in_finfun:
|
|
248 |
assumes fin: "finite (dom f)"
|
|
249 |
shows "map_default b f \<in> finfun"
|
|
250 |
unfolding finfun_def
|
|
251 |
proof(intro CollectI exI)
|
|
252 |
from fin show "finite {a. map_default b f a \<noteq> b}"
|
|
253 |
by(auto simp add: map_default_def dom_def Collect_conj_eq split: option.splits)
|
|
254 |
qed
|
|
255 |
|
|
256 |
lemma finfun_cases_map_default:
|
|
257 |
obtains b g where "f = Abs_finfun (map_default b g)" "finite (dom g)" "b \<notin> ran g"
|
|
258 |
proof -
|
|
259 |
obtain y where f: "f = Abs_finfun y" and y: "y \<in> finfun" by(cases f)
|
|
260 |
from y obtain b where b: "finite {a. y a \<noteq> b}" unfolding finfun_def by auto
|
|
261 |
let ?g = "(\<lambda>a. if y a = b then None else Some (y a))"
|
|
262 |
have "map_default b ?g = y" by(simp add: expand_fun_eq map_default_def)
|
|
263 |
with f have "f = Abs_finfun (map_default b ?g)" by simp
|
|
264 |
moreover from b have "finite (dom ?g)" by(auto simp add: dom_def)
|
|
265 |
moreover have "b \<notin> ran ?g" by(auto simp add: ran_def)
|
|
266 |
ultimately show ?thesis by(rule that)
|
|
267 |
qed
|
|
268 |
|
|
269 |
|
|
270 |
subsection {* Kernel functions for type @{typ "'a \<Rightarrow>\<^isub>f 'b"} *}
|
|
271 |
|
|
272 |
definition finfun_const :: "'b \<Rightarrow> 'a \<Rightarrow>\<^isub>f 'b" ("\<lambda>\<^isup>f/ _" [0] 1)
|
|
273 |
where [code del]: "(\<lambda>\<^isup>f b) = Abs_finfun (\<lambda>x. b)"
|
|
274 |
|
|
275 |
definition finfun_update :: "'a \<Rightarrow>\<^isub>f 'b \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow>\<^isub>f 'b" ("_'(\<^sup>f/ _ := _')" [1000,0,0] 1000)
|
|
276 |
where [code del]: "f(\<^sup>fa := b) = Abs_finfun ((Rep_finfun f)(a := b))"
|
|
277 |
|
|
278 |
declare finfun_simp [simp] finfun_iff [iff] finfun_intro [intro]
|
|
279 |
|
|
280 |
lemma finfun_update_twist: "a \<noteq> a' \<Longrightarrow> f(\<^sup>f a := b)(\<^sup>f a' := b') = f(\<^sup>f a' := b')(\<^sup>f a := b)"
|
|
281 |
by(simp add: finfun_update_def fun_upd_twist)
|
|
282 |
|
|
283 |
lemma finfun_update_twice [simp]:
|
|
284 |
"finfun_update (finfun_update f a b) a b' = finfun_update f a b'"
|
|
285 |
by(simp add: finfun_update_def)
|
|
286 |
|
|
287 |
lemma finfun_update_const_same: "(\<lambda>\<^isup>f b)(\<^sup>f a := b) = (\<lambda>\<^isup>f b)"
|
|
288 |
by(simp add: finfun_update_def finfun_const_def expand_fun_eq)
|
|
289 |
|
|
290 |
declare finfun_simp [simp del] finfun_iff [iff del] finfun_intro [rule del]
|
|
291 |
|
|
292 |
subsection {* Code generator setup *}
|
|
293 |
|
|
294 |
definition finfun_update_code :: "'a \<Rightarrow>\<^isub>f 'b \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow>\<^isub>f 'b" ("_'(\<^sup>f\<^sup>c/ _ := _')" [1000,0,0] 1000)
|
|
295 |
where [simp, code del]: "finfun_update_code = finfun_update"
|
|
296 |
|
|
297 |
code_datatype finfun_const finfun_update_code
|
|
298 |
|
|
299 |
lemma finfun_update_const_code [code]:
|
|
300 |
"(\<lambda>\<^isup>f b)(\<^sup>f a := b') = (if b = b' then (\<lambda>\<^isup>f b) else finfun_update_code (\<lambda>\<^isup>f b) a b')"
|
|
301 |
by(simp add: finfun_update_const_same)
|
|
302 |
|
|
303 |
lemma finfun_update_update_code [code]:
|
|
304 |
"(finfun_update_code f a b)(\<^sup>f a' := b') = (if a = a' then f(\<^sup>f a := b') else finfun_update_code (f(\<^sup>f a' := b')) a b)"
|
|
305 |
by(simp add: finfun_update_twist)
|
|
306 |
|
|
307 |
|
|
308 |
subsection {* Setup for quickcheck *}
|
|
309 |
|
|
310 |
notation fcomp (infixl "o>" 60)
|
|
311 |
notation scomp (infixl "o\<rightarrow>" 60)
|
|
312 |
|
|
313 |
definition (in term_syntax) valtermify_finfun_const ::
|
|
314 |
"'b\<Colon>typerep \<times> (unit \<Rightarrow> Code_Eval.term) \<Rightarrow> ('a\<Colon>typerep \<Rightarrow>\<^isub>f 'b) \<times> (unit \<Rightarrow> Code_Eval.term)" where
|
|
315 |
"valtermify_finfun_const y = Code_Eval.valtermify finfun_const {\<cdot>} y"
|
|
316 |
|
|
317 |
definition (in term_syntax) valtermify_finfun_update_code ::
|
|
318 |
"'a\<Colon>typerep \<times> (unit \<Rightarrow> Code_Eval.term) \<Rightarrow> 'b\<Colon>typerep \<times> (unit \<Rightarrow> Code_Eval.term) \<Rightarrow> ('a \<Rightarrow>\<^isub>f 'b) \<times> (unit \<Rightarrow> Code_Eval.term) \<Rightarrow> ('a \<Rightarrow>\<^isub>f 'b) \<times> (unit \<Rightarrow> Code_Eval.term)" where
|
|
319 |
"valtermify_finfun_update_code x y f = Code_Eval.valtermify finfun_update_code {\<cdot>} f {\<cdot>} x {\<cdot>} y"
|
|
320 |
|
|
321 |
instantiation finfun :: (random, random) random
|
|
322 |
begin
|
|
323 |
|
31633
|
324 |
primrec random_finfun_aux :: "code_numeral \<Rightarrow> code_numeral \<Rightarrow> Random.seed \<Rightarrow> ('a \<Rightarrow>\<^isub>f 'b \<times> (unit \<Rightarrow> Code_Eval.term)) \<times> Random.seed" where
|
|
325 |
"random_finfun_aux 0 j = Quickcheck.collapse (Random.select_weight
|
31644
|
326 |
[(1, Quickcheck.random j o\<rightarrow> (\<lambda>y. Pair (valtermify_finfun_const y)))])"
|
31633
|
327 |
| "random_finfun_aux (Suc_code_numeral i) j = Quickcheck.collapse (Random.select_weight
|
31644
|
328 |
[(Suc_code_numeral i, Quickcheck.random j o\<rightarrow> (\<lambda>x. Quickcheck.random j o\<rightarrow> (\<lambda>y. random_finfun_aux i j o\<rightarrow> (\<lambda>f. Pair (valtermify_finfun_update_code x y f))))),
|
|
329 |
(1, Quickcheck.random j o\<rightarrow> (\<lambda>y. Pair (valtermify_finfun_const y)))])"
|
31633
|
330 |
|
31379
|
331 |
definition
|
31641
|
332 |
"Quickcheck.random i = random_finfun_aux i i"
|
31379
|
333 |
|
|
334 |
instance ..
|
|
335 |
|
|
336 |
end
|
|
337 |
|
31633
|
338 |
lemma random_finfun_aux_code [code]:
|
|
339 |
"random_finfun_aux i j = Quickcheck.collapse (Random.select_weight
|
31644
|
340 |
[(i, Quickcheck.random j o\<rightarrow> (\<lambda>x. Quickcheck.random j o\<rightarrow> (\<lambda>y. random_finfun_aux (i - 1) j o\<rightarrow> (\<lambda>f. Pair (valtermify_finfun_update_code x y f))))),
|
|
341 |
(1, Quickcheck.random j o\<rightarrow> (\<lambda>y. Pair (valtermify_finfun_const y)))])"
|
31379
|
342 |
apply (cases i rule: code_numeral.exhaust)
|
31633
|
343 |
apply (simp_all only: random_finfun_aux.simps code_numeral_zero_minus_one Suc_code_numeral_minus_one)
|
|
344 |
apply (subst select_weight_cons_zero) apply (simp only:)
|
31379
|
345 |
done
|
|
346 |
|
|
347 |
no_notation fcomp (infixl "o>" 60)
|
|
348 |
no_notation scomp (infixl "o\<rightarrow>" 60)
|
|
349 |
|
|
350 |
|
|
351 |
subsection {* @{text "finfun_update"} as instance of @{text "fun_left_comm"} *}
|
|
352 |
|
|
353 |
declare finfun_simp [simp] finfun_iff [iff] finfun_intro [intro]
|
|
354 |
|
|
355 |
interpretation finfun_update: fun_left_comm "\<lambda>a f. f(\<^sup>f a :: 'a := b')"
|
|
356 |
proof
|
|
357 |
fix a' a :: 'a
|
|
358 |
fix b
|
|
359 |
have "(Rep_finfun b)(a := b', a' := b') = (Rep_finfun b)(a' := b', a := b')"
|
|
360 |
by(cases "a = a'")(auto simp add: fun_upd_twist)
|
|
361 |
thus "b(\<^sup>f a := b')(\<^sup>f a' := b') = b(\<^sup>f a' := b')(\<^sup>f a := b')"
|
|
362 |
by(auto simp add: finfun_update_def fun_upd_twist)
|
|
363 |
qed
|
|
364 |
|
|
365 |
lemma fold_finfun_update_finite_univ:
|
|
366 |
assumes fin: "finite (UNIV :: 'a set)"
|
|
367 |
shows "fold (\<lambda>a f. f(\<^sup>f a := b')) (\<lambda>\<^isup>f b) (UNIV :: 'a set) = (\<lambda>\<^isup>f b')"
|
|
368 |
proof -
|
|
369 |
{ fix A :: "'a set"
|
|
370 |
from fin have "finite A" by(auto intro: finite_subset)
|
|
371 |
hence "fold (\<lambda>a f. f(\<^sup>f a := b')) (\<lambda>\<^isup>f b) A = Abs_finfun (\<lambda>a. if a \<in> A then b' else b)"
|
|
372 |
proof(induct)
|
|
373 |
case (insert x F)
|
|
374 |
have "(\<lambda>a. if a = x then b' else (if a \<in> F then b' else b)) = (\<lambda>a. if a = x \<or> a \<in> F then b' else b)"
|
|
375 |
by(auto intro: ext)
|
|
376 |
with insert show ?case
|
|
377 |
by(simp add: finfun_const_def fun_upd_def)(simp add: finfun_update_def Abs_finfun_inverse_finite[OF fin] fun_upd_def)
|
|
378 |
qed(simp add: finfun_const_def) }
|
|
379 |
thus ?thesis by(simp add: finfun_const_def)
|
|
380 |
qed
|
|
381 |
|
|
382 |
|
|
383 |
subsection {* Default value for FinFuns *}
|
|
384 |
|
|
385 |
definition finfun_default_aux :: "('a \<Rightarrow> 'b) \<Rightarrow> 'b"
|
|
386 |
where [code del]: "finfun_default_aux f = (if finite (UNIV :: 'a set) then arbitrary else THE b. finite {a. f a \<noteq> b})"
|
|
387 |
|
|
388 |
lemma finfun_default_aux_infinite:
|
|
389 |
fixes f :: "'a \<Rightarrow> 'b"
|
|
390 |
assumes infin: "infinite (UNIV :: 'a set)"
|
|
391 |
and fin: "finite {a. f a \<noteq> b}"
|
|
392 |
shows "finfun_default_aux f = b"
|
|
393 |
proof -
|
|
394 |
let ?B = "{a. f a \<noteq> b}"
|
|
395 |
from fin have "(THE b. finite {a. f a \<noteq> b}) = b"
|
|
396 |
proof(rule the_equality)
|
|
397 |
fix b'
|
|
398 |
assume "finite {a. f a \<noteq> b'}" (is "finite ?B'")
|
|
399 |
with infin fin have "UNIV - (?B' \<union> ?B) \<noteq> {}" by(auto dest: finite_subset)
|
|
400 |
then obtain a where a: "a \<notin> ?B' \<union> ?B" by auto
|
|
401 |
thus "b' = b" by auto
|
|
402 |
qed
|
|
403 |
