author | wenzelm |
Fri, 16 Apr 1999 14:42:44 +0200 | |
changeset 6435 | 154b88d2b62e |
parent 5439 | 2e0c18eedfd0 |
child 8161 | bde1391fd0a5 |
permissions | -rw-r--r-- |
1461 | 1 |
(* Title: HOLCF/ssum3.ML |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
2 |
ID: $Id$ |
1461 | 3 |
Author: Franz Regensburger |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
4 |
Copyright 1993 Technische Universitaet Muenchen |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
5 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
6 |
Lemmas for ssum3.thy |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
7 |
*) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
8 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
9 |
open Ssum3; |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
10 |
|
2640 | 11 |
(* for compatibility with old HOLCF-Version *) |
12 |
qed_goal "inst_ssum_pcpo" thy "UU = Isinl UU" |
|
13 |
(fn prems => |
|
14 |
[ |
|
15 |
(simp_tac (HOL_ss addsimps [UU_def,UU_ssum_def]) 1) |
|
16 |
]); |
|
17 |
||
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
18 |
(* ------------------------------------------------------------------------ *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
19 |
(* continuity for Isinl and Isinr *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
20 |
(* ------------------------------------------------------------------------ *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
21 |
|
892 | 22 |
qed_goal "contlub_Isinl" Ssum3.thy "contlub(Isinl)" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
23 |
(fn prems => |
1461 | 24 |
[ |
25 |
(rtac contlubI 1), |
|
26 |
(strip_tac 1), |
|
27 |
(rtac trans 1), |
|
28 |
(rtac (thelub_ssum1a RS sym) 2), |
|
29 |
(rtac allI 3), |
|
30 |
(rtac exI 3), |
|
31 |
(rtac refl 3), |
|
32 |
(etac (monofun_Isinl RS ch2ch_monofun) 2), |
|
1675 | 33 |
(case_tac "lub(range(Y))=UU" 1), |
1461 | 34 |
(res_inst_tac [("s","UU"),("t","lub(range(Y))")] ssubst 1), |
35 |
(atac 1), |
|
36 |
(res_inst_tac [("f","Isinl")] arg_cong 1), |
|
37 |
(rtac (chain_UU_I_inverse RS sym) 1), |
|
38 |
(rtac allI 1), |
|
39 |
(res_inst_tac [("s","UU"),("t","Y(i)")] ssubst 1), |
|
40 |
(etac (chain_UU_I RS spec ) 1), |
|
41 |
(atac 1), |
|
42 |
(rtac Iwhen1 1), |
|
43 |
(res_inst_tac [("f","Isinl")] arg_cong 1), |
|
44 |
(rtac lub_equal 1), |
|
45 |
(atac 1), |
|
46 |
(rtac (monofun_Iwhen3 RS ch2ch_monofun) 1), |
|
47 |
(etac (monofun_Isinl RS ch2ch_monofun) 1), |
|
48 |
(rtac allI 1), |
|
1675 | 49 |
(case_tac "Y(k)=UU" 1), |
1461 | 50 |
(asm_simp_tac Ssum0_ss 1), |
51 |
(asm_simp_tac Ssum0_ss 1) |
|
52 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
53 |
|
892 | 54 |
qed_goal "contlub_Isinr" Ssum3.thy "contlub(Isinr)" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
55 |
(fn prems => |
1461 | 56 |
[ |
57 |
(rtac contlubI 1), |
|
58 |
(strip_tac 1), |
|
59 |
(rtac trans 1), |
|
60 |
(rtac (thelub_ssum1b RS sym) 2), |
|
61 |
(rtac allI 3), |
|
62 |
(rtac exI 3), |
|
63 |
(rtac refl 3), |
|
64 |
(etac (monofun_Isinr RS ch2ch_monofun) 2), |
|
1675 | 65 |
(case_tac "lub(range(Y))=UU" 1), |
1461 | 66 |
(res_inst_tac [("s","UU"),("t","lub(range(Y))")] ssubst 1), |
67 |
(atac 1), |
|
68 |
((rtac arg_cong 1) THEN (rtac (chain_UU_I_inverse RS sym) 1)), |
|
69 |
(rtac allI 1), |
|
70 |
(res_inst_tac [("s","UU"),("t","Y(i)")] ssubst 1), |
|
71 |
(etac (chain_UU_I RS spec ) 1), |
|
72 |
(atac 1), |
|
73 |
(rtac (strict_IsinlIsinr RS subst) 1), |
|
74 |
(rtac Iwhen1 1), |
|
75 |
((rtac arg_cong 1) THEN (rtac lub_equal 1)), |
|
76 |
(atac 1), |
|
77 |
(rtac (monofun_Iwhen3 RS ch2ch_monofun) 1), |
|
78 |
(etac (monofun_Isinr RS ch2ch_monofun) 1), |
|
79 |
(rtac allI 1), |
|
1675 | 80 |
(case_tac "Y(k)=UU" 1), |
1461 | 81 |
(asm_simp_tac Ssum0_ss 1), |
82 |
(asm_simp_tac Ssum0_ss 1) |
|
83 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
84 |
|
1168
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents:
892
diff
changeset
|
85 |
