0
|
1 |
(* Title: LCF/lcf.thy
|
|
2 |
ID: $Id$
|
|
3 |
Author: Tobias Nipkow
|
|
4 |
Copyright 1992 University of Cambridge
|
|
5 |
|
|
6 |
Natural Deduction Rules for LCF
|
|
7 |
*)
|
|
8 |
|
|
9 |
LCF = FOL +
|
|
10 |
|
|
11 |
classes cpo < term
|
|
12 |
|
|
13 |
default cpo
|
|
14 |
|
283
|
15 |
types
|
|
16 |
tr
|
|
17 |
void
|
|
18 |
('a,'b) "*" (infixl 6)
|
|
19 |
('a,'b) "+" (infixl 5)
|
0
|
20 |
|
283
|
21 |
arities
|
|
22 |
fun, "*", "+" :: (cpo,cpo)cpo
|
|
23 |
tr,void :: cpo
|
0
|
24 |
|
|
25 |
consts
|
|
26 |
UU :: "'a"
|
|
27 |
TT,FF :: "tr"
|
|
28 |
FIX :: "('a => 'a) => 'a"
|
|
29 |
FST :: "'a*'b => 'a"
|
|
30 |
SND :: "'a*'b => 'b"
|
|
31 |
INL :: "'a => 'a+'b"
|
|
32 |
INR :: "'b => 'a+'b"
|
|
33 |
WHEN :: "['a=>'c, 'b=>'c, 'a+'b] => 'c"
|
|
34 |
adm :: "('a => o) => o"
|
|
35 |
VOID :: "void" ("()")
|
|
36 |
PAIR :: "['a,'b] => 'a*'b" ("(1<_,/_>)" [0,0] 100)
|
|
37 |
COND :: "[tr,'a,'a] => 'a" ("(_ =>/ (_ |/ _))" [60,60,60] 60)
|
|
38 |
"<<" :: "['a,'a] => o" (infixl 50)
|
|
39 |
rules
|
|
40 |
(** DOMAIN THEORY **)
|
|
41 |
|
|
42 |
eq_def "x=y == x << y & y << x"
|
|
43 |
|
|
44 |
less_trans "[| x << y; y << z |] ==> x << z"
|
|
45 |
|
|
46 |
less_ext "(ALL x. f(x) << g(x)) ==> f << g"
|
|
47 |
|
|
48 |
mono "[| f << g; x << y |] ==> f(x) << g(y)"
|
|
49 |
|
|
50 |
minimal "UU << x"
|
|
51 |
|
|
52 |
FIX_eq "f(FIX(f)) = FIX(f)"
|
|
53 |
|
|
54 |
(** TR **)
|
|
55 |
|
|
56 |
tr_cases "p=UU | p=TT | p=FF"
|
|
57 |
|
|
58 |
not_TT_less_FF "~ TT << FF"
|
|
59 |
not_FF_less_TT "~ FF << TT"
|
|
60 |
not_TT_less_UU "~ TT << UU"
|
|
61 |
not_FF_less_UU "~ FF << UU"
|
|
62 |
|
|
63 |
COND_UU "UU => x | y = UU"
|
|
64 |
COND_TT "TT => x | y = x"
|
|
65 |
COND_FF "FF => x | y = y"
|
|
66 |
|
|
67 |
(** PAIRS **)
|
|
68 |
|
|
69 |
surj_pairing "<FST(z),SND(z)> = z"
|
|
70 |
|
|
71 |
FST "FST(<x,y>) = x"
|
|
72 |
SND "SND(<x,y>) = y"
|
|
73 |
|
|
74 |
(*** STRICT SUM ***)
|
|
75 |
|
|
76 |
INL_DEF "~x=UU ==> ~INL(x)=UU"
|
|
77 |
INR_DEF "~x=UU ==> ~INR(x)=UU"
|
|
78 |
|
|
79 |
INL_STRICT "INL(UU) = UU"
|
|
80 |
INR_STRICT "INR(UU) = UU"
|
|
81 |
|
|
82 |
WHEN_UU "WHEN(f,g,UU) = UU"
|
|
83 |
WHEN_INL "~x=UU ==> WHEN(f,g,INL(x)) = f(x)"
|
|
84 |
WHEN_INR "~x=UU ==> WHEN(f,g,INR(x)) = g(x)"
|
|
85 |
|
|
86 |
SUM_EXHAUSTION
|
|
87 |
"z = UU | (EX x. ~x=UU & z = INL(x)) | (EX y. ~y=UU & z = INR(y))"
|
|
88 |
|
|
89 |
(** VOID **)
|
|
90 |
|
|
91 |
void_cases "(x::void) = UU"
|
|
92 |
|
|
93 |
(** INDUCTION **)
|
|
94 |
|
|
95 |
induct "[| adm(P); P(UU); ALL x. P(x) --> P(f(x)) |] ==> P(FIX(f))"
|
|
96 |
|
|
97 |
(** Admissibility / Chain Completeness **)
|
|
98 |
(* All rules can be found on pages 199--200 of Larry's LCF book.
|
|
99 |
Note that "easiness" of types is not taken into account
|
|
100 |
because it cannot be expressed schematically; flatness could be. *)
|
|
101 |
|
|
102 |
adm_less "adm(%x.t(x) << u(x))"
|
|
103 |
adm_not_less "adm(%x.~ t(x) << u)"
|
|
104 |
adm_not_free "adm(%x.A)"
|
|
105 |
adm_subst "adm(P) ==> adm(%x.P(t(x)))"
|
|
106 |
adm_conj "[| adm(P); adm(Q) |] ==> adm(%x.P(x)&Q(x))"
|
|
107 |
adm_disj "[| adm(P); adm(Q) |] ==> adm(%x.P(x)|Q(x))"
|
|
108 |
adm_imp "[| adm(%x.~P(x)); adm(Q) |] ==> adm(%x.P(x)-->Q(x))"
|
|
109 |
adm_all "(!!y.adm(P(y))) ==> adm(%x.ALL y.P(y,x))"
|
|
110 |
end
|