thus ?thesis using infin by(simp add: finfun_default_aux_def)
|
|
404 |
qed
|
|
405 |
|
|
406 |
|
|
407 |
lemma finite_finfun_default_aux:
|
|
408 |
fixes f :: "'a \<Rightarrow> 'b"
|
|
409 |
assumes fin: "f \<in> finfun"
|
|
410 |
shows "finite {a. f a \<noteq> finfun_default_aux f}"
|
|
411 |
proof(cases "finite (UNIV :: 'a set)")
|
|
412 |
case True thus ?thesis using fin
|
|
413 |
by(auto simp add: finfun_def finfun_default_aux_def intro: finite_subset)
|
|
414 |
next
|
|
415 |
case False
|
|
416 |
from fin obtain b where b: "finite {a. f a \<noteq> b}" (is "finite ?B")
|
|
417 |
unfolding finfun_def by blast
|
|
418 |
with False show ?thesis by(simp add: finfun_default_aux_infinite)
|
|
419 |
qed
|
|
420 |
|
|
421 |
lemma finfun_default_aux_update_const:
|
|
422 |
fixes f :: "'a \<Rightarrow> 'b"
|
|
423 |
assumes fin: "f \<in> finfun"
|
|
424 |
shows "finfun_default_aux (f(a := b)) = finfun_default_aux f"
|
|
425 |
proof(cases "finite (UNIV :: 'a set)")
|
|
426 |
case False
|
|
427 |
from fin obtain b' where b': "finite {a. f a \<noteq> b'}" unfolding finfun_def by blast
|
|
428 |
hence "finite {a'. (f(a := b)) a' \<noteq> b'}"
|
|
429 |
proof(cases "b = b' \<and> f a \<noteq> b'")
|
|
430 |
case True
|
|
431 |
hence "{a. f a \<noteq> b'} = insert a {a'. (f(a := b)) a' \<noteq> b'}" by auto
|
|
432 |
thus ?thesis using b' by simp
|
|
433 |
next
|
|
434 |
case False
|
|
435 |
moreover
|
|
436 |
{ assume "b \<noteq> b'"
|
|
437 |
hence "{a'. (f(a := b)) a' \<noteq> b'} = insert a {a. f a \<noteq> b'}" by auto
|
|
438 |
hence ?thesis using b' by simp }
|
|
439 |
moreover
|
|
440 |
{ assume "b = b'" "f a = b'"
|
|
441 |
hence "{a'. (f(a := b)) a' \<noteq> b'} = {a. f a \<noteq> b'}" by auto
|
|
442 |
hence ?thesis using b' by simp }
|
|
443 |
ultimately show ?thesis by blast
|
|
444 |
qed
|
|
445 |
with False b' show ?thesis by(auto simp del: fun_upd_apply simp add: finfun_default_aux_infinite)
|
|
446 |
next
|
|
447 |
case True thus ?thesis by(simp add: finfun_default_aux_def)
|
|
448 |
qed
|
|
449 |
|
|
450 |
definition finfun_default :: "'a \<Rightarrow>\<^isub>f 'b \<Rightarrow> 'b"
|
|
451 |
where [code del]: "finfun_default f = finfun_default_aux (Rep_finfun f)"
|
|
452 |
|
|
453 |
lemma finite_finfun_default: "finite {a. Rep_finfun f a \<noteq> finfun_default f}"
|
|
454 |
unfolding finfun_default_def by(simp add: finite_finfun_default_aux)
|
|
455 |
|
|
456 |
lemma finfun_default_const: "finfun_default ((\<lambda>\<^isup>f b) :: 'a \<Rightarrow>\<^isub>f 'b) = (if finite (UNIV :: 'a set) then arbitrary else b)"
|
|
457 |
apply(auto simp add: finfun_default_def finfun_const_def finfun_default_aux_infinite)
|
|
458 |
apply(simp add: finfun_default_aux_def)
|
|
459 |
done
|
|
460 |
|
|
461 |
lemma finfun_default_update_const:
|
|
462 |
"finfun_default (f(\<^sup>f a := b)) = finfun_default f"
|
|
463 |
unfolding finfun_default_def finfun_update_def
|
|
464 |
by(simp add: finfun_default_aux_update_const)
|
|
465 |
|
|
466 |
subsection {* Recursion combinator and well-formedness conditions *}
|
|
467 |
|
|
468 |
definition finfun_rec :: "('b \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow> 'b \<Rightarrow> 'c \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow>\<^isub>f 'b) \<Rightarrow> 'c"
|
|
469 |
where [code del]:
|
|
470 |
"finfun_rec cnst upd f \<equiv>
|
|
471 |
let b = finfun_default f;
|
|
472 |
g = THE g. f = Abs_finfun (map_default b g) \<and> finite (dom g) \<and> b \<notin> ran g
|
|
473 |
in fold (\<lambda>a. upd a (map_default b g a)) (cnst b) (dom g)"
|
|
474 |
|
|
475 |
locale finfun_rec_wf_aux =
|
|
476 |
fixes cnst :: "'b \<Rightarrow> 'c"
|
|
477 |
and upd :: "'a \<Rightarrow> 'b \<Rightarrow> 'c \<Rightarrow> 'c"
|
|
478 |
assumes upd_const_same: "upd a b (cnst b) = cnst b"
|
|
479 |
and upd_commute: "a \<noteq> a' \<Longrightarrow> upd a b (upd a' b' c) = upd a' b' (upd a b c)"
|
|
480 |
and upd_idemp: "b \<noteq> b' \<Longrightarrow> upd a b'' (upd a b' (cnst b)) = upd a b'' (cnst b)"
|
|
481 |
begin
|
|
482 |
|
|
483 |
|
|
484 |
lemma upd_left_comm: "fun_left_comm (\<lambda>a. upd a (f a))"
|
|
485 |
by(unfold_locales)(auto intro: upd_commute)
|
|
486 |
|
|
487 |
lemma upd_upd_twice: "upd a b'' (upd a b' (cnst b)) = upd a b'' (cnst b)"
|
|
488 |
by(cases "b \<noteq> b'")(auto simp add: fun_upd_def upd_const_same upd_idemp)
|
|
489 |
|
|
490 |
declare finfun_simp [simp] finfun_iff [iff] finfun_intro [intro]
|
|
491 |
|
|
492 |
lemma map_default_update_const:
|
|
493 |
assumes fin: "finite (dom f)"
|
|
494 |
and anf: "a \<notin> dom f"
|
|
495 |
and fg: "f \<subseteq>\<^sub>m g"
|
|
496 |
shows "upd a d (fold (\<lambda>a. upd a (map_default d g a)) (cnst d) (dom f)) =
|
|
497 |
fold (\<lambda>a. upd a (map_default d g a)) (cnst d) (dom f)"
|
|
498 |
proof -
|
|
499 |
let ?upd = "\<lambda>a. upd a (map_default d g a)"
|
|
500 |
let ?fr = "\<lambda>A. fold ?upd (cnst d) A"
|
|
501 |
interpret gwf: fun_left_comm "?upd" by(rule upd_left_comm)
|
|
502 |
|
|
503 |
from fin anf fg show ?thesis
|
|
504 |
proof(induct A\<equiv>"dom f" arbitrary: f)
|
|
505 |
case empty
|
|
506 |
from `{} = dom f` have "f = empty" by(auto simp add: dom_def intro: ext)
|
|
507 |
thus ?case by(simp add: finfun_const_def upd_const_same)
|
|
508 |
next
|
|
509 |
case (insert a' A)
|
|
510 |
note IH = `\<And>f. \<lbrakk> a \<notin> dom f; f \<subseteq>\<^sub>m g; A = dom f\<rbrakk> \<Longrightarrow> upd a d (?fr (dom f)) = ?fr (dom f)`
|
|
511 |
note fin = `finite A` note anf = `a \<notin> dom f` note a'nA = `a' \<notin> A`
|
|
512 |
note domf = `insert a' A = dom f` note fg = `f \<subseteq>\<^sub>m g`
|
|
513 |
|
|
514 |
from domf obtain b where b: "f a' = Some b" by auto
|
|
515 |
let ?f' = "f(a' := None)"
|
|
516 |
have "upd a d (?fr (insert a' A)) = upd a d (upd a' (map_default d g a') (?fr A))"
|
|
517 |
by(subst gwf.fold_insert[OF fin a'nA]) rule
|
|
518 |
also from b fg have "g a' = f a'" by(auto simp add: map_le_def intro: domI dest: bspec)
|
|
519 |
hence ga': "map_default d g a' = map_default d f a'" by(simp add: map_default_def)
|
|
520 |
also from anf domf have "a \<noteq> a'" by auto note upd_commute[OF this]
|
|
521 |
also from domf a'nA anf fg have "a \<notin> dom ?f'" "?f' \<subseteq>\<^sub>m g" and A: "A = dom ?f'" by(auto simp add: ran_def map_le_def)
|
|
522 |
note A also note IH[OF `a \<notin> dom ?f'` `?f' \<subseteq>\<^sub>m g` A]
|
|
523 |
also have "upd a' (map_default d f a') (?fr (dom (f(a' := None)))) = ?fr (dom f)"
|
|
524 |
unfolding domf[symmetric] gwf.fold_insert[OF fin a'nA] ga' unfolding A ..
|
|
525 |
also have "insert a' (dom ?f') = dom f" using domf by auto
|
|
526 |
finally show ?case .
|
|
527 |
qed
|
|
528 |
qed
|
|
529 |
|
|
530 |
lemma map_default_update_twice:
|
|
531 |
assumes fin: "finite (dom f)"
|
|
532 |
and anf: "a \<notin> dom f"
|
|
533 |
and fg: "f \<subseteq>\<^sub>m g"
|
|
534 |
shows "upd a d'' (upd a d' (fold (\<lambda>a. upd a (map_default d g a)) (cnst d) (dom f))) =
|
|
535 |
upd a d'' (fold (\<lambda>a. upd a (map_default d g a)) (cnst d) (dom f))"
|
|
536 |
proof -
|
|
537 |
let ?upd = "\<lambda>a. upd a (map_default d g a)"
|
|
538 |
let ?fr = "\<lambda>A. fold ?upd (cnst d) A"
|
|
539 |
interpret gwf: fun_left_comm "?upd" by(rule upd_left_comm)
|
|
540 |
|
|
541 |
from fin anf fg show ?thesis
|
|
542 |
proof(induct A\<equiv>"dom f" arbitrary: f)
|
|
543 |
case empty
|
|
544 |
from `{} = dom f` have "f = empty" by(auto simp add: dom_def intro: ext)
|
|
545 |
thus ?case by(auto simp add: finfun_const_def finfun_update_def upd_upd_twice)
|
|
546 |
next
|
|
547 |
case (insert a' A)
|
|
548 |
note IH = `\<And>f. \<lbrakk>a \<notin> dom f; f \<subseteq>\<^sub>m g; A = dom f\<rbrakk> \<Longrightarrow> upd a d'' (upd a d' (?fr (dom f))) = upd a d'' (?fr (dom f))`
|
|
549 |
note fin = `finite A` note anf = `a \<notin> dom f` note a'nA = `a' \<notin> A`
|
|
550 |
note domf = `insert a' A = dom f` note fg = `f \<subseteq>\<^sub>m g`
|
|
551 |
|
|
552 |
from domf obtain b where b: "f a' = Some b" by auto
|
|
553 |
let ?f' = "f(a' := None)"
|
|
554 |
let ?b' = "case f a' of None \<Rightarrow> d | Some b \<Rightarrow> b"
|
|
555 |
from domf have "upd a d'' (upd a d' (?fr (dom f))) = upd a d'' (upd a d' (?fr (insert a' A)))" by simp
|
|
556 |
also note gwf.fold_insert[OF fin a'nA]
|
|
557 |
also from b fg have "g a' = f a'" by(auto simp add: map_le_def intro: domI dest: bspec)
|
|
558 |
hence ga': "map_default d g a' = map_default d f a'" by(simp add: map_default_def)
|
|
559 |
also from anf domf have ana': "a \<noteq> a'" by auto note upd_commute[OF this]
|
|
560 |
also note upd_commute[OF ana']
|
|
561 |
also from domf a'nA anf fg have "a \<notin> dom ?f'" "?f' \<subseteq>\<^sub>m g" and A: "A = dom ?f'" by(auto simp add: ran_def map_le_def)
|
|
562 |
note A also note IH[OF `a \<notin> dom ?f'` `?f' \<subseteq>\<^sub>m g` A]
|
|
563 |
also note upd_commute[OF ana'[symmetric]] also note ga'[symmetric] also note A[symmetric]
|
|
564 |
also note gwf.fold_insert[symmetric, OF fin a'nA] also note domf
|
|
565 |
finally show ?case .