qed_goal "cont_Isinl" Ssum3.thy "cont(Isinl)" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
86 |
(fn prems => |
1461 | 87 |
[ |
88 |
(rtac monocontlub2cont 1), |
|
89 |
(rtac monofun_Isinl 1), |
|
90 |
(rtac contlub_Isinl 1) |
|
91 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
92 |
|
1168
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents:
892
diff
changeset
|
93 |
qed_goal "cont_Isinr" Ssum3.thy "cont(Isinr)" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
94 |
(fn prems => |
1461 | 95 |
[ |
96 |
(rtac monocontlub2cont 1), |
|
97 |
(rtac monofun_Isinr 1), |
|
98 |
(rtac contlub_Isinr 1) |
|
99 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
100 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
101 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
102 |
(* ------------------------------------------------------------------------ *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
103 |
(* continuity for Iwhen in the firts two arguments *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
104 |
(* ------------------------------------------------------------------------ *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
105 |
|
892 | 106 |
qed_goal "contlub_Iwhen1" Ssum3.thy "contlub(Iwhen)" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
107 |
(fn prems => |
1461 | 108 |
[ |
109 |
(rtac contlubI 1), |
|
110 |
(strip_tac 1), |
|
111 |
(rtac trans 1), |
|
112 |
(rtac (thelub_fun RS sym) 2), |
|
113 |
(etac (monofun_Iwhen1 RS ch2ch_monofun) 2), |
|
114 |
(rtac (expand_fun_eq RS iffD2) 1), |
|
115 |
(strip_tac 1), |
|
116 |
(rtac trans 1), |
|
117 |
(rtac (thelub_fun RS sym) 2), |
|
118 |
(rtac ch2ch_fun 2), |
|
119 |
(etac (monofun_Iwhen1 RS ch2ch_monofun) 2), |
|
120 |
(rtac (expand_fun_eq RS iffD2) 1), |
|
121 |
(strip_tac 1), |
|
122 |
(res_inst_tac [("p","xa")] IssumE 1), |
|
123 |
(asm_simp_tac Ssum0_ss 1), |
|
124 |
(rtac (lub_const RS thelubI RS sym) 1), |
|
125 |
(asm_simp_tac Ssum0_ss 1), |
|
126 |
(etac contlub_cfun_fun 1), |
|
127 |
(asm_simp_tac Ssum0_ss 1), |
|
128 |
(rtac (lub_const RS thelubI RS sym) 1) |
|
129 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
130 |
|
892 | 131 |
qed_goal "contlub_Iwhen2" Ssum3.thy "contlub(Iwhen(f))" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
132 |
(fn prems => |
1461 | 133 |
[ |
134 |
(rtac contlubI 1), |
|
135 |
(strip_tac 1), |
|
136 |
(rtac trans 1), |
|
137 |
(rtac (thelub_fun RS sym) 2), |
|
138 |
(etac (monofun_Iwhen2 RS ch2ch_monofun) 2), |
|
139 |
(rtac (expand_fun_eq RS iffD2) 1), |
|
140 |
(strip_tac 1), |
|
141 |
(res_inst_tac [("p","x")] IssumE 1), |
|
142 |
(asm_simp_tac Ssum0_ss 1), |
|
143 |
(rtac (lub_const RS thelubI RS sym) 1), |
|
144 |
(asm_simp_tac Ssum0_ss 1), |
|
145 |
(rtac (lub_const RS thelubI RS sym) 1), |
|
146 |
(asm_simp_tac Ssum0_ss 1), |
|
147 |
(etac contlub_cfun_fun 1) |
|
148 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
149 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
150 |
(* ------------------------------------------------------------------------ *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
151 |
(* continuity for Iwhen in its third argument *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
152 |
(* ------------------------------------------------------------------------ *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
153 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
154 |
(* ------------------------------------------------------------------------ *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
155 |
(* first 5 ugly lemmas *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
156 |
(* ------------------------------------------------------------------------ *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
157 |
|
892 | 158 |
qed_goal "ssum_lemma9" Ssum3.thy |
4721
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
oheimb
parents:
4098
diff
changeset
|
159 |
"[| chain(Y); lub(range(Y)) = Isinl(x)|] ==> !i.? x. Y(i)=Isinl(x)" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
