src/ZF/Arith.thy
author wenzelm
Fri, 06 May 2011 17:52:08 +0200
changeset 42711 159c4d1d4c42
parent 35762 af3ff2ba4c54
child 45608 13b101cee425
permissions -rw-r--r--
removed \underscoreon which is from Larry's iman.sty, not underscore.sty;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
9654
9754ba005b64 X-symbols for ordinal, cardinal, integer arithmetic
paulson
parents: 9492
diff changeset
     1
(*  Title:      ZF/Arith.thy
1478
2b8c2a7547ab expanded tabs
clasohm
parents: 1401
diff changeset
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
0
a5a9c433f639 Initial revision
clasohm
parents:
diff changeset
     3
    Copyright   1992  University of Cambridge
a5a9c433f639 Initial revision
clasohm
parents:
diff changeset
     4
*)
a5a9c433f639 Initial revision
clasohm
parents:
diff changeset
     5
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
     6
(*"Difference" is subtraction of natural numbers.
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
     7
  There are no negative numbers; we have
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
     8
     m #- n = 0  iff  m<=n   and     m #- n = succ(k) iff m>n.
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
     9
  Also, rec(m, 0, %z w.z) is pred(m).   
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
    10
*)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
    11
13328
703de709a64b better document preparation
paulson
parents: 13185
diff changeset
    12
header{*Arithmetic Operators and Their Definitions*} 
703de709a64b better document preparation
paulson
parents: 13185
diff changeset
    13
16417
9bc16273c2d4 migrated theory headers to new format
haftmann
parents: 15201
diff changeset
    14
theory Arith imports Univ begin
6070
032babd0120b ZF: the natural numbers as a datatype
paulson
parents: 3840
diff changeset
    15
13328
703de709a64b better document preparation
paulson
parents: 13185
diff changeset
    16
text{*Proofs about elementary arithmetic: addition, multiplication, etc.*}
703de709a64b better document preparation
paulson
parents: 13185
diff changeset
    17
24893
b8ef7afe3a6b modernized specifications;
wenzelm
parents: 16417
diff changeset
    18
definition
b8ef7afe3a6b modernized specifications;
wenzelm
parents: 16417
diff changeset
    19
  pred   :: "i=>i"    (*inverse of succ*)  where
13361
5005d34425bb new lemmas
paulson
parents: 13356
diff changeset
    20
    "pred(y) == nat_case(0, %x. x, y)"
6070
032babd0120b ZF: the natural numbers as a datatype
paulson
parents: 3840
diff changeset
    21
24893
b8ef7afe3a6b modernized specifications;
wenzelm
parents: 16417
diff changeset
    22
definition
b8ef7afe3a6b modernized specifications;
wenzelm
parents: 16417
diff changeset
    23
  natify :: "i=>i"    (*coerces non-nats to nats*)  where
9491
1a36151ee2fc natify, a coercion to reduce the number of type constraints in arithmetic
paulson
parents: 6070
diff changeset
    24
    "natify == Vrecursor(%f a. if a = succ(pred(a)) then succ(f`pred(a))
1a36151ee2fc natify, a coercion to reduce the number of type constraints in arithmetic
paulson
parents: 6070
diff changeset
    25
                                                    else 0)"
6070
032babd0120b ZF: the natural numbers as a datatype
paulson
parents: 3840
diff changeset
    26
0
a5a9c433f639 Initial revision
clasohm
parents:
diff changeset
    27
consts
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
    28
  raw_add  :: "[i,i]=>i"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
    29
  raw_diff  :: "[i,i]=>i"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
    30
  raw_mult  :: "[i,i]=>i"
9492
72e429c66608 used natify with div and mod; also put in the divide-by-zero trick
paulson
parents: 9491
diff changeset
    31
72e429c66608 used natify with div and mod; also put in the divide-by-zero trick
paulson
parents: 9491
diff changeset
    32
primrec
72e429c66608 used natify with div and mod; also put in the divide-by-zero trick
paulson
parents: 9491
diff changeset
    33
  "raw_add (0, n) = n"
72e429c66608 used natify with div and mod; also put in the divide-by-zero trick
paulson
parents: 9491
diff changeset
    34
  "raw_add (succ(m), n) = succ(raw_add(m, n))"
0
a5a9c433f639 Initial revision
clasohm
parents:
diff changeset
    35
6070
032babd0120b ZF: the natural numbers as a datatype