|
|
566 |
qed
|
|
567 |
qed
|
|
568 |
|
|
569 |
declare finfun_simp [simp del] finfun_iff [iff del] finfun_intro [rule del]
|
|
570 |
|
|
571 |
lemma map_default_eq_id [simp]: "map_default d ((\<lambda>a. Some (f a)) |` {a. f a \<noteq> d}) = f"
|
|
572 |
by(auto simp add: map_default_def restrict_map_def intro: ext)
|
|
573 |
|
|
574 |
lemma finite_rec_cong1:
|
|
575 |
assumes f: "fun_left_comm f" and g: "fun_left_comm g"
|
|
576 |
and fin: "finite A"
|
|
577 |
and eq: "\<And>a. a \<in> A \<Longrightarrow> f a = g a"
|
|
578 |
shows "fold f z A = fold g z A"
|
|
579 |
proof -
|
|
580 |
interpret f: fun_left_comm f by(rule f)
|
|
581 |
interpret g: fun_left_comm g by(rule g)
|
|
582 |
{ fix B
|
|
583 |
assume BsubA: "B \<subseteq> A"
|
|
584 |
with fin have "finite B" by(blast intro: finite_subset)
|
|
585 |
hence "B \<subseteq> A \<Longrightarrow> fold f z B = fold g z B"
|
|
586 |
proof(induct)
|
|
587 |
case empty thus ?case by simp
|
|
588 |
next
|
|
589 |
case (insert a B)
|
|
590 |
note finB = `finite B` note anB = `a \<notin> B` note sub = `insert a B \<subseteq> A`
|
|
591 |
note IH = `B \<subseteq> A \<Longrightarrow> fold f z B = fold g z B`
|
|
592 |
from sub anB have BpsubA: "B \<subset> A" and BsubA: "B \<subseteq> A" and aA: "a \<in> A" by auto
|
|
593 |
from IH[OF BsubA] eq[OF aA] finB anB
|
|
594 |
show ?case by(auto)
|
|
595 |
qed
|
|
596 |
with BsubA have "fold f z B = fold g z B" by blast }
|
|
597 |
thus ?thesis by blast
|
|
598 |
qed
|
|
599 |
|
|
600 |
declare finfun_simp [simp] finfun_iff [iff] finfun_intro [intro]
|
|
601 |
|
|
602 |
lemma finfun_rec_upd [simp]:
|
|
603 |
"finfun_rec cnst upd (f(\<^sup>f a' := b')) = upd a' b' (finfun_rec cnst upd f)"
|
|
604 |
proof -
|
|
605 |
obtain b where b: "b = finfun_default f" by auto
|
|
606 |
let ?the = "\<lambda>f g. f = Abs_finfun (map_default b g) \<and> finite (dom g) \<and> b \<notin> ran g"
|
|
607 |
obtain g where g: "g = The (?the f)" by blast
|
|
608 |
obtain y where f: "f = Abs_finfun y" and y: "y \<in> finfun" by (cases f)
|
|
609 |
from f y b have bfin: "finite {a. y a \<noteq> b}" by(simp add: finfun_default_def finite_finfun_default_aux)
|
|
610 |
|
|
611 |
let ?g = "(\<lambda>a. Some (y a)) |` {a. y a \<noteq> b}"
|
|
612 |
from bfin have fing: "finite (dom ?g)" by auto
|
|
613 |
have bran: "b \<notin> ran ?g" by(auto simp add: ran_def restrict_map_def)
|
|
614 |
have yg: "y = map_default b ?g" by simp
|
|
615 |
have gg: "g = ?g" unfolding g
|
|
616 |
proof(rule the_equality)
|
|
617 |
from f y bfin show "?the f ?g"
|
|
618 |
by(auto)(simp add: restrict_map_def ran_def split: split_if_asm)
|
|
619 |
next
|
|
620 |
fix g'
|
|
621 |
assume "?the f g'"
|
|
622 |
hence fin': "finite (dom g')" and ran': "b \<notin> ran g'"
|
|
623 |
and eq: "Abs_finfun (map_default b ?g) = Abs_finfun (map_default b g')" using f yg by auto
|
|
624 |
from fin' fing have "map_default b ?g \<in> finfun" "map_default b g' \<in> finfun" by(blast intro: map_default_in_finfun)+
|
|
625 |
with eq have "map_default b ?g = map_default b g'" by simp
|
|
626 |
with fing bran fin' ran' show "g' = ?g" by(rule map_default_inject[OF disjI2[OF refl], THEN sym])
|
|
627 |
qed
|
|
628 |
|
|
629 |
show ?thesis
|
|
630 |
proof(cases "b' = b")
|
|
631 |
case True
|
|
632 |
note b'b = True
|
|
633 |
|
|
634 |
let ?g' = "(\<lambda>a. Some ((y(a' := b)) a)) |` {a. (y(a' := b)) a \<noteq> b}"
|
|
635 |
from bfin b'b have fing': "finite (dom ?g')"
|
|
636 |
by(auto simp add: Collect_conj_eq Collect_imp_eq intro: finite_subset)
|
|
637 |
have brang': "b \<notin> ran ?g'" by(auto simp add: ran_def restrict_map_def)
|
|
638 |
|
|
639 |
let ?b' = "\<lambda>a. case ?g' a of None \<Rightarrow> b | Some b \<Rightarrow> b"
|
|
640 |
let ?b = "map_default b ?g"
|
|
641 |
from upd_left_comm upd_left_comm fing'
|
|
642 |
have "fold (\<lambda>a. upd a (?b' a)) (cnst b) (dom ?g') = fold (\<lambda>a. upd a (?b a)) (cnst b) (dom ?g')"
|
|
643 |
by(rule finite_rec_cong1)(auto simp add: restrict_map_def b'b b map_default_def)
|
|
644 |
also interpret gwf: fun_left_comm "\<lambda>a. upd a (?b a)" by(rule upd_left_comm)
|
|
645 |
have "fold (\<lambda>a. upd a (?b a)) (cnst b) (dom ?g') = upd a' b' (fold (\<lambda>a. upd a (?b a)) (cnst b) (dom ?g))"
|
|
646 |
proof(cases "y a' = b")
|
|
647 |
case True
|
|
648 |
with b'b have g': "?g' = ?g" by(auto simp add: restrict_map_def intro: ext)
|
|
649 |
from True have a'ndomg: "a' \<notin> dom ?g" by auto
|
|
650 |
from f b'b b show ?thesis unfolding g'
|
|
651 |
by(subst map_default_update_const[OF fing a'ndomg map_le_refl, symmetric]) simp
|
|
652 |
next
|
|
653 |
case False
|
|
654 |
hence domg: "dom ?g = insert a' (dom ?g')" by auto
|
|
655 |
from False b'b have a'ndomg': "a' \<notin> dom ?g'" by auto
|
|
656 |
have "fold (\<lambda>a. upd a (?b a)) (cnst b) (insert a' (dom ?g')) =
|
|
657 |
upd a' (?b a') (fold (\<lambda>a. upd a (?b a)) (cnst b) (dom ?g'))"
|
|
658 |
using fing' a'ndomg' unfolding b'b by(rule gwf.fold_insert)
|
|
659 |
hence "upd a' b (fold (\<lambda>a. upd a (?b a)) (cnst b) (insert a' (dom ?g'))) =
|
|
660 |
upd a' b (upd a' (?b a') (fold (\<lambda>a. upd a (?b a)) (cnst b) (dom ?g')))" by simp
|
|
661 |
also from b'b have g'leg: "?g' \<subseteq>\<^sub>m ?g" by(auto simp add: restrict_map_def map_le_def)
|
|
662 |
note map_default_update_twice[OF fing' a'ndomg' this, of b "?b a'" b]
|
|
663 |
also note map_default_update_const[OF fing' a'ndomg' g'leg, of b]
|
|
664 |
finally show ?thesis unfolding b'b domg[unfolded b'b] by(rule sym)
|
|
665 |
qed
|
|
666 |
also have "The (?the (f(\<^sup>f a' := b'))) = ?g'"
|
|
667 |
proof(rule the_equality)
|
|
668 |
from f y b b'b brang' fing' show "?the (f(\<^sup>f a' := b')) ?g'"
|
|
669 |
by(auto simp del: fun_upd_apply simp add: finfun_update_def)
|
|
670 |
next
|
|
671 |
fix g'
|
|
672 |
assume "?the (f(\<^sup>f a' := b')) g'"
|
|
673 |
hence fin': "finite (dom g')" and ran': "b \<notin> ran g'"
|
|
674 |
and eq: "f(\<^sup>f a' := b') = Abs_finfun (map_default b g')"
|
|
675 |
by(auto simp del: fun_upd_apply)
|
|
676 |
from fin' fing' have "map_default b g' \<in> finfun" "map_default b ?g' \<in> finfun"
|
|
677 |
by(blast intro: map_default_in_finfun)+
|
|
678 |
with eq f b'b b have "map_default b ?g' = map_default b g'"
|
|
679 |
by(simp del: fun_upd_apply add: finfun_update_def)
|
|
680 |
with fing' brang' fin' ran' show "g' = ?g'"
|
|
681 |
by(rule map_default_inject[OF disjI2[OF refl], THEN sym])
|
|
682 |
qed
|
|
683 |
ultimately show ?thesis unfolding finfun_rec_def Let_def b gg[unfolded g b] using bfin b'b b
|
|
684 |
by(simp only: finfun_default_update_const map_default_def)
|
|
685 |
next
|
|
686 |
case False
|
|
687 |
note b'b = this
|
|
688 |
let ?g' = "?g(a' \<mapsto> b')"
|
|
689 |
let ?b' = "map_default b ?g'"
|
|
690 |
let ?b = "map_default b ?g"
|
|
691 |
from fing have fing': "finite (dom ?g')" by auto
|
|
692 |
from bran b'b have bnrang': "b \<notin> ran ?g'" by(auto simp add: ran_def)
|
|
693 |
have ffmg': "map_default b ?g' = y(a' := b')" by(auto intro: ext simp add: map_default_def restrict_map_def)
|
|
694 |
with f y have f_Abs: "f(\<^sup>f a' := b') = Abs_finfun (map_default b ?g')" by(auto simp add: finfun_update_def)
|
|
695 |
have g': "The (?the (f(\<^sup>f a' := b'))) = ?g'"
|
|
696 |
proof
|
|
697 |
from fing' bnrang' f_Abs show "?the (f(\<^sup>f a' := b')) ?g'" by(auto simp add: finfun_update_def restrict_map_def)
|
|
698 |
next
|
|
699 |
fix g' assume "?the (f(\<^sup>f a' := b')) g'"
|
|
700 |
hence f': "f(\<^sup>f a' := b') = Abs_finfun (map_default b g')"
|
|
701 |
and fin': "finite (dom g')" and brang': "b \<notin> ran g'" by auto
|
|
702 |
from fing' fin' have "map_default b ?g' \<in> finfun" "map_default b g' \<in> finfun"
|
|
703 |
by(auto intro: map_default_in_finfun)
|
|
704 |
with f' f_Abs have "map_default b g' = map_default b ?g'" by simp
|
|
705 |
with fin' brang' fing' bnrang' show "g' = ?g'"
|
|
706 |
by(rule map_default_inject[OF disjI2[OF refl]])
|
|
707 |
qed
|
|
708 |
have dom: "dom (((\<lambda>a. Some (y a)) |` {a. y a \<noteq> b})(a' \<mapsto> b')) = insert a' (dom ((\<lambda>a. Some (y a)) |` {a. y a \<noteq> b}))"
|
|
709 |
by auto
|
|
710 |
show ?thesis
|
|
711 |
proof(cases "y a' = b")
|
|
712 |
case True
|
|
713 |
hence a'ndomg: "a' \<notin> dom ?g" by auto
|
|
714 |
from f y b'b True have yff: "y = map_default b (?g' |` dom ?g)"
|
|
715 |
by(auto simp add: restrict_map_def map_default_def intro!: ext)
|
|
716 |
hence f': "f = Abs_finfun (map_default b (?g' |` dom ?g))" using f by simp
|
|
717 |
interpret g'wf: fun_left_comm "\<lambda>a. upd a (?b' a)" by(rule upd_left_comm)
|
|
718 |
from upd_left_comm upd_left_comm fing
|
|
719 |
have "fold (\<lambda>a. upd a (?b a)) (cnst b) (dom ?g) = fold (\<lambda>a. upd a (?b' a)) (cnst b) (dom ?g)"
|
|
720 |
by(rule finite_rec_cong1)(auto simp add: restrict_map_def b'b True map_default_def)
|
|
721 |
thus ?thesis unfolding finfun_rec_def Let_def finfun_default_update_const b[symmetric]
|
|
722 |
unfolding g' g[symmetric] gg g'wf.fold_insert[OF fing a'ndomg, of "cnst b", folded dom]
|
|
723 |
by -(rule arg_cong2[where f="upd a'"], simp_all add: map_default_def)
|
|
724 |
next
|
|
725 |
case False
|
|
726 |
hence "insert a' (dom ?g) = dom ?g" by auto
|
|
727 |
moreover {
|
|
728 |
let ?g'' = "?g(a' := None)"
|
|
729 |
let ?b'' = "map_default b ?g''"
|
|
730 |
from False have domg: "dom ?g = insert a' (dom ?g'')" by auto
|
|
731 |
from False have a'ndomg'': "a' \<notin> dom ?g''" by auto
|
|
732 |
have fing'': "finite (dom ?g'')" by(rule finite_subset[OF _ fing]) auto
|
|
733 |
have bnrang'': "b \<notin> ran ?g''" by(auto simp add: ran_def restrict_map_def)
|
|
734 |
interpret gwf: fun_left_comm "\<lambda>a. upd a (?b a)" by(rule upd_left_comm)
|
|
735 |
interpret g'wf: fun_left_comm "\<lambda>a. upd a (?b' a)" by(rule upd_left_comm)
|
|
736 |
have "upd a' b' (fold (\<lambda>a. upd a (?b a)) (cnst b) (insert a' (dom ?g''))) =
|
|
737 |
upd a' b' (upd a' (?b a') (fold (\<lambda>a. upd a (?b a)) (cnst b) (dom ?g'')))"
|
|
738 |
unfolding gwf.fold_insert[OF fing'' a'ndomg''] f ..