160 |
(fn prems => |
1461 | 161 |
[ |
162 |
(cut_facts_tac prems 1), |
|
163 |
(strip_tac 1), |
|
164 |
(res_inst_tac [("p","Y(i)")] IssumE 1), |
|
165 |
(etac exI 1), |
|
166 |
(etac exI 1), |
|
167 |
(res_inst_tac [("P","y=UU")] notE 1), |
|
168 |
(atac 1), |
|
169 |
(rtac (less_ssum3d RS iffD1) 1), |
|
170 |
(etac subst 1), |
|
171 |
(etac subst 1), |
|
172 |
(etac is_ub_thelub 1) |
|
173 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
174 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
175 |
|
892 | 176 |
qed_goal "ssum_lemma10" Ssum3.thy |
4721
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
oheimb
parents:
4098
diff
changeset
|
177 |
"[| chain(Y); lub(range(Y)) = Isinr(x)|] ==> !i.? x. Y(i)=Isinr(x)" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
178 |
(fn prems => |
1461 | 179 |
[ |
180 |
(cut_facts_tac prems 1), |
|
181 |
(strip_tac 1), |
|
182 |
(res_inst_tac [("p","Y(i)")] IssumE 1), |
|
183 |
(rtac exI 1), |
|
184 |
(etac trans 1), |
|
185 |
(rtac strict_IsinlIsinr 1), |
|
186 |
(etac exI 2), |
|
187 |
(res_inst_tac [("P","xa=UU")] notE 1), |
|
188 |
(atac 1), |
|
189 |
(rtac (less_ssum3c RS iffD1) 1), |
|
190 |
(etac subst 1), |
|
191 |
(etac subst 1), |
|
192 |
(etac is_ub_thelub 1) |
|
193 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
194 |
|
892 | 195 |
qed_goal "ssum_lemma11" Ssum3.thy |
4721
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
oheimb
parents:
4098
diff
changeset
|
196 |
"[| chain(Y); lub(range(Y)) = Isinl(UU) |] ==>\ |
1168
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents:
892
diff
changeset
|
197 |
\ Iwhen f g (lub(range Y)) = lub(range(%i. Iwhen f g (Y i)))" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
198 |
(fn prems => |
1461 | 199 |
[ |
200 |
(cut_facts_tac prems 1), |
|
201 |
(asm_simp_tac Ssum0_ss 1), |
|
202 |
(rtac (chain_UU_I_inverse RS sym) 1), |
|
203 |
(rtac allI 1), |
|
204 |
(res_inst_tac [("s","Isinl(UU)"),("t","Y(i)")] subst 1), |
|
205 |
(rtac (inst_ssum_pcpo RS subst) 1), |
|
206 |
(rtac (chain_UU_I RS spec RS sym) 1), |
|
207 |
(atac 1), |
|
208 |
(etac (inst_ssum_pcpo RS ssubst) 1), |
|
209 |
(asm_simp_tac Ssum0_ss 1) |
|
210 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
211 |
|
892 | 212 |
qed_goal "ssum_lemma12" Ssum3.thy |
4721
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
oheimb
parents:
4098
diff
changeset
|
213 |
"[| chain(Y); lub(range(Y)) = Isinl(x); x ~= UU |] ==>\ |
1168
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents:
892
diff
changeset
|
214 |
\ Iwhen f g (lub(range Y)) = lub(range(%i. Iwhen f g (Y i)))" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
215 |
(fn prems => |
1461 | 216 |
[ |
217 |
(cut_facts_tac prems 1), |
|
218 |
(asm_simp_tac Ssum0_ss 1), |
|
219 |
(res_inst_tac [("t","x")] subst 1), |
|
220 |
(rtac inject_Isinl 1), |
|
221 |
(rtac trans 1), |
|
222 |
(atac 2), |
|
223 |
(rtac (thelub_ssum1a RS sym) 1), |
|
224 |
(atac 1), |
|
225 |
(etac ssum_lemma9 1), |
|
226 |
(atac 1), |
|
227 |
(rtac trans 1), |
|
228 |
(rtac contlub_cfun_arg 1), |
|
229 |
(rtac (monofun_Iwhen3 RS ch2ch_monofun) 1), |
|
230 |
(atac 1), |
|
231 |
(rtac lub_equal2 1), |
|
232 |
(rtac (chain_mono2 RS exE) 1), |
|
233 |
(atac 2), |
|
234 |
(rtac chain_UU_I_inverse2 1), |
|
2033 | 235 |
(stac inst_ssum_pcpo 1), |
1461 | 236 |
(etac swap 1), |
237 |
(rtac inject_Isinl 1), |
|
238 |
(rtac trans 1), |
|
239 |
(etac sym 1), |
|
240 |
(etac notnotD 1), |
|
241 |
(rtac exI 1), |
|
242 |
(strip_tac 1), |
|
243 |
(rtac (ssum_lemma9 RS spec RS exE) 1), |
|
244 |
(atac 1), |
|
245 |
(atac 1), |
|
246 |
(res_inst_tac [("t","Y(i)")] ssubst 1), |
|
247 |
(atac 1), |
|
248 |
(rtac trans 1), |
|
249 |
(rtac cfun_arg_cong 1), |
|
250 |
(rtac Iwhen2 1), |
|
251 |
(res_inst_tac [("Pa","Y(i)=UU")] swap 1), |
|
252 |
(fast_tac HOL_cs 1), |
|
2033 | 253 |
(stac inst_ssum_pcpo 1), |
1461 | 254 |
(res_inst_tac [("t","Y(i)")] ssubst 1), |
255 |
(atac 1), |
|
256 |
(fast_tac HOL_cs 1), |
|