paulson
parents: 3840
diff changeset
    36
primrec
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
    37
  raw_diff_0:     "raw_diff(m, 0) = m"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
    38
  raw_diff_succ:  "raw_diff(m, succ(n)) =
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
    39
                     nat_case(0, %x. x, raw_diff(m, n))"
9491
1a36151ee2fc natify, a coercion to reduce the number of type constraints in arithmetic
paulson
parents: 6070
diff changeset
    40
1a36151ee2fc natify, a coercion to reduce the number of type constraints in arithmetic
paulson
parents: 6070
diff changeset
    41
primrec
9492
72e429c66608 used natify with div and mod; also put in the divide-by-zero trick
paulson
parents: 9491
diff changeset
    42
  "raw_mult(0, n) = 0"
72e429c66608 used natify with div and mod; also put in the divide-by-zero trick
paulson
parents: 9491
diff changeset
    43
  "raw_mult(succ(m), n) = raw_add (n, raw_mult(m, n))"
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
    44
24893
b8ef7afe3a6b modernized specifications;
wenzelm
parents: 16417
diff changeset
    45
definition
b8ef7afe3a6b modernized specifications;
wenzelm
parents: 16417
diff changeset
    46
  add :: "[i,i]=>i"                    (infixl "#+" 65)  where
9492
72e429c66608 used natify with div and mod; also put in the divide-by-zero trick
paulson
parents: 9491
diff changeset
    47
    "m #+ n == raw_add (natify(m), natify(n))"
9491
1a36151ee2fc natify, a coercion to reduce the number of type constraints in arithmetic
paulson
parents: 6070
diff changeset
    48
24893
b8ef7afe3a6b modernized specifications;
wenzelm
parents: 16417
diff changeset
    49
definition
b8ef7afe3a6b modernized specifications;
wenzelm
parents: 16417
diff changeset
    50
  diff :: "[i,i]=>i"                    (infixl "#-" 65)  where
9492
72e429c66608 used natify with div and mod; also put in the divide-by-zero trick
paulson
parents: 9491
diff changeset
    51
    "m #- n == raw_diff (natify(m), natify(n))"
0
a5a9c433f639 Initial revision
clasohm
parents:
diff changeset
    52
24893
b8ef7afe3a6b modernized specifications;
wenzelm
parents: 16417
diff changeset
    53
definition
b8ef7afe3a6b modernized specifications;
wenzelm
parents: 16417
diff changeset
    54
  mult :: "[i,i]=>i"                    (infixl "#*" 70)  where
9492
72e429c66608 used natify with div and mod; also put in the divide-by-zero trick
paulson
parents: 9491
diff changeset
    55
    "m #* n == raw_mult (natify(m), natify(n))"
72e429c66608 used natify with div and mod; also put in the divide-by-zero trick
paulson
parents: 9491
diff changeset
    56
24893
b8ef7afe3a6b modernized specifications;
wenzelm
parents: 16417
diff changeset
    57
definition
b8ef7afe3a6b modernized specifications;
wenzelm
parents: 16417
diff changeset
    58
  raw_div  :: "[i,i]=>i"  where
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
    59
    "raw_div (m, n) ==
9492
72e429c66608 used natify with div and mod; also put in the divide-by-zero trick
paulson
parents: 9491
diff changeset
    60
       transrec(m, %j f. if j<n | n=0 then 0 else succ(f`(j#-n)))"
72e429c66608 used natify with div and mod; also put in the divide-by-zero trick
paulson
parents: 9491
diff changeset
    61
24893
b8ef7afe3a6b modernized specifications;
wenzelm
parents: 16417
diff changeset
    62
definition
b8ef7afe3a6b modernized specifications;
wenzelm
parents: 16417
diff changeset
    63
  raw_mod  :: "[i,i]=>i"  where
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
    64
    "raw_mod (m, n) ==
9492
72e429c66608 used natify with div and mod; also put in the divide-by-zero trick
paulson
parents: 9491
diff changeset
    65
       transrec(m, %j f. if j<n | n=0 then j else f`(j#-n))"
9491
1a36151ee2fc natify, a coercion to reduce the number of type constraints in arithmetic
paulson
parents: 6070
diff changeset
    66
24893
b8ef7afe3a6b modernized specifications;
wenzelm
parents: 16417
diff changeset
    67
definition
b8ef7afe3a6b modernized specifications;
wenzelm
parents: 16417
diff changeset
    68
  div  :: "[i,i]=>i"                    (infixl "div" 70)  where
9492
72e429c66608 used natify with div and mod; also put in the divide-by-zero trick
paulson
parents: 9491
diff changeset
    69
    "m div n == raw_div (natify(m), natify(n))"
9491