|
|
739 |
also have g''leg: "?g |` dom ?g'' \<subseteq>\<^sub>m ?g" by(auto simp add: map_le_def)
|
|
740 |
have "dom (?g |` dom ?g'') = dom ?g''" by auto
|
|
741 |
note map_default_update_twice[where d=b and f = "?g |` dom ?g''" and a=a' and d'="?b a'" and d''=b' and g="?g",
|
|
742 |
unfolded this, OF fing'' a'ndomg'' g''leg]
|
|
743 |
also have b': "b' = ?b' a'" by(auto simp add: map_default_def)
|
|
744 |
from upd_left_comm upd_left_comm fing''
|
|
745 |
have "fold (\<lambda>a. upd a (?b a)) (cnst b) (dom ?g'') = fold (\<lambda>a. upd a (?b' a)) (cnst b) (dom ?g'')"
|
|
746 |
by(rule finite_rec_cong1)(auto simp add: restrict_map_def b'b map_default_def)
|
|
747 |
with b' have "upd a' b' (fold (\<lambda>a. upd a (?b a)) (cnst b) (dom ?g'')) =
|
|
748 |
upd a' (?b' a') (fold (\<lambda>a. upd a (?b' a)) (cnst b) (dom ?g''))" by simp
|
|
749 |
also note g'wf.fold_insert[OF fing'' a'ndomg'', symmetric]
|
|
750 |
finally have "upd a' b' (fold (\<lambda>a. upd a (?b a)) (cnst b) (dom ?g)) =
|
|
751 |
fold (\<lambda>a. upd a (?b' a)) (cnst b) (dom ?g)"
|
|
752 |
unfolding domg . }
|
|
753 |
ultimately have "fold (\<lambda>a. upd a (?b' a)) (cnst b) (insert a' (dom ?g)) =
|
|
754 |
upd a' b' (fold (\<lambda>a. upd a (?b a)) (cnst b) (dom ?g))" by simp
|
|
755 |
thus ?thesis unfolding finfun_rec_def Let_def finfun_default_update_const b[symmetric] g[symmetric] g' dom[symmetric]
|
|
756 |
using b'b gg by(simp add: map_default_insert)
|
|
757 |
qed
|
|
758 |
qed
|
|
759 |
qed
|
|
760 |
|
|
761 |
declare finfun_simp [simp del] finfun_iff [iff del] finfun_intro [rule del]
|
|
762 |
|
|
763 |
end
|
|
764 |
|
|
765 |
locale finfun_rec_wf = finfun_rec_wf_aux +
|
|
766 |
assumes const_update_all:
|
|
767 |
"finite (UNIV :: 'a set) \<Longrightarrow> fold (\<lambda>a. upd a b') (cnst b) (UNIV :: 'a set) = cnst b'"
|
|
768 |
begin
|
|
769 |
|
|
770 |
declare finfun_simp [simp] finfun_iff [iff] finfun_intro [intro]
|
|
771 |
|
|
772 |
lemma finfun_rec_const [simp]:
|
|
773 |
"finfun_rec cnst upd (\<lambda>\<^isup>f c) = cnst c"
|
|
774 |
proof(cases "finite (UNIV :: 'a set)")
|
|
775 |
case False
|
|
776 |
hence "finfun_default ((\<lambda>\<^isup>f c) :: 'a \<Rightarrow>\<^isub>f 'b) = c" by(simp add: finfun_default_const)
|
|
777 |
moreover have "(THE g :: 'a \<rightharpoonup> 'b. (\<lambda>\<^isup>f c) = Abs_finfun (map_default c g) \<and> finite (dom g) \<and> c \<notin> ran g) = empty"
|
|
778 |
proof
|
|
779 |
show "(\<lambda>\<^isup>f c) = Abs_finfun (map_default c empty) \<and> finite (dom empty) \<and> c \<notin> ran empty"
|
|
780 |
by(auto simp add: finfun_const_def)
|
|
781 |
next
|
|
782 |
fix g :: "'a \<rightharpoonup> 'b"
|
|
783 |
assume "(\<lambda>\<^isup>f c) = Abs_finfun (map_default c g) \<and> finite (dom g) \<and> c \<notin> ran g"
|
|
784 |
hence g: "(\<lambda>\<^isup>f c) = Abs_finfun (map_default c g)" and fin: "finite (dom g)" and ran: "c \<notin> ran g" by blast+
|
|
785 |
from g map_default_in_finfun[OF fin, of c] have "map_default c g = (\<lambda>a. c)"
|
|
786 |
by(simp add: finfun_const_def)
|
|
787 |
moreover have "map_default c empty = (\<lambda>a. c)" by simp
|
|
788 |
ultimately show "g = empty" by-(rule map_default_inject[OF disjI2[OF refl] fin ran], auto)
|
|
789 |
qed
|
|
790 |
ultimately show ?thesis by(simp add: finfun_rec_def)
|
|
791 |
next
|
|
792 |
case True
|
|
793 |
hence default: "finfun_default ((\<lambda>\<^isup>f c) :: 'a \<Rightarrow>\<^isub>f 'b) = arbitrary" by(simp add: finfun_default_const)
|
|
794 |
let ?the = "\<lambda>g :: 'a \<rightharpoonup> 'b. (\<lambda>\<^isup>f c) = Abs_finfun (map_default arbitrary g) \<and> finite (dom g) \<and> arbitrary \<notin> ran g"
|
|
795 |
show ?thesis
|
|
796 |
proof(cases "c = arbitrary")
|
|
797 |
case True
|
|
798 |
have the: "The ?the = empty"
|
|
799 |
proof
|
|
800 |
from True show "?the empty" by(auto simp add: finfun_const_def)
|
|
801 |
next
|
|
802 |
fix g'
|
|
803 |
assume "?the g'"
|
|
804 |
hence fg: "(\<lambda>\<^isup>f c) = Abs_finfun (map_default arbitrary g')"
|
|
805 |
and fin: "finite (dom g')" and g: "arbitrary \<notin> ran g'" by simp_all
|
|
806 |
from fin have "map_default arbitrary g' \<in> finfun" by(rule map_default_in_finfun)
|
|
807 |
with fg have "map_default arbitrary g' = (\<lambda>a. c)"
|
|
808 |
by(auto simp add: finfun_const_def intro: Abs_finfun_inject[THEN iffD1])
|
|
809 |
with True show "g' = empty"
|
|
810 |
by -(rule map_default_inject(2)[OF _ fin g], auto)
|
|
811 |
qed
|
|
812 |
show ?thesis unfolding finfun_rec_def using `finite UNIV` True
|
|
813 |
unfolding Let_def the default by(simp)
|
|
814 |
next
|
|
815 |
case False
|
|
816 |
have the: "The ?the = (\<lambda>a :: 'a. Some c)"
|
|
817 |
proof
|
|
818 |
from False True show "?the (\<lambda>a :: 'a. Some c)"
|
|
819 |
by(auto simp add: map_default_def_raw finfun_const_def dom_def ran_def)
|
|
820 |
next
|
|
821 |
fix g' :: "'a \<rightharpoonup> 'b"
|
|
822 |
assume "?the g'"
|
|
823 |
hence fg: "(\<lambda>\<^isup>f c) = Abs_finfun (map_default arbitrary g')"
|
|
824 |
and fin: "finite (dom g')" and g: "arbitrary \<notin> ran g'" by simp_all
|
|
825 |
from fin have "map_default arbitrary g' \<in> finfun" by(rule map_default_in_finfun)
|
|
826 |
with fg have "map_default arbitrary g' = (\<lambda>a. c)"
|
|
827 |
by(auto simp add: finfun_const_def intro: Abs_finfun_inject[THEN iffD1])
|
|
828 |
with True False show "g' = (\<lambda>a::'a. Some c)"
|
|
829 |
by -(rule map_default_inject(2)[OF _ fin g], auto simp add: dom_def ran_def map_default_def_raw)
|
|
830 |
qed
|
|
831 |
show ?thesis unfolding finfun_rec_def using True False
|
|
832 |
unfolding Let_def the default by(simp add: dom_def map_default_def const_update_all)
|
|
833 |
qed
|
|
834 |
qed
|
|
835 |
|
|
836 |
declare finfun_simp [simp del] finfun_iff [iff del] finfun_intro [rule del]
|
|
837 |
|
|
838 |
end
|
|
839 |
|
|
840 |
subsection {* Weak induction rule and case analysis for FinFuns *}
|
|
841 |
|
|
842 |
declare finfun_simp [simp] finfun_iff [iff] finfun_intro [intro]
|
|
843 |
|
|
844 |
lemma finfun_weak_induct [consumes 0, case_names const update]:
|
|
845 |
assumes const: "\<And>b. P (\<lambda>\<^isup>f b)"
|
|
846 |
and update: "\<And>f a b. P f \<Longrightarrow> P (f(\<^sup>f a := b))"
|
|
847 |
shows "P x"
|
|
848 |
proof(induct x rule: Abs_finfun_induct)
|
|
849 |
case (Abs_finfun y)
|
|
850 |
then obtain b where "finite {a. y a \<noteq> b}" unfolding finfun_def by blast
|
|
851 |
thus ?case using `y \<in> finfun`
|
|
852 |
proof(induct x\<equiv>"{a. y a \<noteq> b}" arbitrary: y rule: finite_induct)
|
|
853 |
case empty
|
|
854 |
hence "\<And>a. y a = b" by blast
|
|
855 |
hence "y = (\<lambda>a. b)" by(auto intro: ext)
|
|
856 |
hence "Abs_finfun y = finfun_const b" unfolding finfun_const_def by simp
|
|
857 |
thus ?case by(simp add: const)
|
|
858 |
next
|
|
859 |
case (insert a A)
|
|
860 |
note IH = `\<And>y. \<lbrakk> y \<in> finfun; A = {a. y a \<noteq> b} \<rbrakk> \<Longrightarrow> P (Abs_finfun y)`
|
|
861 |
note y = `y \<in> finfun`
|
|
862 |
with `insert a A = {a. y a \<noteq> b}` `a \<notin> A`
|
|
863 |
have "y(a := b) \<in> finfun" "A = {a'. (y(a := b)) a' \<noteq> b}" by auto
|
|
864 |
from IH[OF this] have "P (finfun_update (Abs_finfun (y(a := b))) a (y a))" by(rule update)
|
|
865 |
thus ?case using y unfolding finfun_update_def by simp
|
|
866 |
qed
|
|
867 |
qed
|
|
868 |
|
|
869 |
declare finfun_simp [simp del] finfun_iff [iff del] finfun_intro [rule del]
|
|
870 |
|
|
871 |
lemma finfun_exhaust_disj: "(\<exists>b. x = finfun_const b) \<or> (\<exists>f a b. x = finfun_update f a b)"
|
|
872 |
by(induct x rule: finfun_weak_induct) blast+
|
|
873 |
|
|
874 |
lemma finfun_exhaust:
|
|
875 |
obtains b where "x = (\<lambda>\<^isup>f b)"
|
|
876 |
| f a b where "x = f(\<^sup>f a := b)"
|
|
877 |
by(atomize_elim)(rule finfun_exhaust_disj)
|
|
878 |
|
|
879 |
lemma finfun_rec_unique:
|
|
880 |
fixes f :: "'a \<Rightarrow>\<^isub>f 'b \<Rightarrow> 'c"
|
|
881 |
assumes c: "\<And>c. f (\<lambda>\<^isup>f c) = cnst c"
|
|
882 |
and u: "\<And>g a b. f (g(\<^sup>f a := b)) = upd g a b (f g)"
|
|
883 |
and c': "\<And>c. f' (\<lambda>\<^isup>f c) = cnst c"
|
|
884 |
and u': "\<And>g a b. f' (g(\<^sup>f a := b)) = upd g a b (f' g)"
|
|
885 |
shows "f = f'"
|
|
886 |
proof
|
|
887 |
fix g :: "'a \<Rightarrow>\<^isub>f 'b"
|
|
888 |
show "f g = f' g"
|
|
889 |
by(induct g rule: finfun_weak_induct)(auto simp add: c u c' u')
|
|
890 |
qed
|
|
891 |
|
|
892 |
|
|
893 |
subsection {* Function application *}
|
|
894 |
|
|
895 |
definition finfun_apply :: "'a \<Rightarrow>\<^isub>f 'b \<Rightarrow> 'a \<Rightarrow> 'b" ("_\<^sub>f" [1000] 1000)
|
|
896 |
where [code del]: "finfun_apply = (\<lambda>f a. finfun_rec (\<lambda>b. b) (\<lambda>a' b c. if (a = a') then b else c) f)"
|
|
897 |
|
|
898 |
interpretation finfun_apply_aux: finfun_rec_wf_aux "\<lambda>b. b" "\<lambda>a' b c. if (a = a') then b else c"
|
|
899 |
by(unfold_locales) auto
|
|
900 |
|
|
901 |
interpretation finfun_apply: finfun_rec_wf "\<lambda>b. b" "\<lambda>a' b c. if (a = a') then b else c"
|
|
902 |
proof(unfold_locales)
|
|
903 |
fix b' b :: 'a
|
|
904 |
assume fin: "finite (UNIV :: 'b set)"
|
|
905 |
{ fix A :: "'b set"
|
|
906 |
interpret fun_left_comm "\<lambda>a'. If (a = a') b'" by(rule finfun_apply_aux.upd_left_comm)
|
|
907 |
from fin have "finite A" by(auto intro: finite_subset)
|
|
908 |
hence "fold (\<lambda>a'. If (a = a') b') b A = (if a \<in> A then b' else b)"
|
|
909 |
by induct auto }
|
|
910 |
from this[of UNIV] show "fold (\<lambda>a'. If (a = a') b') b UNIV = b'" by simp
|
|
911 |
qed
|
|
912 |
|
|
913 |
lemma finfun_const_apply [simp, code]: "(\<lambda>\<^isup>f b)\<^sub>f a = b"