2033 | 257 |
(stac Iwhen2 1), |
1461 | 258 |
(res_inst_tac [("Pa","Y(i)=UU")] swap 1), |
259 |
(fast_tac HOL_cs 1), |
|
2033 | 260 |
(stac inst_ssum_pcpo 1), |
1461 | 261 |
(res_inst_tac [("t","Y(i)")] ssubst 1), |
262 |
(atac 1), |
|
263 |
(fast_tac HOL_cs 1), |
|
4098 | 264 |
(simp_tac (simpset_of Cfun3.thy) 1), |
5291 | 265 |
(rtac (monofun_Rep_CFun2 RS ch2ch_monofun) 1), |
1461 | 266 |
(etac (monofun_Iwhen3 RS ch2ch_monofun) 1), |
267 |
(etac (monofun_Iwhen3 RS ch2ch_monofun) 1) |
|
268 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
269 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
270 |
|
892 | 271 |
qed_goal "ssum_lemma13" Ssum3.thy |
4721
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
oheimb
parents:
4098
diff
changeset
|
272 |
"[| chain(Y); lub(range(Y)) = Isinr(x); x ~= UU |] ==>\ |
1168
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents:
892
diff
changeset
|
273 |
\ Iwhen f g (lub(range Y)) = lub(range(%i. Iwhen f g (Y i)))" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
274 |
(fn prems => |
1461 | 275 |
[ |
276 |
(cut_facts_tac prems 1), |
|
277 |
(asm_simp_tac Ssum0_ss 1), |
|
278 |
(res_inst_tac [("t","x")] subst 1), |
|
279 |
(rtac inject_Isinr 1), |
|
280 |
(rtac trans 1), |
|
281 |
(atac 2), |
|
282 |
(rtac (thelub_ssum1b RS sym) 1), |
|
283 |
(atac 1), |
|
284 |
(etac ssum_lemma10 1), |
|
285 |
(atac 1), |
|
286 |
(rtac trans 1), |
|
287 |
(rtac contlub_cfun_arg 1), |
|
288 |
(rtac (monofun_Iwhen3 RS ch2ch_monofun) 1), |
|
289 |
(atac 1), |
|
290 |
(rtac lub_equal2 1), |
|
291 |
(rtac (chain_mono2 RS exE) 1), |
|
292 |
(atac 2), |
|
293 |
(rtac chain_UU_I_inverse2 1), |
|
2033 | 294 |
(stac inst_ssum_pcpo 1), |
1461 | 295 |
(etac swap 1), |
296 |
(rtac inject_Isinr 1), |
|
297 |
(rtac trans 1), |
|
298 |
(etac sym 1), |
|
299 |
(rtac (strict_IsinlIsinr RS subst) 1), |
|
300 |
(etac notnotD 1), |
|
301 |
(rtac exI 1), |
|
302 |
(strip_tac 1), |
|
303 |
(rtac (ssum_lemma10 RS spec RS exE) 1), |
|
304 |
(atac 1), |
|
305 |
(atac 1), |
|
306 |
(res_inst_tac [("t","Y(i)")] ssubst 1), |
|
307 |
(atac 1), |
|
308 |
(rtac trans 1), |
|
309 |
(rtac cfun_arg_cong 1), |
|
310 |
(rtac Iwhen3 1), |
|
311 |
(res_inst_tac [("Pa","Y(i)=UU")] swap 1), |
|
312 |
(fast_tac HOL_cs 1), |
|
313 |
(dtac notnotD 1), |
|
2033 | 314 |
(stac inst_ssum_pcpo 1), |
315 |
(stac strict_IsinlIsinr 1), |
|
1461 | 316 |
(res_inst_tac [("t","Y(i)")] ssubst 1), |
317 |
(atac 1), |
|
318 |
(fast_tac HOL_cs 1), |
|
2033 | 319 |
(stac Iwhen3 1), |
1461 | 320 |
(res_inst_tac [("Pa","Y(i)=UU")] swap 1), |
321 |
(fast_tac HOL_cs 1), |
|
322 |
(dtac notnotD 1), |
|
2033 | 323 |
(stac inst_ssum_pcpo 1), |
324 |
(stac strict_IsinlIsinr 1), |
|
1461 | 325 |
(res_inst_tac [("t","Y(i)")] ssubst 1), |
326 |
(atac 1), |
|
327 |
(fast_tac HOL_cs 1), |
|
4098 | 328 |
(simp_tac (simpset_of Cfun3.thy) 1), |
5291 | 329 |
(rtac (monofun_Rep_CFun2 RS ch2ch_monofun) 1), |
1461 | 330 |
(etac (monofun_Iwhen3 RS ch2ch_monofun) 1), |
331 |
(etac (monofun_Iwhen3 RS ch2ch_monofun) 1) |
|
332 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
333 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
334 |
|
892 | 335 |
qed_goal "contlub_Iwhen3" Ssum3.thy "contlub(Iwhen(f)(g))" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
336 |
(fn prems => |
1461 | 337 |
[ |
338 |
(rtac contlubI 1), |
|
339 |
(strip_tac 1), |
|
340 |
(res_inst_tac [("p","lub(range(Y))")] IssumE 1), |
|
341 |
(etac ssum_lemma11 1), |
|
342 |
(atac 1), |
|
343 |
(etac ssum_lemma12 1), |
|
344 |
(atac 1), |
|
345 |
(atac 1), |
|
346 |
(etac ssum_lemma13 1), |
|
347 |
(atac 1), |
|
348 |
(atac 1) |
|
349 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
350 |
|
1168
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents:
892
diff
changeset
|
351 |
qed_goal "cont_Iwhen1" Ssum3.thy "cont(Iwhen)" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
352 |
(fn prems => |
1461 | 353 |
[ |
354 |
(rtac monocontlub2cont 1), |
|
355 |
(rtac monofun_Iwhen1 1), |
|
356 |