|
|
914 |
by(simp add: finfun_apply_def)
|
|
915 |
|
|
916 |
lemma finfun_upd_apply: "f(\<^sup>fa := b)\<^sub>f a' = (if a = a' then b else f\<^sub>f a')"
|
|
917 |
and finfun_upd_apply_code [code]: "(finfun_update_code f a b)\<^sub>f a' = (if a = a' then b else f\<^sub>f a')"
|
|
918 |
by(simp_all add: finfun_apply_def)
|
|
919 |
|
|
920 |
lemma finfun_upd_apply_same [simp]:
|
|
921 |
"f(\<^sup>fa := b)\<^sub>f a = b"
|
|
922 |
by(simp add: finfun_upd_apply)
|
|
923 |
|
|
924 |
lemma finfun_upd_apply_other [simp]:
|
|
925 |
"a \<noteq> a' \<Longrightarrow> f(\<^sup>fa := b)\<^sub>f a' = f\<^sub>f a'"
|
|
926 |
by(simp add: finfun_upd_apply)
|
|
927 |
|
|
928 |
declare finfun_simp [simp] finfun_iff [iff] finfun_intro [intro]
|
|
929 |
|
|
930 |
lemma finfun_apply_Rep_finfun:
|
|
931 |
"finfun_apply = Rep_finfun"
|
|
932 |
proof(rule finfun_rec_unique)
|
|
933 |
fix c show "Rep_finfun (\<lambda>\<^isup>f c) = (\<lambda>a. c)" by(auto simp add: finfun_const_def)
|
|
934 |
next
|
|
935 |
fix g a b show "Rep_finfun g(\<^sup>f a := b) = (\<lambda>c. if c = a then b else Rep_finfun g c)"
|
|
936 |
by(auto simp add: finfun_update_def fun_upd_finfun Abs_finfun_inverse Rep_finfun intro: ext)
|
|
937 |
qed(auto intro: ext)
|
|
938 |
|
|
939 |
lemma finfun_ext: "(\<And>a. f\<^sub>f a = g\<^sub>f a) \<Longrightarrow> f = g"
|
|
940 |
by(auto simp add: finfun_apply_Rep_finfun Rep_finfun_inject[symmetric] simp del: Rep_finfun_inject intro: ext)
|
|
941 |
|
|
942 |
declare finfun_simp [simp del] finfun_iff [iff del] finfun_intro [rule del]
|
|
943 |
|
|
944 |
lemma expand_finfun_eq: "(f = g) = (f\<^sub>f = g\<^sub>f)"
|
|
945 |
by(auto intro: finfun_ext)
|
|
946 |
|
|
947 |
lemma finfun_const_inject [simp]: "(\<lambda>\<^isup>f b) = (\<lambda>\<^isup>f b') \<equiv> b = b'"
|
|
948 |
by(simp add: expand_finfun_eq expand_fun_eq)
|
|
949 |
|
|
950 |
lemma finfun_const_eq_update:
|
|
951 |
"((\<lambda>\<^isup>f b) = f(\<^sup>f a := b')) = (b = b' \<and> (\<forall>a'. a \<noteq> a' \<longrightarrow> f\<^sub>f a' = b))"
|
|
952 |
by(auto simp add: expand_finfun_eq expand_fun_eq finfun_upd_apply)
|
|
953 |
|
|
954 |
subsection {* Function composition *}
|
|
955 |
|
|
956 |
definition finfun_comp :: "('a \<Rightarrow> 'b) \<Rightarrow> 'c \<Rightarrow>\<^isub>f 'a \<Rightarrow> 'c \<Rightarrow>\<^isub>f 'b" (infixr "\<circ>\<^isub>f" 55)
|
|
957 |
where [code del]: "g \<circ>\<^isub>f f = finfun_rec (\<lambda>b. (\<lambda>\<^isup>f g b)) (\<lambda>a b c. c(\<^sup>f a := g b)) f"
|
|
958 |
|
|
959 |
interpretation finfun_comp_aux: finfun_rec_wf_aux "(\<lambda>b. (\<lambda>\<^isup>f g b))" "(\<lambda>a b c. c(\<^sup>f a := g b))"
|
|
960 |
by(unfold_locales)(auto simp add: finfun_upd_apply intro: finfun_ext)
|
|
961 |
|
|
962 |
interpretation finfun_comp: finfun_rec_wf "(\<lambda>b. (\<lambda>\<^isup>f g b))" "(\<lambda>a b c. c(\<^sup>f a := g b))"
|
|
963 |
proof
|
|
964 |
fix b' b :: 'a
|
|
965 |
assume fin: "finite (UNIV :: 'c set)"
|
|
966 |
{ fix A :: "'c set"
|
|
967 |
from fin have "finite A" by(auto intro: finite_subset)
|
|
968 |
hence "fold (\<lambda>(a :: 'c) c. c(\<^sup>f a := g b')) (\<lambda>\<^isup>f g b) A =
|
|
969 |
Abs_finfun (\<lambda>a. if a \<in> A then g b' else g b)"
|
|
970 |
by induct (simp_all add: finfun_const_def, auto simp add: finfun_update_def Abs_finfun_inverse_finite fun_upd_def Abs_finfun_inject_finite expand_fun_eq fin) }
|
|
971 |
from this[of UNIV] show "fold (\<lambda>(a :: 'c) c. c(\<^sup>f a := g b')) (\<lambda>\<^isup>f g b) UNIV = (\<lambda>\<^isup>f g b')"
|
|
972 |
by(simp add: finfun_const_def)
|
|
973 |
qed
|
|
974 |
|
|
975 |
lemma finfun_comp_const [simp, code]:
|
|
976 |
"g \<circ>\<^isub>f (\<lambda>\<^isup>f c) = (\<lambda>\<^isup>f g c)"
|
|
977 |
by(simp add: finfun_comp_def)
|
|
978 |
|
|
979 |
lemma finfun_comp_update [simp]: "g \<circ>\<^isub>f (f(\<^sup>f a := b)) = (g \<circ>\<^isub>f f)(\<^sup>f a := g b)"
|
|
980 |
and finfun_comp_update_code [code]: "g \<circ>\<^isub>f (finfun_update_code f a b) = finfun_update_code (g \<circ>\<^isub>f f) a (g b)"
|
|
981 |
by(simp_all add: finfun_comp_def)
|
|
982 |
|
|
983 |
lemma finfun_comp_apply [simp]:
|
|
984 |
"(g \<circ>\<^isub>f f)\<^sub>f = g \<circ> f\<^sub>f"
|
|
985 |
by(induct f rule: finfun_weak_induct)(auto simp add: finfun_upd_apply intro: ext)
|
|
986 |
|
|
987 |
lemma finfun_comp_comp_collapse [simp]: "f \<circ>\<^isub>f g \<circ>\<^isub>f h = (f o g) \<circ>\<^isub>f h"
|
|
988 |
by(induct h rule: finfun_weak_induct) simp_all
|
|
989 |
|
|
990 |
lemma finfun_comp_const1 [simp]: "(\<lambda>x. c) \<circ>\<^isub>f f = (\<lambda>\<^isup>f c)"
|
|
991 |
by(induct f rule: finfun_weak_induct)(auto intro: finfun_ext simp add: finfun_upd_apply)
|
|
992 |
|
|
993 |
lemma finfun_comp_id1 [simp]: "(\<lambda>x. x) \<circ>\<^isub>f f = f" "id \<circ>\<^isub>f f = f"
|
|
994 |
by(induct f rule: finfun_weak_induct) auto
|
|
995 |
|
|
996 |
declare finfun_simp [simp] finfun_iff [iff] finfun_intro [intro]
|
|
997 |
|
|
998 |
lemma finfun_comp_conv_comp: "g \<circ>\<^isub>f f = Abs_finfun (g \<circ> finfun_apply f)"
|
|
999 |
proof -
|
|
1000 |
have "(\<lambda>f. g \<circ>\<^isub>f f) = (\<lambda>f. Abs_finfun (g \<circ> finfun_apply f))"
|
|
1001 |
proof(rule finfun_rec_unique)
|
|
1002 |
{ fix c show "Abs_finfun (g \<circ> (\<lambda>\<^isup>f c)\<^sub>f) = (\<lambda>\<^isup>f g c)"
|
|
1003 |
by(simp add: finfun_comp_def o_def)(simp add: finfun_const_def) }
|
|
1004 |
{ fix g' a b show "Abs_finfun (g \<circ> g'(\<^sup>f a := b)\<^sub>f) = (Abs_finfun (g \<circ> g'\<^sub>f))(\<^sup>f a := g b)"
|
|
1005 |
proof -
|
|
1006 |
obtain y where y: "y \<in> finfun" and g': "g' = Abs_finfun y" by(cases g')
|
|
1007 |
moreover hence "(g \<circ> g'\<^sub>f) \<in> finfun" by(simp add: finfun_apply_Rep_finfun finfun_left_compose)
|
|
1008 |
moreover have "g \<circ> y(a := b) = (g \<circ> y)(a := g b)" by(auto intro: ext)
|
|
1009 |
ultimately show ?thesis by(simp add: finfun_comp_def finfun_update_def finfun_apply_Rep_finfun)
|
|
1010 |
qed }
|
|
1011 |
qed auto
|
|
1012 |
thus ?thesis by(auto simp add: expand_fun_eq)
|
|
1013 |
qed
|
|
1014 |
|
|
1015 |
declare finfun_simp [simp del] finfun_iff [iff del] finfun_intro [rule del]
|
|
1016 |
|
|
1017 |
|
|
1018 |
|
|
1019 |
definition finfun_comp2 :: "'b \<Rightarrow>\<^isub>f 'c \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow>\<^isub>f 'c" (infixr "\<^sub>f\<circ>" 55)
|
|
1020 |
where [code del]: "finfun_comp2 g f = Abs_finfun (Rep_finfun g \<circ> f)"
|
|
1021 |
|
|
1022 |
declare finfun_simp [simp] finfun_iff [iff] finfun_intro [intro]
|
|
1023 |
|
|
1024 |
lemma finfun_comp2_const [code, simp]: "finfun_comp2 (\<lambda>\<^isup>f c) f = (\<lambda>\<^isup>f c)"
|
|
1025 |
by(simp add: finfun_comp2_def finfun_const_def comp_def)
|
|
1026 |
|
|
1027 |
lemma finfun_comp2_update:
|
|
1028 |
assumes inj: "inj f"
|
|
1029 |
shows "finfun_comp2 (g(\<^sup>f b := c)) f = (if b \<in> range f then (finfun_comp2 g f)(\<^sup>f inv f b := c) else finfun_comp2 g f)"
|
|
1030 |
proof(cases "b \<in> range f")
|
|
1031 |
case True
|
|
1032 |
from inj have "\<And>x. (Rep_finfun g)(f x := c) \<circ> f = (Rep_finfun g \<circ> f)(x := c)" by(auto intro!: ext dest: injD)
|
|
1033 |
with inj True show ?thesis by(auto simp add: finfun_comp2_def finfun_update_def finfun_right_compose)
|
|
1034 |
next
|
|
1035 |
case False
|
|
1036 |
hence "(Rep_finfun g)(b := c) \<circ> f = Rep_finfun g \<circ> f" by(auto simp add: expand_fun_eq)
|
|
1037 |
with False show ?thesis by(auto simp add: finfun_comp2_def finfun_update_def)
|
|
1038 |
qed
|
|
1039 |
|
|
1040 |
declare finfun_simp [simp del] finfun_iff [iff del] finfun_intro [rule del]
|
|
1041 |
|
|
1042 |
subsection {* A type class for computing the cardinality of a type's universe *}
|
|
1043 |
|
|
1044 |
class card_UNIV =
|
|
1045 |
fixes card_UNIV :: "'a itself \<Rightarrow> nat"
|
|
1046 |
assumes card_UNIV: "card_UNIV x = card (UNIV :: 'a set)"
|
|
1047 |
begin
|
|
1048 |
|
|
1049 |
lemma card_UNIV_neq_0_finite_UNIV:
|
|
1050 |
"card_UNIV x \<noteq> 0 \<longleftrightarrow> finite (UNIV :: 'a set)"
|
|
1051 |
by(simp add: card_UNIV card_eq_0_iff)
|
|
1052 |
|
|
1053 |
lemma card_UNIV_ge_0_finite_UNIV:
|
|
1054 |
"card_UNIV x > 0 \<longleftrightarrow> finite (UNIV :: 'a set)"
|
|
1055 |
by(auto simp add: card_UNIV intro: card_ge_0_finite finite_UNIV_card_ge_0)
|
|
1056 |
|
|
1057 |
lemma card_UNIV_eq_0_infinite_UNIV:
|
|
1058 |
"card_UNIV x = 0 \<longleftrightarrow> infinite (UNIV :: 'a set)"
|
|
1059 |
by(simp add: card_UNIV card_eq_0_iff)
|
|
1060 |
|
|
1061 |
definition is_list_UNIV :: "'a list \<Rightarrow> bool"
|
|
1062 |
where "is_list_UNIV xs = (let c = card_UNIV (TYPE('a)) in if c = 0 then False else size (remdups xs) = c)"
|
|
1063 |
|
|
1064 |
lemma is_list_UNIV_iff:
|
|
1065 |
fixes xs :: "'a list"
|
|
1066 |
shows "is_list_UNIV xs \<longleftrightarrow> set xs = UNIV"
|
|
1067 |
proof
|
|
1068 |
assume "is_list_UNIV xs"
|
|
1069 |
hence c: "card_UNIV (TYPE('a)) > 0" and xs: "size (remdups xs) = card_UNIV (TYPE('a))"
|
|
1070 |
unfolding is_list_UNIV_def by(simp_all add: Let_def split: split_if_asm)
|
|
1071 |
from c have fin: "finite (UNIV :: 'a set)" by(auto simp add: card_UNIV_ge_0_finite_UNIV)
|
|
1072 |
have "card (set (remdups xs)) = size (remdups xs)" by(subst distinct_card) auto
|
|
1073 |
also note set_remdups
|
|
1074 |
finally show "set xs = UNIV" using fin unfolding xs card_UNIV by-(rule card_eq_UNIV_imp_eq_UNIV)
|
|
1075 |
next
|
|
1076 |
assume xs: "set xs = UNIV"
|
|
1077 |
from finite_set[of xs] have fin: "finite (UNIV :: 'a set)" unfolding xs .
|
|
1078 |
hence "card_UNIV (TYPE ('a)) \<noteq> 0" unfolding card_UNIV_neq_0_finite_UNIV .
|
|
1079 |
moreover have "size (remdups xs) = card (set (remdups xs))"
|
|
1080 |
by(subst distinct_card) auto
|
|
1081 |
ultimately show "is_list_UNIV xs" using xs by(simp add: is_list_UNIV_def Let_def card_UNIV)
|
|
1082 |
qed
|
|
1083 |
|
|
1084 |
lemma card_UNIV_eq_0_is_list_UNIV_False:
|
|
1085 |
assumes cU0: "card_UNIV x = 0"
|
|
1086 |
shows "is_list_UNIV = (\<lambda>xs. False)"
|
|
1087 |
proof(rule ext)
|
|
1088 |
fix xs :: "'a list"
|
|
1089 |
from cU0 have "infinite (UNIV :: 'a set)"
|
|
1090 |
by(auto simp only: card_UNIV_eq_0_infinite_UNIV)
|
|
1091 |
moreover have "finite (set xs)" by(rule finite_set)
|
|
1092 |
ultimately have "(UNIV :: 'a set) \<noteq> set xs" by(auto simp del: finite_set)
|
|
1093 |
thus "is_list_UNIV xs = False" unfolding is_list_UNIV_iff by simp
|
|
1094 |
qed
|
|
1095 |
|
|
1096 |
end
|
|
1097 |
|
|
1098 |
subsection {* Instantiations for @{text "card_UNIV"} *}
|
|
1099 |
|
|
1100 |
subsubsection {* @{typ "nat"} *}
|
|
1101 |
|
|
1102 |
instantiation nat :: card_UNIV begin
|
|
1103 |
|
|
1104 |
definition card_UNIV_nat_def:
|
|
1105 |
"card_UNIV_class.card_UNIV = (\<lambda>a :: nat itself. 0)"
|
|
1106 |
|
|
1107 |
instance proof
|
|
1108 |
fix x :: "nat itself"
|
|
1109 |
show "card_UNIV x = card (UNIV :: nat set)"
|
|
1110 |
unfolding card_UNIV_nat_def by simp
|
|
1111 |
qed
|
|
1112 |
|
|
1113 |
end
|
|
1114 |
|
|
1115 |
subsubsection {* @{typ "int"} *}
|
|
1116 |
|
|
1117 |
instantiation int :: card_UNIV begin
|
|
1118 |
|
|
1119 |
definition card_UNIV_int_def:
|
|
1120 |
"card_UNIV_class.card_UNIV = (\<lambda>a :: int itself. 0)"
|
|
1121 |
|
|
1122 |
instance proof
|
|
1123 |
fix x :: "int itself"
|
|
1124 |
show "card_UNIV x = card (UNIV :: int set)"
|
|
1125 |
unfolding card_UNIV_int_def by simp
|
|
1126 |
qed
|
|
1127 |
|
|
1128 |
end
|
|
1129 |
|
|
1130 |
subsubsection {* @{typ "'a list"} *}
|
|
1131 |
|
|
1132 |
instantiation list :: (type) card_UNIV begin
|
|
1133 |
|
|
1134 |
definition card_UNIV_list_def:
|
|
1135 |
"card_UNIV_class.card_UNIV = (\<lambda>a :: 'a list itself. 0)"
|
|
1136 |
|
|
1137 |
instance proof
|
|
1138 |
fix x :: "'a list itself"
|
|
1139 |
show "card_UNIV x = card (UNIV :: 'a list set)"
|
|
1140 |
unfolding card_UNIV_list_def by(simp add: infinite_UNIV_listI)
|
|
1141 |
qed
|
|
1142 |
|
|
1143 |
end
|
|
1144 |
|
|
1145 |
subsubsection {* @{typ "unit"} *}
|
|
1146 |
|
|
1147 |
lemma card_UNIV_unit: "card (UNIV :: unit set) = 1"
|
|
1148 |
unfolding UNIV_unit by simp
|
|
1149 |
|
|
1150 |
instantiation unit :: card_UNIV begin
|
|
1151 |
|
|
1152 |
definition card_UNIV_unit_def:
|
|
1153 |
"card_UNIV_class.card_UNIV = (\<lambda>a :: unit itself. 1)"
|
|
1154 |
|
|
1155 |
instance proof
|
|
1156 |
fix x :: "unit itself"
|
|
1157 |
show "card_UNIV x = card (UNIV :: unit set)"
|
|
1158 |
by(simp add: card_UNIV_unit_def card_UNIV_unit)
|
|
1159 |
qed
|
|
1160 |
|
|
1161 |
end
|
|
1162 |
|
|
1163 |
subsubsection {* @{typ "bool"} *}
|
|
1164 |
|
|
1165 |
lemma card_UNIV_bool: "card (UNIV :: bool set) = 2"
|
|
1166 |
unfolding UNIV_bool by simp
|
|
1167 |
|
|
1168 |
instantiation bool :: card_UNIV begin
|
|
1169 |
|
|
1170 |
definition card_UNIV_bool_def:
|
|
1171 |
"card_UNIV_class.card_UNIV = (\<lambda>a :: bool itself. 2)"
|
|
1172 |
|
|
1173 |
instance proof
|
|
1174 |
fix x :: "bool itself"
|
|
1175 |
show "card_UNIV x = card (UNIV :: bool set)"
|
|
1176 |
by(simp add: card_UNIV_bool_def card_UNIV_bool)
|
|
1177 |
qed
|
|
1178 |
|
|
1179 |
end
|
|
1180 |
|
|
1181 |
subsubsection {* @{typ "char"} *}
|
|
1182 |
|
|
1183 |
lemma card_UNIV_char: "card (UNIV :: char set) = 256"
|
|
1184 |
proof -
|
|
1185 |
from enum_distinct
|
|
1186 |
have "card (set (enum :: char list)) = length (enum :: char list)"
|
31486
|
1187 |
by - (rule distinct_card)
|
31379
|
1188 |
also have "set enum = (UNIV :: char set)" by auto
|
31486
|
1189 |
also note enum_chars
|
|
1190 |
finally show ?thesis by (simp add: chars_def)
|
31379
|
1191 |
qed
|
|
1192 |
|
|
1193 |
instantiation char :: card_UNIV begin
|
|
1194 |
|
|
1195 |
definition card_UNIV_char_def:
|
|
1196 |
"card_UNIV_class.card_UNIV = (\<lambda>a :: char itself. 256)"
|
|
1197 |
|
|
1198 |
instance proof
|
|
1199 |
fix x :: "char itself"
|
|
1200 |
show "card_UNIV x = card (UNIV :: char set)"
|
|
1201 |
by(simp add: card_UNIV_char_def card_UNIV_char)
|
|
1202 |
qed
|
|
1203 |
|
|
1204 |
end
|
|
1205 |
|
|
1206 |
subsubsection {* @{typ "'a \<times> 'b"} *}
|
|
1207 |
|
|
1208 |
instantiation * :: (card_UNIV, card_UNIV) card_UNIV begin
|
|
1209 |
|
|
1210 |
definition card_UNIV_product_def:
|
|
1211 |
"card_UNIV_class.card_UNIV = (\<lambda>a :: ('a \<times> 'b) itself. card_UNIV (TYPE('a)) * card_UNIV (TYPE('b)))"
|
|
1212 |
|
|
1213 |
instance proof
|
|
1214 |
fix x :: "('a \<times> 'b) itself"
|
|
1215 |
show "card_UNIV x = card (UNIV :: ('a \<times> 'b) set)"
|
|
1216 |
by(simp add: card_UNIV_product_def card_UNIV UNIV_Times_UNIV[symmetric] card_cartesian_product del: UNIV_Times_UNIV)
|
|
1217 |
qed
|
|
1218 |
|
|
1219 |
end
|
|
1220 |
|
|
1221 |
subsubsection {* @{typ "'a + 'b"} *}
|
|
1222 |
|
|
1223 |
instantiation "+" :: (card_UNIV, card_UNIV) card_UNIV begin
|
|
1224 |
|
|
1225 |
definition card_UNIV_sum_def:
|
|
1226 |
"card_UNIV_class.card_UNIV = (\<lambda>a :: ('a + 'b) itself. let ca = card_UNIV (TYPE('a)); cb = card_UNIV (TYPE('b))
|
|
1227 |
in if ca \<noteq> 0 \<and> cb \<noteq> 0 then ca + cb else 0)"
|
|
1228 |
|
|
1229 |
instance proof
|
|
1230 |
fix x :: "('a + 'b) itself"
|
|
1231 |
show "card_UNIV x = card (UNIV :: ('a + 'b) set)"
|
|
1232 |
by (auto simp add: card_UNIV_sum_def card_UNIV card_eq_0_iff UNIV_Plus_UNIV[symmetric] finite_Plus_iff Let_def card_Plus simp del: UNIV_Plus_UNIV dest!: card_ge_0_finite)
|
|
1233 |
qed
|
|
1234 |
|
|
1235 |
end
|
|
1236 |
|
|
1237 |
subsubsection {* @{typ "'a \<Rightarrow> 'b"} *}
|
|
1238 |
|
|
1239 |
instantiation "fun" :: (card_UNIV, card_UNIV) card_UNIV begin
|
|
1240 |
|
|
1241 |
definition card_UNIV_fun_def:
|
|
1242 |
"card_UNIV_class.card_UNIV = (\<lambda>a :: ('a \<Rightarrow> 'b) itself. let ca = card_UNIV (TYPE('a)); cb = card_UNIV (TYPE('b))
|
|
1243 |
in if ca \<noteq> 0 \<and> cb \<noteq> 0 \<or> cb = 1 then cb ^ ca else 0)"
|
|
1244 |
|
|
1245 |
instance proof
|
|
1246 |
fix x :: "('a \<Rightarrow> 'b) itself"
|
|
1247 |
|
|
1248 |
{ assume "0 < card (UNIV :: 'a set)"
|
|
1249 |
and "0 < card (UNIV :: 'b set)"
|
|
1250 |
hence fina: "finite (UNIV :: 'a set)" and finb: "finite (UNIV :: 'b set)"
|
|
1251 |
by(simp_all only: card_ge_0_finite)
|
|
1252 |
from finite_distinct_list[OF finb] obtain bs
|
|
1253 |
where bs: "set bs = (UNIV :: 'b set)" and distb: "distinct bs" by blast
|
|
1254 |
from finite_distinct_list[OF fina] obtain as
|
|
1255 |
where as: "set as = (UNIV :: 'a set)" and dista: "distinct as" by blast
|
|
1256 |
have cb: "card (UNIV :: 'b set) = length bs"
|
|
1257 |
unfolding bs[symmetric] distinct_card[OF distb] ..
|
|
1258 |
have ca: "card (UNIV :: 'a set) = length as"
|
|
1259 |
unfolding as[symmetric] distinct_card[OF dista] ..
|
|
1260 |
let ?xs = "map (\<lambda>ys. the o map_of (zip as ys)) (n_lists (length as) bs)"
|
|
1261 |
have "UNIV = set ?xs"
|
|
1262 |
proof(rule UNIV_eq_I)
|
|
1263 |
fix f :: "'a \<Rightarrow> 'b"
|
|
1264 |
from as have "f = the \<circ> map_of (zip as (map f as))"
|
|
1265 |
by(auto simp add: map_of_zip_map intro: ext)
|
|
1266 |
thus "f \<in> set ?xs" using bs by(auto simp add: set_n_lists)
|
|
1267 |
qed
|
|
1268 |
moreover have "distinct ?xs" unfolding distinct_map
|
|
1269 |
proof(intro conjI distinct_n_lists distb inj_onI)
|
|
1270 |
fix xs ys :: "'b list"
|
|
1271 |
assume xs: "xs \<in> set (n_lists (length as) bs)"
|
|
1272 |
and ys: "ys \<in> set (n_lists (length as) bs)"
|
|
1273 |
and eq: "the \<circ> map_of (zip as xs) = the \<circ> map_of (zip as ys)"
|
|
1274 |
from xs ys have [simp]: "length xs = length as" "length ys = length as"
|
|
1275 |
by(simp_all add: length_n_lists_elem)
|
|
1276 |
have "map_of (zip as xs) = map_of (zip as ys)"
|
|
1277 |
proof
|
|
1278 |
fix x
|
|
1279 |
from as bs have "\<exists>y. map_of (zip as xs) x = Some y" "\<exists>y. map_of (zip as ys) x = Some y"
|
|
1280 |
by(simp_all add: map_of_zip_is_Some[symmetric])
|
|
1281 |
with eq show "map_of (zip as xs) x = map_of (zip as ys) x"
|
|
1282 |
by(auto dest: fun_cong[where x=x])
|
|
1283 |
qed
|
|
1284 |
with dista show "xs = ys" by(simp add: map_of_zip_inject)
|
|
1285 |
qed
|
|
1286 |
hence "card (set ?xs) = length ?xs" by(simp only: distinct_card)
|
|
1287 |
moreover have "length ?xs = length bs ^ length as" by(simp add: length_n_lists)
|
|
1288 |
ultimately have "card (UNIV :: ('a \<Rightarrow> 'b) set) = card (UNIV :: 'b set) ^ card (UNIV :: 'a set)"
|
|
1289 |
using cb ca by simp }
|
|
1290 |
moreover {
|
|
1291 |
assume cb: "card (UNIV :: 'b set) = Suc 0"
|
|
1292 |
then obtain b where b: "UNIV = {b :: 'b}" by(auto simp add: card_Suc_eq)
|
|
1293 |
have eq: "UNIV = {\<lambda>x :: 'a. b ::'b}"
|
|
1294 |
proof(rule UNIV_eq_I)
|
|
1295 |
fix x :: "'a \<Rightarrow> 'b"
|
|
1296 |
{ fix y
|
|
1297 |
have "x y \<in> UNIV" ..