(rtac contlub_Iwhen1 1) |
|
357 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
358 |
|
1168
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents:
892
diff
changeset
|
359 |
qed_goal "cont_Iwhen2" Ssum3.thy "cont(Iwhen(f))" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
360 |
(fn prems => |
1461 | 361 |
[ |
362 |
(rtac monocontlub2cont 1), |
|
363 |
(rtac monofun_Iwhen2 1), |
|
364 |
(rtac contlub_Iwhen2 1) |
|
365 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
366 |
|
1168
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents:
892
diff
changeset
|
367 |
qed_goal "cont_Iwhen3" Ssum3.thy "cont(Iwhen(f)(g))" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
368 |
(fn prems => |
1461 | 369 |
[ |
370 |
(rtac monocontlub2cont 1), |
|
371 |
(rtac monofun_Iwhen3 1), |
|
372 |
(rtac contlub_Iwhen3 1) |
|
373 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
374 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
375 |
(* ------------------------------------------------------------------------ *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
376 |
(* continuous versions of lemmas for 'a ++ 'b *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
377 |
(* ------------------------------------------------------------------------ *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
378 |
|
1168
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents:
892
diff
changeset
|
379 |
qed_goalw "strict_sinl" Ssum3.thy [sinl_def] "sinl`UU =UU" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
380 |
(fn prems => |
1461 | 381 |
[ |
382 |
(simp_tac (Ssum0_ss addsimps [cont_Isinl]) 1), |
|
383 |
(rtac (inst_ssum_pcpo RS sym) 1) |
|
384 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
385 |
|
1168
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents:
892
diff
changeset
|
386 |
qed_goalw "strict_sinr" Ssum3.thy [sinr_def] "sinr`UU=UU" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
387 |
(fn prems => |
1461 | 388 |
[ |
389 |
(simp_tac (Ssum0_ss addsimps [cont_Isinr]) 1), |
|
390 |
(rtac (inst_ssum_pcpo RS sym) 1) |
|
391 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
392 |
|
892 | 393 |
qed_goalw "noteq_sinlsinr" Ssum3.thy [sinl_def,sinr_def] |
1461 | 394 |
"sinl`a=sinr`b ==> a=UU & b=UU" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
395 |
(fn prems => |
1461 | 396 |
[ |
397 |
(cut_facts_tac prems 1), |
|
398 |
(rtac noteq_IsinlIsinr 1), |
|
399 |
(etac box_equals 1), |
|
400 |
(asm_simp_tac (Ssum0_ss addsimps [cont_Isinr,cont_Isinl]) 1), |
|
401 |
(asm_simp_tac (Ssum0_ss addsimps [cont_Isinr,cont_Isinl]) 1) |
|
402 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
403 |
|
892 | 404 |
qed_goalw "inject_sinl" Ssum3.thy [sinl_def,sinr_def] |
1461 | 405 |
"sinl`a1=sinl`a2==> a1=a2" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
406 |
(fn prems => |
1461 | 407 |
[ |
408 |
(cut_facts_tac prems 1), |
|
409 |
(rtac inject_Isinl 1), |
|
410 |
(etac box_equals 1), |
|
411 |
(asm_simp_tac (Ssum0_ss addsimps [cont_Isinr,cont_Isinl]) 1), |
|
412 |
(asm_simp_tac (Ssum0_ss addsimps [cont_Isinr,cont_Isinl]) 1) |
|
413 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
414 |
|
892 | 415 |
qed_goalw "inject_sinr" Ssum3.thy [sinl_def,sinr_def] |
1461 | 416 |
"sinr`a1=sinr`a2==> a1=a2" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
417 |
(fn prems => |
1461 | 418 |
[ |
419 |
(cut_facts_tac prems 1), |
|
420 |
(rtac inject_Isinr 1), |
|
421 |
(etac box_equals 1), |
|
422 |
(asm_simp_tac (Ssum0_ss addsimps [cont_Isinr,cont_Isinl]) 1), |
|
423 |
(asm_simp_tac (Ssum0_ss addsimps [cont_Isinr,cont_Isinl]) 1) |
|
424 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
425 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
426 |
|
892 | 427 |
qed_goal "defined_sinl" Ssum3.thy |
1461 | 428 |
"x~=UU ==> sinl`x ~= UU" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
429 |
(fn prems => |
1461 | 430 |
[ |
431 |
(cut_facts_tac prems 1), |
|
432 |
(etac swap 1), |
|
433 |