|
|
1298 |
hence "x y = b" unfolding b by simp }
|
|
1299 |
thus "x \<in> {\<lambda>x. b}" by(auto intro: ext)
|
|
1300 |
qed
|
|
1301 |
have "card (UNIV :: ('a \<Rightarrow> 'b) set) = Suc 0" unfolding eq by simp }
|
|
1302 |
ultimately show "card_UNIV x = card (UNIV :: ('a \<Rightarrow> 'b) set)"
|
|
1303 |
unfolding card_UNIV_fun_def card_UNIV Let_def
|
|
1304 |
by(auto simp del: One_nat_def)(auto simp add: card_eq_0_iff dest: finite_fun_UNIVD2 finite_fun_UNIVD1)
|
|
1305 |
qed
|
|
1306 |
|
|
1307 |
end
|
|
1308 |
|
|
1309 |
subsubsection {* @{typ "'a option"} *}
|
|
1310 |
|
|
1311 |
instantiation option :: (card_UNIV) card_UNIV
|
|
1312 |
begin
|
|
1313 |
|
|
1314 |
definition card_UNIV_option_def:
|
|
1315 |
"card_UNIV_class.card_UNIV = (\<lambda>a :: 'a option itself. let c = card_UNIV (TYPE('a))
|
|
1316 |
in if c \<noteq> 0 then Suc c else 0)"
|
|
1317 |
|
|
1318 |
instance proof
|
|
1319 |
fix x :: "'a option itself"
|
|
1320 |
show "card_UNIV x = card (UNIV :: 'a option set)"
|
|
1321 |
unfolding UNIV_option_conv
|
|
1322 |
by(auto simp add: card_UNIV_option_def card_UNIV card_eq_0_iff Let_def intro: inj_Some dest: finite_imageD)
|
|
1323 |
(subst card_insert_disjoint, auto simp add: card_eq_0_iff card_image inj_Some intro: finite_imageI card_ge_0_finite)
|
|
1324 |
qed
|
|
1325 |
|
|
1326 |
end
|
|
1327 |
|
|
1328 |
|
|
1329 |
subsection {* Universal quantification *}
|
|
1330 |
|
|
1331 |
definition finfun_All_except :: "'a list \<Rightarrow> 'a \<Rightarrow>\<^isub>f bool \<Rightarrow> bool"
|
|
1332 |
where [code del]: "finfun_All_except A P \<equiv> \<forall>a. a \<in> set A \<or> P\<^sub>f a"
|
|
1333 |
|
|
1334 |
lemma finfun_All_except_const: "finfun_All_except A (\<lambda>\<^isup>f b) \<longleftrightarrow> b \<or> set A = UNIV"
|
|
1335 |
by(auto simp add: finfun_All_except_def)
|
|
1336 |
|
|
1337 |
lemma finfun_All_except_const_finfun_UNIV_code [code]:
|
|
1338 |
"finfun_All_except A (\<lambda>\<^isup>f b) = (b \<or> is_list_UNIV A)"
|
|
1339 |
by(simp add: finfun_All_except_const is_list_UNIV_iff)
|
|
1340 |
|
|
1341 |
lemma finfun_All_except_update:
|
|
1342 |
"finfun_All_except A f(\<^sup>f a := b) = ((a \<in> set A \<or> b) \<and> finfun_All_except (a # A) f)"
|
|
1343 |
by(fastsimp simp add: finfun_All_except_def finfun_upd_apply)
|
|
1344 |
|
|
1345 |
lemma finfun_All_except_update_code [code]:
|
|
1346 |
fixes a :: "'a :: card_UNIV"
|
|
1347 |
shows "finfun_All_except A (finfun_update_code f a b) = ((a \<in> set A \<or> b) \<and> finfun_All_except (a # A) f)"
|
|
1348 |
by(simp add: finfun_All_except_update)
|
|
1349 |
|
|
1350 |
definition finfun_All :: "'a \<Rightarrow>\<^isub>f bool \<Rightarrow> bool"
|
|
1351 |
where "finfun_All = finfun_All_except []"
|
|
1352 |
|
|
1353 |
lemma finfun_All_const [simp]: "finfun_All (\<lambda>\<^isup>f b) = b"
|
|
1354 |
by(simp add: finfun_All_def finfun_All_except_def)
|
|
1355 |
|
|
1356 |
lemma finfun_All_update: "finfun_All f(\<^sup>f a := b) = (b \<and> finfun_All_except [a] f)"
|
|
1357 |
by(simp add: finfun_All_def finfun_All_except_update)
|
|
1358 |
|
|
1359 |
lemma finfun_All_All: "finfun_All P = All P\<^sub>f"
|
|
1360 |
by(simp add: finfun_All_def finfun_All_except_def)
|
|
1361 |
|
|
1362 |
|
|
1363 |
definition finfun_Ex :: "'a \<Rightarrow>\<^isub>f bool \<Rightarrow> bool"
|
|
1364 |
where "finfun_Ex P = Not (finfun_All (Not \<circ>\<^isub>f P))"
|
|
1365 |
|
|
1366 |
lemma finfun_Ex_Ex: "finfun_Ex P = Ex P\<^sub>f"
|
|
1367 |
unfolding finfun_Ex_def finfun_All_All by simp
|
|
1368 |
|
|
1369 |
lemma finfun_Ex_const [simp]: "finfun_Ex (\<lambda>\<^isup>f b) = b"
|
|
1370 |
by(simp add: finfun_Ex_def)
|
|
1371 |
|
|
1372 |
|
|
1373 |
subsection {* A diagonal operator for FinFuns *}
|
|
1374 |
|
|
1375 |
definition finfun_Diag :: "'a \<Rightarrow>\<^isub>f 'b \<Rightarrow> 'a \<Rightarrow>\<^isub>f 'c \<Rightarrow> 'a \<Rightarrow>\<^isub>f ('b \<times> 'c)" ("(1'(_,/ _')\<^sup>f)" [0, 0] 1000)
|
|
1376 |
where [code del]: "finfun_Diag f g = finfun_rec (\<lambda>b. Pair b \<circ>\<^isub>f g) (\<lambda>a b c. c(\<^sup>f a := (b, g\<^sub>f a))) f"
|
|
1377 |
|
|
1378 |
interpretation finfun_Diag_aux: finfun_rec_wf_aux "\<lambda>b. Pair b \<circ>\<^isub>f g" "\<lambda>a b c. c(\<^sup>f a := (b, g\<^sub>f a))"
|
|
1379 |
by(unfold_locales)(simp_all add: expand_finfun_eq expand_fun_eq finfun_upd_apply)
|
|
1380 |
|
|
1381 |
interpretation finfun_Diag: finfun_rec_wf "\<lambda>b. Pair b \<circ>\<^isub>f g" "\<lambda>a b c. c(\<^sup>f a := (b, g\<^sub>f a))"
|
|
1382 |
proof
|
|
1383 |
fix b' b :: 'a
|
|
1384 |
assume fin: "finite (UNIV :: 'c set)"
|
|
1385 |
{ fix A :: "'c set"
|
|
1386 |
interpret fun_left_comm "\<lambda>a c. c(\<^sup>f a := (b', g\<^sub>f a))" by(rule finfun_Diag_aux.upd_left_comm)
|
|
1387 |
from fin have "finite A" by(auto intro: finite_subset)
|
|
1388 |
hence "fold (\<lambda>a c. c(\<^sup>f a := (b', g\<^sub>f a))) (Pair b \<circ>\<^isub>f g) A =
|
|
1389 |
Abs_finfun (\<lambda>a. (if a \<in> A then b' else b, g\<^sub>f a))"
|
|
1390 |
by(induct)(simp_all add: finfun_const_def finfun_comp_conv_comp o_def,
|
|
1391 |
auto simp add: finfun_update_def Abs_finfun_inverse_finite fun_upd_def Abs_finfun_inject_finite expand_fun_eq fin) }
|
|
1392 |
from this[of UNIV] show "fold (\<lambda>a c. c(\<^sup>f a := (b', g\<^sub>f a))) (Pair b \<circ>\<^isub>f g) UNIV = Pair b' \<circ>\<^isub>f g"
|
|
1393 |
by(simp add: finfun_const_def finfun_comp_conv_comp o_def)
|
|
1394 |
qed
|
|
1395 |
|
|
1396 |
lemma finfun_Diag_const1: "(\<lambda>\<^isup>f b, g)\<^sup>f = Pair b \<circ>\<^isub>f g"
|
|
1397 |
by(simp add: finfun_Diag_def)
|
|
1398 |
|
|
1399 |
text {*
|
|
1400 |
Do not use @{thm finfun_Diag_const1} for the code generator because @{term "Pair b"} is injective, i.e. if @{term g} is free of redundant updates, there is no need to check for redundant updates as is done for @{text "\<circ>\<^isub>f"}.
|
|
1401 |
*}
|
|
1402 |
|
|
1403 |
lemma finfun_Diag_const_code [code]:
|
|
1404 |
"(\<lambda>\<^isup>f b, \<lambda>\<^isup>f c)\<^sup>f = (\<lambda>\<^isup>f (b, c))"
|
|
1405 |
"(\<lambda>\<^isup>f b, g(\<^sup>f\<^sup>c a := c))\<^sup>f = (\<lambda>\<^isup>f b, g)\<^sup>f(\<^sup>f\<^sup>c a := (b, c))"
|
|
1406 |
by(simp_all add: finfun_Diag_const1)
|
|
1407 |
|
|
1408 |
lemma finfun_Diag_update1: "(f(\<^sup>f a := b), g)\<^sup>f = (f, g)\<^sup>f(\<^sup>f a := (b, g\<^sub>f a))"
|
|
1409 |
and finfun_Diag_update1_code [code]: "(finfun_update_code f a b, g)\<^sup>f = (f, g)\<^sup>f(\<^sup>f a := (b, g\<^sub>f a))"
|
|
1410 |
by(simp_all add: finfun_Diag_def)
|
|
1411 |
|
|
1412 |
lemma finfun_Diag_const2: "(f, \<lambda>\<^isup>f c)\<^sup>f = (\<lambda>b. (b, c)) \<circ>\<^isub>f f"
|
|
1413 |
by(induct f rule: finfun_weak_induct)(auto intro!: finfun_ext simp add: finfun_upd_apply finfun_Diag_const1 finfun_Diag_update1)
|
|
1414 |
|
|
1415 |
lemma finfun_Diag_update2: "(f, g(\<^sup>f a := c))\<^sup>f = (f, g)\<^sup>f(\<^sup>f a := (f\<^sub>f a, c))"
|
|
1416 |
by(induct f rule: finfun_weak_induct)(auto intro!: finfun_ext simp add: finfun_upd_apply finfun_Diag_const1 finfun_Diag_update1)
|
|
1417 |
|
|
1418 |
lemma finfun_Diag_const_const [simp]: "(\<lambda>\<^isup>f b, \<lambda>\<^isup>f c)\<^sup>f = (\<lambda>\<^isup>f (b, c))"
|
|
1419 |
by(simp add: finfun_Diag_const1)
|
|
1420 |
|
|
1421 |
lemma finfun_Diag_const_update:
|
|
1422 |
"(\<lambda>\<^isup>f b, g(\<^sup>f a := c))\<^sup>f = (\<lambda>\<^isup>f b, g)\<^sup>f(\<^sup>f a := (b, c))"
|
|
1423 |
by(simp add: finfun_Diag_const1)
|
|
1424 |
|
|
1425 |
lemma finfun_Diag_update_const:
|
|
1426 |
"(f(\<^sup>f a := b), \<lambda>\<^isup>f c)\<^sup>f = (f, \<lambda>\<^isup>f c)\<^sup>f(\<^sup>f a := (b, c))"
|
|
1427 |
by(simp add: finfun_Diag_def)
|
|
1428 |
|
|
1429 |
lemma finfun_Diag_update_update:
|
|
1430 |
"(f(\<^sup>f a := b), g(\<^sup>f a' := c))\<^sup>f = (if a = a' then (f, g)\<^sup>f(\<^sup>f a := (b, c)) else (f, g)\<^sup>f(\<^sup>f a := (b, g\<^sub>f a))(\<^sup>f a' := (f\<^sub>f a', c)))"
|
|
1431 |
by(auto simp add: finfun_Diag_update1 finfun_Diag_update2)
|
|
1432 |
|
|
1433 |
lemma finfun_Diag_apply [simp]: "(f, g)\<^sup>f\<^sub>f = (\<lambda>x. (f\<^sub>f x, g\<^sub>f x))"
|
|
1434 |
by(induct f rule: finfun_weak_induct)(auto simp add: finfun_Diag_const1 finfun_Diag_update1 finfun_upd_apply intro: ext)
|
|
1435 |
|
|
1436 |
declare finfun_simp [simp] finfun_iff [iff] finfun_intro [intro]
|
|
1437 |
|
|
1438 |
lemma finfun_Diag_conv_Abs_finfun:
|
|
1439 |
"(f, g)\<^sup>f = Abs_finfun ((\<lambda>x. (Rep_finfun f x, Rep_finfun g x)))"
|
|
1440 |
proof -
|
|
1441 |
have "(\<lambda>f :: 'a \<Rightarrow>\<^isub>f 'b. (f, g)\<^sup>f) = (\<lambda>f. Abs_finfun ((\<lambda>x. (Rep_finfun f x, Rep_finfun g x))))"
|
|
1442 |
proof(rule finfun_rec_unique)
|
|
1443 |
{ fix c show "Abs_finfun (\<lambda>x. (Rep_finfun (\<lambda>\<^isup>f c) x, Rep_finfun g x)) = Pair c \<circ>\<^isub>f g"
|
|
1444 |
by(simp add: finfun_comp_conv_comp finfun_apply_Rep_finfun o_def finfun_const_def) }
|
|
1445 |
{ fix g' a b
|
|
1446 |
show "Abs_finfun (\<lambda>x. (Rep_finfun g'(\<^sup>f a := b) x, Rep_finfun g x)) =
|
|
1447 |
(Abs_finfun (\<lambda>x. (Rep_finfun g' x, Rep_finfun g x)))(\<^sup>f a := (b, g\<^sub>f a))"
|
|
1448 |
by(auto simp add: finfun_update_def expand_fun_eq finfun_apply_Rep_finfun simp del: fun_upd_apply) simp }
|
|
1449 |
qed(simp_all add: finfun_Diag_const1 finfun_Diag_update1)
|
|
1450 |
thus ?thesis by(auto simp add: expand_fun_eq)
|
|
1451 |
qed
|
|
1452 |
|
|
1453 |
declare finfun_simp [simp del] finfun_iff [iff del] finfun_intro [rule del]
|
|
1454 |
|
|
1455 |
lemma finfun_Diag_eq: "(f, g)\<^sup>f = (f', g')\<^sup>f \<longleftrightarrow> f = f' \<and> g = g'"
|
|