(rtac inject_sinl 1), |
|
2033 | 434 |
(stac strict_sinl 1), |
1461 | 435 |
(etac notnotD 1) |
436 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
437 |
|
892 | 438 |
qed_goal "defined_sinr" Ssum3.thy |
1461 | 439 |
"x~=UU ==> sinr`x ~= UU" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
440 |
(fn prems => |
1461 | 441 |
[ |
442 |
(cut_facts_tac prems 1), |
|
443 |
(etac swap 1), |
|
444 |
(rtac inject_sinr 1), |
|
2033 | 445 |
(stac strict_sinr 1), |
1461 | 446 |
(etac notnotD 1) |
447 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
448 |
|
892 | 449 |
qed_goalw "Exh_Ssum1" Ssum3.thy [sinl_def,sinr_def] |
1461 | 450 |
"z=UU | (? a. z=sinl`a & a~=UU) | (? b. z=sinr`b & b~=UU)" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
451 |
(fn prems => |
1461 | 452 |
[ |
453 |
(asm_simp_tac (Ssum0_ss addsimps [cont_Isinr,cont_Isinl]) 1), |
|
2033 | 454 |
(stac inst_ssum_pcpo 1), |
1461 | 455 |
(rtac Exh_Ssum 1) |
456 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
457 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
458 |
|
892 | 459 |
qed_goalw "ssumE" Ssum3.thy [sinl_def,sinr_def] |
1461 | 460 |
"[|p=UU ==> Q ;\ |
461 |
\ !!x.[|p=sinl`x; x~=UU |] ==> Q;\ |
|
462 |
\ !!y.[|p=sinr`y; y~=UU |] ==> Q|] ==> Q" |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
463 |
(fn prems => |
1461 | 464 |
[ |
465 |
(rtac IssumE 1), |
|
466 |
(resolve_tac prems 1), |
|
2033 | 467 |
(stac inst_ssum_pcpo 1), |
1461 | 468 |
(atac 1), |
469 |
(resolve_tac prems 1), |
|
470 |
(atac 2), |
|
471 |
(asm_simp_tac (Ssum0_ss addsimps [cont_Isinr,cont_Isinl]) 1), |
|
472 |
(resolve_tac prems 1), |
|
473 |
(atac 2), |
|
474 |
(asm_simp_tac (Ssum0_ss addsimps [cont_Isinr,cont_Isinl]) 1) |
|
475 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
476 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
477 |
|
892 | 478 |
qed_goalw "ssumE2" Ssum3.thy [sinl_def,sinr_def] |
1168
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents:
892
diff
changeset
|
479 |
"[|!!x.[|p=sinl`x|] ==> Q;\ |
1461 | 480 |
\ !!y.[|p=sinr`y|] ==> Q|] ==> Q" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
481 |
(fn prems => |
1461 | 482 |
[ |
483 |
(rtac IssumE2 1), |
|
484 |
(resolve_tac prems 1), |
|
2033 | 485 |
(stac beta_cfun 1), |
1461 | 486 |
(rtac cont_Isinl 1), |
487 |
(atac 1), |
|
488 |
(resolve_tac prems 1), |
|
2033 | 489 |
(stac beta_cfun 1), |
1461 | 490 |
(rtac cont_Isinr 1), |
491 |
(atac 1) |
|
492 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
493 |
|
5439 | 494 |
qed_goalw "sscase1" Ssum3.thy [sscase_def,sinl_def,sinr_def] |
495 |
"sscase`f`g`UU = UU" (fn _ => let |
|
2566 | 496 |
val tac = (REPEAT (resolve_tac (cont_lemmas1 @ [cont_Iwhen1,cont_Iwhen2, |
497 |
cont_Iwhen3,cont2cont_CF1L]) 1)) in |
|
498 |
[ |
|
2033 | 499 |
(stac inst_ssum_pcpo 1), |
500 |
(stac beta_cfun 1), |
|
2566 | 501 |
tac, |
502 |
(stac beta_cfun 1), |
|
503 |
tac, |
|
2033 | 504 |
(stac beta_cfun 1), |
2566 | 505 |
tac, |
1461 | 506 |
(simp_tac Ssum0_ss 1) |
2566 | 507 |
] end); |
508 |
||
509 |
||
510 |
val tac = (REPEAT (resolve_tac (cont_lemmas1 @ [cont_Iwhen1,cont_Iwhen2, |
|
511 |
cont_Iwhen3,cont_Isinl,cont_Isinr,cont2cont_CF1L]) 1)); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
512 |
|
5439 | 513 |
qed_goalw "sscase2" Ssum3.thy [sscase_def,sinl_def,sinr_def] |
514 |
"x~=UU==> sscase`f`g`(sinl`x) = f`x" (fn prems => [ |
|
1461 | 515 |
(cut_facts_tac prems 1), |
2033 | 516 |
(stac beta_cfun 1), |
2566 | 517 |
tac, |
2033 | 518 |
(stac beta_cfun 1), |
2566 | 519 |
tac, |
2033 | 520 |
(stac beta_cfun 1), |
2566 | 521 |
tac, |
2033 | 522 |
(stac beta_cfun 1), |
2566 | 523 |
tac, |
1461 | 524 |
(asm_simp_tac Ssum0_ss 1) |
525 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
526 |
|
5439 | 527 |
qed_goalw "sscase3" Ssum3.thy [sscase_def,sinl_def,sinr_def] |
528 |
"x~=UU==> sscase`f`g`(sinr`x) = g`x" (fn prems => [ |
|
1461 | 529 |
(cut_facts_tac prems 1), |
2033 | 530 |
(stac beta_cfun 1), |
2566 | 531 |
tac, |
2033 | 532 |
(stac beta_cfun 1), |