1456 |
by(auto simp add: expand_finfun_eq expand_fun_eq)
|
|
1457 |
|
|
1458 |
definition finfun_fst :: "'a \<Rightarrow>\<^isub>f ('b \<times> 'c) \<Rightarrow> 'a \<Rightarrow>\<^isub>f 'b"
|
|
1459 |
where [code]: "finfun_fst f = fst \<circ>\<^isub>f f"
|
|
1460 |
|
|
1461 |
lemma finfun_fst_const: "finfun_fst (\<lambda>\<^isup>f bc) = (\<lambda>\<^isup>f fst bc)"
|
|
1462 |
by(simp add: finfun_fst_def)
|
|
1463 |
|
|
1464 |
lemma finfun_fst_update: "finfun_fst (f(\<^sup>f a := bc)) = (finfun_fst f)(\<^sup>f a := fst bc)"
|
|
1465 |
and finfun_fst_update_code: "finfun_fst (finfun_update_code f a bc) = (finfun_fst f)(\<^sup>f a := fst bc)"
|
|
1466 |
by(simp_all add: finfun_fst_def)
|
|
1467 |
|
|
1468 |
lemma finfun_fst_comp_conv: "finfun_fst (f \<circ>\<^isub>f g) = (fst \<circ> f) \<circ>\<^isub>f g"
|
|
1469 |
by(simp add: finfun_fst_def)
|
|
1470 |
|
|
1471 |
lemma finfun_fst_conv [simp]: "finfun_fst (f, g)\<^sup>f = f"
|
|
1472 |
by(induct f rule: finfun_weak_induct)(simp_all add: finfun_Diag_const1 finfun_fst_comp_conv o_def finfun_Diag_update1 finfun_fst_update)
|
|
1473 |
|
|
1474 |
lemma finfun_fst_conv_Abs_finfun: "finfun_fst = (\<lambda>f. Abs_finfun (fst o Rep_finfun f))"
|
|
1475 |
by(simp add: finfun_fst_def_raw finfun_comp_conv_comp finfun_apply_Rep_finfun)
|
|
1476 |
|
|
1477 |
|
|
1478 |
definition finfun_snd :: "'a \<Rightarrow>\<^isub>f ('b \<times> 'c) \<Rightarrow> 'a \<Rightarrow>\<^isub>f 'c"
|
|
1479 |
where [code]: "finfun_snd f = snd \<circ>\<^isub>f f"
|
|
1480 |
|
|
1481 |
lemma finfun_snd_const: "finfun_snd (\<lambda>\<^isup>f bc) = (\<lambda>\<^isup>f snd bc)"
|
|
1482 |
by(simp add: finfun_snd_def)
|
|
1483 |
|
|
1484 |
lemma finfun_snd_update: "finfun_snd (f(\<^sup>f a := bc)) = (finfun_snd f)(\<^sup>f a := snd bc)"
|
|
1485 |
and finfun_snd_update_code [code]: "finfun_snd (finfun_update_code f a bc) = (finfun_snd f)(\<^sup>f a := snd bc)"
|
|
1486 |
by(simp_all add: finfun_snd_def)
|
|
1487 |
|
|
1488 |
lemma finfun_snd_comp_conv: "finfun_snd (f \<circ>\<^isub>f g) = (snd \<circ> f) \<circ>\<^isub>f g"
|
|
1489 |
by(simp add: finfun_snd_def)
|
|
1490 |
|
|
1491 |
lemma finfun_snd_conv [simp]: "finfun_snd (f, g)\<^sup>f = g"
|
|
1492 |
apply(induct f rule: finfun_weak_induct)
|
|
1493 |
apply(auto simp add: finfun_Diag_const1 finfun_snd_comp_conv o_def finfun_Diag_update1 finfun_snd_update finfun_upd_apply intro: finfun_ext)
|
|
1494 |
done
|
|
1495 |
|
|
1496 |
lemma finfun_snd_conv_Abs_finfun: "finfun_snd = (\<lambda>f. Abs_finfun (snd o Rep_finfun f))"
|
|
1497 |
by(simp add: finfun_snd_def_raw finfun_comp_conv_comp finfun_apply_Rep_finfun)
|
|
1498 |
|
|
1499 |
lemma finfun_Diag_collapse [simp]: "(finfun_fst f, finfun_snd f)\<^sup>f = f"
|
|
1500 |
by(induct f rule: finfun_weak_induct)(simp_all add: finfun_fst_const finfun_snd_const finfun_fst_update finfun_snd_update finfun_Diag_update_update)
|
|
1501 |
|
|
1502 |
subsection {* Currying for FinFuns *}
|
|
1503 |
|
|
1504 |
definition finfun_curry :: "('a \<times> 'b) \<Rightarrow>\<^isub>f 'c \<Rightarrow> 'a \<Rightarrow>\<^isub>f 'b \<Rightarrow>\<^isub>f 'c"
|
|
1505 |
where [code del]: "finfun_curry = finfun_rec (finfun_const \<circ> finfun_const) (\<lambda>(a, b) c f. f(\<^sup>f a := (f\<^sub>f a)(\<^sup>f b := c)))"
|
|
1506 |
|
|
1507 |
interpretation finfun_curry_aux: finfun_rec_wf_aux "finfun_const \<circ> finfun_const" "\<lambda>(a, b) c f. f(\<^sup>f a := (f\<^sub>f a)(\<^sup>f b := c))"
|
|
1508 |
apply(unfold_locales)
|
|
1509 |
apply(auto simp add: split_def finfun_update_twist finfun_upd_apply split_paired_all finfun_update_const_same)
|
|
1510 |
done
|
|
1511 |
|
|
1512 |
declare finfun_simp [simp] finfun_iff [iff] finfun_intro [intro]
|
|
1513 |
|
|
1514 |
interpretation finfun_curry: finfun_rec_wf "finfun_const \<circ> finfun_const" "\<lambda>(a, b) c f. f(\<^sup>f a := (f\<^sub>f a)(\<^sup>f b := c))"
|
|
1515 |
proof(unfold_locales)
|
|
1516 |
fix b' b :: 'b
|
|
1517 |
assume fin: "finite (UNIV :: ('c \<times> 'a) set)"
|
|
1518 |
hence fin1: "finite (UNIV :: 'c set)" and fin2: "finite (UNIV :: 'a set)"
|
|
1519 |
unfolding UNIV_Times_UNIV[symmetric]
|
|
1520 |
by(fastsimp dest: finite_cartesian_productD1 finite_cartesian_productD2)+
|
|
1521 |
note [simp] = Abs_finfun_inverse_finite[OF fin] Abs_finfun_inverse_finite[OF fin1] Abs_finfun_inverse_finite[OF fin2]
|
|
1522 |
{ fix A :: "('c \<times> 'a) set"
|
|
1523 |
interpret fun_left_comm "\<lambda>a :: 'c \<times> 'a. (\<lambda>(a, b) c f. f(\<^sup>f a := (f\<^sub>f a)(\<^sup>f b := c))) a b'"
|
|
1524 |
by(rule finfun_curry_aux.upd_left_comm)
|
|
1525 |
from fin have "finite A" by(auto intro: finite_subset)
|
|
1526 |
hence "fold (\<lambda>a :: 'c \<times> 'a. (\<lambda>(a, b) c f. f(\<^sup>f a := (f\<^sub>f a)(\<^sup>f b := c))) a b') ((finfun_const \<circ> finfun_const) b) A = Abs_finfun (\<lambda>a. Abs_finfun (\<lambda>b''. if (a, b'') \<in> A then b' else b))"
|
|
1527 |
by induct (simp_all, auto simp add: finfun_update_def finfun_const_def split_def finfun_apply_Rep_finfun intro!: arg_cong[where f="Abs_finfun"] ext) }
|
|
1528 |
from this[of UNIV]
|
|
1529 |
show "fold (\<lambda>a :: 'c \<times> 'a. (\<lambda>(a, b) c f. f(\<^sup>f a := (f\<^sub>f a)(\<^sup>f b := c))) a b') ((finfun_const \<circ> finfun_const) b) UNIV = (finfun_const \<circ> finfun_const) b'"
|
|
1530 |
by(simp add: finfun_const_def)
|
|
1531 |
qed
|
|
1532 |
|
|
1533 |
declare finfun_simp [simp del] finfun_iff [iff del] finfun_intro [rule del]
|
|
1534 |
|
|
1535 |
lemma finfun_curry_const [simp, code]: "finfun_curry (\<lambda>\<^isup>f c) = (\<lambda>\<^isup>f \<lambda>\<^isup>f c)"
|
|
1536 |
by(simp add: finfun_curry_def)
|
|
1537 |
|
|
1538 |
lemma finfun_curry_update [simp]:
|
|
1539 |
"finfun_curry (f(\<^sup>f (a, b) := c)) = (finfun_curry f)(\<^sup>f a := ((finfun_curry f)\<^sub>f a)(\<^sup>f b := c))"
|
|
1540 |
and finfun_curry_update_code [code]:
|
|
1541 |
"finfun_curry (f(\<^sup>f\<^sup>c (a, b) := c)) = (finfun_curry f)(\<^sup>f a := ((finfun_curry f)\<^sub>f a)(\<^sup>f b := c))"
|
|
1542 |
by(simp_all add: finfun_curry_def)
|
|
1543 |
|
|
1544 |
declare finfun_simp [simp] finfun_iff [iff] finfun_intro [intro]
|
|
1545 |
|
|
1546 |
lemma finfun_Abs_finfun_curry: assumes fin: "f \<in> finfun"
|
|
1547 |
shows "(\<lambda>a. Abs_finfun (curry f a)) \<in> finfun"
|
|
1548 |
proof -
|
|
1549 |
from fin obtain c where c: "finite {ab. f ab \<noteq> c}" unfolding finfun_def by blast
|
|
1550 |
have "{a. \<exists>b. f (a, b) \<noteq> c} = fst ` {ab. f ab \<noteq> c}" by(force)
|
|
1551 |
hence "{a. curry f a \<noteq> (\<lambda>x. c)} = fst ` {ab. f ab \<noteq> c}"
|
|
1552 |
by(auto simp add: curry_def expand_fun_eq)
|
|
1553 |
with fin c have "finite {a. Abs_finfun (curry f a) \<noteq> (\<lambda>\<^isup>f c)}"
|
|
1554 |
by(simp add: finfun_const_def finfun_curry)
|
|
1555 |
thus ?thesis unfolding finfun_def by auto
|
|
1556 |
qed
|
|
1557 |
|
|
1558 |
lemma finfun_curry_conv_curry:
|
|
1559 |
fixes f :: "('a \<times> 'b) \<Rightarrow>\<^isub>f 'c"
|
|
1560 |
shows "finfun_curry f = Abs_finfun (\<lambda>a. Abs_finfun (curry (Rep_finfun f) a))"
|
|
1561 |
proof -
|
|
1562 |
have "finfun_curry = (\<lambda>f :: ('a \<times> 'b) \<Rightarrow>\<^isub>f 'c. Abs_finfun (\<lambda>a. Abs_finfun (curry (Rep_finfun f) a)))"
|
|
1563 |
proof(rule finfun_rec_unique)
|
|
1564 |
{ fix c show "finfun_curry (\<lambda>\<^isup>f c) = (\<lambda>\<^isup>f \<lambda>\<^isup>f c)" by simp }
|
|
1565 |
{ fix f a c show "finfun_curry (f(\<^sup>f a := c)) = (finfun_curry f)(\<^sup>f fst a := ((finfun_curry f)\<^sub>f (fst a))(\<^sup>f snd a := c))"
|
|
1566 |
by(cases a) simp }
|
|
1567 |
{ fix c show "Abs_finfun (\<lambda>a. Abs_finfun (curry (Rep_finfun (\<lambda>\<^isup>f c)) a)) = (\<lambda>\<^isup>f \<lambda>\<^isup>f c)"
|
|
1568 |
by(simp add: finfun_curry_def finfun_const_def curry_def) }
|
|
1569 |
{ fix g a b
|
|
1570 |
show "Abs_finfun (\<lambda>aa. Abs_finfun (curry (Rep_finfun g(\<^sup>f a := b)) aa)) =
|
|
1571 |
(Abs_finfun (\<lambda>a. Abs_finfun (curry (Rep_finfun g) a)))(\<^sup>f
|
|
1572 |
fst a := ((Abs_finfun (\<lambda>a. Abs_finfun (curry (Rep_finfun g) a)))\<^sub>f (fst a))(\<^sup>f snd a := b))"
|
|
1573 |
by(cases a)(auto intro!: ext arg_cong[where f=Abs_finfun] simp add: finfun_curry_def finfun_update_def finfun_apply_Rep_finfun finfun_curry finfun_Abs_finfun_curry) }
|
|
1574 |
qed
|
|
1575 |
thus ?thesis by(auto simp add: expand_fun_eq)
|
|
1576 |
qed
|
|
1577 |
|
|
1578 |
subsection {* Executable equality for FinFuns *}
|
|
1579 |
|
|
1580 |
lemma eq_finfun_All_ext: "(f = g) \<longleftrightarrow> finfun_All ((\<lambda>(x, y). x = y) \<circ>\<^isub>f (f, g)\<^sup>f)"
|
|
1581 |
by(simp add: expand_finfun_eq expand_fun_eq finfun_All_All o_def)
|
|
1582 |
|
|
1583 |
instantiation finfun :: ("{card_UNIV,eq}",eq) eq begin
|
|
1584 |
definition eq_finfun_def: "eq_class.eq f g \<longleftrightarrow> finfun_All ((\<lambda>(x, y). x = y) \<circ>\<^isub>f (f, g)\<^sup>f)"
|
|
1585 |
instance by(intro_classes)(simp add: eq_finfun_All_ext eq_finfun_def)
|
|
1586 |
end
|
|
1587 |
|
|
1588 |
subsection {* Operator that explicitly removes all redundant updates in the generated representations *}
|
|
1589 |
|
|
1590 |
definition finfun_clearjunk :: "'a \<Rightarrow>\<^isub>f 'b \<Rightarrow> 'a \<Rightarrow>\<^isub>f 'b"
|
|
1591 |
where [simp, code del]: "finfun_clearjunk = id"
|
|
1592 |
|
|
1593 |
lemma finfun_clearjunk_const [code]: "finfun_clearjunk (\<lambda>\<^isup>f b) = (\<lambda>\<^isup>f b)"
|
|
1594 |
by simp
|
|
1595 |
|
|
1596 |
lemma finfun_clearjunk_update [code]: "finfun_clearjunk (finfun_update_code f a b) = f(\<^sup>f a := b)"
|
|
1597 |
by simp
|
|
1598 |
|
|
1599 |
end |