2566 | 533 |
tac, |
2033 | 534 |
(stac beta_cfun 1), |
2566 | 535 |
tac, |
2033 | 536 |
(stac beta_cfun 1), |
2566 | 537 |
tac, |
1461 | 538 |
(asm_simp_tac Ssum0_ss 1) |
539 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
540 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
541 |
|
892 | 542 |
qed_goalw "less_ssum4a" Ssum3.thy [sinl_def,sinr_def] |
2566 | 543 |
"(sinl`x << sinl`y) = (x << y)" (fn prems => [ |
2033 | 544 |
(stac beta_cfun 1), |
2566 | 545 |
tac, |
2033 | 546 |
(stac beta_cfun 1), |
2566 | 547 |
tac, |
1461 | 548 |
(rtac less_ssum3a 1) |
549 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
550 |
|
892 | 551 |
qed_goalw "less_ssum4b" Ssum3.thy [sinl_def,sinr_def] |
2566 | 552 |
"(sinr`x << sinr`y) = (x << y)" (fn prems => [ |
2033 | 553 |
(stac beta_cfun 1), |
2566 | 554 |
tac, |
2033 | 555 |
(stac beta_cfun 1), |
2566 | 556 |
tac, |
1461 | 557 |
(rtac less_ssum3b 1) |
558 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
559 |
|
892 | 560 |
qed_goalw "less_ssum4c" Ssum3.thy [sinl_def,sinr_def] |
2566 | 561 |
"(sinl`x << sinr`y) = (x = UU)" (fn prems => |
1461 | 562 |
[ |
2033 | 563 |
(stac beta_cfun 1), |
2566 | 564 |
tac, |
2033 | 565 |
(stac beta_cfun 1), |
2566 | 566 |
tac, |
1461 | 567 |
(rtac less_ssum3c 1) |
568 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
569 |
|
892 | 570 |
qed_goalw "less_ssum4d" Ssum3.thy [sinl_def,sinr_def] |
1461 | 571 |
"(sinr`x << sinl`y) = (x = UU)" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
572 |
(fn prems => |
1461 | 573 |
[ |
2033 | 574 |
(stac beta_cfun 1), |
2566 | 575 |
tac, |
2033 | 576 |
(stac beta_cfun 1), |
2566 | 577 |
tac, |
1461 | 578 |
(rtac less_ssum3d 1) |
579 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
580 |
|
892 | 581 |
qed_goalw "ssum_chainE" Ssum3.thy [sinl_def,sinr_def] |
4721
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
oheimb
parents:
4098
diff
changeset
|
582 |
"chain(Y) ==> (!i.? x.(Y i)=sinl`x)|(!i.? y.(Y i)=sinr`y)" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
583 |
(fn prems => |
1461 | 584 |
[ |
585 |
(cut_facts_tac prems 1), |
|
586 |
(asm_simp_tac (Ssum0_ss addsimps [cont_Isinr,cont_Isinl]) 1), |
|
587 |
(etac ssum_lemma4 1) |
|
588 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
589 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
590 |
|
5439 | 591 |
qed_goalw "thelub_ssum2a" Ssum3.thy [sinl_def,sinr_def,sscase_def] |
4721
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
oheimb
parents:
4098
diff
changeset
|
592 |
"[| chain(Y); !i.? x. Y(i) = sinl`x |] ==>\ |
5439 | 593 |
\ lub(range(Y)) = sinl`(lub(range(%i. sscase`(LAM x. x)`(LAM y. UU)`(Y i))))" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
594 |
(fn prems => |
1461 | 595 |
[ |
596 |
(cut_facts_tac prems 1), |
|
2033 | 597 |
(stac beta_cfun 1), |
2566 | 598 |
tac, |
2033 | 599 |
(stac beta_cfun 1), |
2566 | 600 |
tac, |
2033 | 601 |
(stac beta_cfun 1), |
2566 | 602 |
tac, |
2033 | 603 |
(stac (beta_cfun RS ext) 1), |
2566 | 604 |
tac, |
1461 | 605 |
(rtac thelub_ssum1a 1), |
606 |
(atac 1), |
|
607 |
(rtac allI 1), |
|
608 |
(etac allE 1), |
|
609 |
(etac exE 1), |
|
610 |
(rtac exI 1), |
|
611 |
(etac box_equals 1), |
|
612 |
(rtac refl 1), |
|
613 |
(asm_simp_tac (Ssum0_ss addsimps [cont_Isinl]) 1) |
|
614 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
615 |
|
5439 | 616 |
qed_goalw "thelub_ssum2b" Ssum3.thy [sinl_def,sinr_def,sscase_def] |
4721
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
oheimb
parents:
4098
diff
changeset
|
617 |
"[| chain(Y); !i.? x. Y(i) = sinr`x |] ==>\ |
5439 | 618 |
\ lub(range(Y)) = sinr`(lub(range(%i. sscase`(LAM y. UU)`(LAM x. x)`(Y i))))" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
619 |
(fn prems => |
1461 | 620 |
[ |
621 |
(cut_facts_tac prems 1), |
|
2033 | 622 |
(stac beta_cfun 1), |
2566 | 623 |
tac, |
2033 | 624 |
(stac beta_cfun 1), |
2566 | 625 |
tac, |
2033 | 626 |
(stac beta_cfun 1), |
2566 | 627 |
tac, |
2033 | 628 |
(stac (beta_cfun RS ext) 1), |
2566 | 629 |
tac, |
1461 | 630 |
(rtac thelub_ssum1b 1), |
631 |
(atac 1), |
|
632 |
(rtac allI 1), |
|
633 |
(etac allE 1), |
|
634 |
(etac exE 1), |
|
635 |
(rtac exI 1), |
|
636 |
(etac box_equals 1), |
|
637 |
(rtac refl 1), |
|
638 |
(asm_simp_tac (Ssum0_ss addsimps |
|
639 |
[cont_Isinr,cont_Isinl,cont_Iwhen1,cont_Iwhen2, |
|
640 |
cont_Iwhen3]) 1) |
|
641 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
642 |
|
892 | 643 |
qed_goalw "thelub_ssum2a_rev" Ssum3.thy [sinl_def,sinr_def] |
4721
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
oheimb
parents:
4098
diff
changeset
|
644 |
"[| chain(Y); lub(range(Y)) = sinl`x|] ==> !i.? x. Y(i)=sinl`x" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
645 |
(fn prems => |
1461 | 646 |
[ |
647 |
(cut_facts_tac prems 1), |
|
648 |
(asm_simp_tac (Ssum0_ss addsimps |
|
649 |
[cont_Isinr,cont_Isinl,cont_Iwhen1,cont_Iwhen2, |
|
650 |
cont_Iwhen3]) 1), |
|
651 |
(etac ssum_lemma9 1), |
|
652 |
(asm_simp_tac (Ssum0_ss addsimps |
|
653 |
[cont_Isinr,cont_Isinl,cont_Iwhen1,cont_Iwhen2, |
|
654 |
cont_Iwhen3]) 1) |
|
655 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
656 |
|
892 | 657 |
qed_goalw "thelub_ssum2b_rev" Ssum3.thy [sinl_def,sinr_def] |
4721
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
oheimb
parents:
4098
diff
changeset
|
658 |
"[| chain(Y); lub(range(Y)) = sinr`x|] ==> !i.? x. Y(i)=sinr`x" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
659 |
(fn prems => |
1461 | 660 |
[ |
661 |
(cut_facts_tac prems 1), |
|
662 |
(asm_simp_tac (Ssum0_ss addsimps |
|
663 |
[cont_Isinr,cont_Isinl,cont_Iwhen1,cont_Iwhen2, |
|
664 |
cont_Iwhen3]) 1), |
|
665 |
(etac ssum_lemma10 1), |
|
666 |
(asm_simp_tac (Ssum0_ss addsimps |
|
667 |
[cont_Isinr,cont_Isinl,cont_Iwhen1,cont_Iwhen2, |
|
668 |
cont_Iwhen3]) 1) |
|
669 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
670 |
|
892 | 671 |
qed_goal "thelub_ssum3" Ssum3.thy |
4721
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
oheimb
parents:
4098
diff
changeset
|
672 |
"chain(Y) ==>\ |
5439 | 673 |
\ lub(range(Y)) = sinl`(lub(range(%i. sscase`(LAM x. x)`(LAM y. UU)`(Y i))))\ |
674 |
\ | lub(range(Y)) = sinr`(lub(range(%i. sscase`(LAM y. UU)`(LAM x. x)`(Y i))))" |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
675 |
(fn prems => |
1461 | 676 |
[ |
677 |
(cut_facts_tac prems 1), |
|
678 |
(rtac (ssum_chainE RS disjE) 1), |
|
679 |
(atac 1), |
|
680 |
(rtac disjI1 1), |
|
681 |
(etac thelub_ssum2a 1), |
|
682 |
(atac 1), |
|
683 |
(rtac disjI2 1), |
|
684 |
(etac thelub_ssum2b 1), |
|
685 |
(atac 1) |
|
686 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
687 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
688 |
|
5439 | 689 |
qed_goal "sscase4" Ssum3.thy |
690 |
"sscase`sinl`sinr`z=z" |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
691 |
(fn prems => |
1461 | 692 |
[ |
693 |
(res_inst_tac [("p","z")] ssumE 1), |
|
5439 | 694 |
(asm_simp_tac ((simpset_of Cfun3.thy) addsimps [sscase1,sscase2,sscase3]) 1), |
695 |
(asm_simp_tac ((simpset_of Cfun3.thy) addsimps [sscase1,sscase2,sscase3]) 1), |
|
696 |
(asm_simp_tac ((simpset_of Cfun3.thy) addsimps [sscase1,sscase2,sscase3]) 1) |
|
1461 | 697 |
]); |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
698 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
699 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
700 |
(* ------------------------------------------------------------------------ *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
701 |
(* install simplifier for Ssum *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
702 |
(* ------------------------------------------------------------------------ *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
703 |
|
1274 | 704 |
val Ssum_rews = [strict_sinl,strict_sinr,defined_sinl,defined_sinr, |
5439 | 705 |
sscase1,sscase2,sscase3]; |
1274 | 706 |
|
707 |
Addsimps [strict_sinl,strict_sinr,defined_sinl,defined_sinr, |
|
5439 | 708 |
sscase1,sscase2,sscase3]; |