1a36151ee2fc natify, a coercion to reduce the number of type constraints in arithmetic
paulson
parents: 6070
diff changeset
    70
24893
b8ef7afe3a6b modernized specifications;
wenzelm
parents: 16417
diff changeset
    71
definition
b8ef7afe3a6b modernized specifications;
wenzelm
parents: 16417
diff changeset
    72
  mod  :: "[i,i]=>i"                    (infixl "mod" 70)  where
9492
72e429c66608 used natify with div and mod; also put in the divide-by-zero trick
paulson
parents: 9491
diff changeset
    73
    "m mod n == raw_mod (natify(m), natify(n))"
9491
1a36151ee2fc natify, a coercion to reduce the number of type constraints in arithmetic
paulson
parents: 6070
diff changeset
    74
24893
b8ef7afe3a6b modernized specifications;
wenzelm
parents: 16417
diff changeset
    75
notation (xsymbols)
b8ef7afe3a6b modernized specifications;
wenzelm
parents: 16417
diff changeset
    76
  mult  (infixr "#\<times>" 70)
9964
7966a2902266 tuned symbols;
wenzelm
parents: 9683
diff changeset
    77
24893
b8ef7afe3a6b modernized specifications;
wenzelm
parents: 16417
diff changeset
    78
notation (HTML output)
b8ef7afe3a6b modernized specifications;
wenzelm
parents: 16417
diff changeset
    79
  mult  (infixr "#\<times>" 70)
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
    80
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
    81
declare rec_type [simp]
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
    82
        nat_0_le [simp]
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
    83
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
    84
14060
c0c4af41fa3b Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents: 13784
diff changeset
    85
lemma zero_lt_lemma: "[| 0<k; k \<in> nat |] ==> \<exists>j\<in>nat. k = succ(j)"
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
    86
apply (erule rev_mp)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
    87
apply (induct_tac "k", auto)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
    88
done
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
    89
14060
c0c4af41fa3b Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents: 13784
diff changeset
    90
(* [| 0 < k; k \<in> nat; !!j. [| j \<in> nat; k = succ(j) |] ==> Q |] ==> Q *)
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
    91
lemmas zero_lt_natE = zero_lt_lemma [THEN bexE, standard]
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
    92
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
    93
13356
c9cfe1638bf2 improved presentation markup
paulson
parents: 13328
diff changeset
    94
subsection{*@{text natify}, the Coercion to @{term nat}*}
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
    95
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
    96
lemma pred_succ_eq [simp]: "pred(succ(y)) = y"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
    97
by (unfold pred_def, auto)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
    98
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
    99
lemma natify_succ: "natify(succ(x)) = succ(natify(x))"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   100
by (rule natify_def [THEN def_Vrecursor, THEN trans], auto)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   101
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   102
lemma natify_0 [simp]: "natify(0) = 0"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   103
by (rule natify_def [THEN def_Vrecursor, THEN trans], auto)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   104
14060
c0c4af41fa3b Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents: 13784
diff changeset
   105
lemma natify_non_succ: "\<forall>z. x ~= succ(z) ==> natify(x) = 0"
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   106
by (rule natify_def [THEN def_Vrecursor, THEN trans], auto)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   107
14060
c0c4af41fa3b Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents: 13784
diff changeset
   108
lemma natify_in_nat [iff,TC]: "natify(x) \<in> nat"
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   109
apply (rule_tac a=x in eps_induct)
14060
c0c4af41fa3b Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents: 13784
diff changeset
   110
apply (case_tac "\<exists>z. x = succ(z)")
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   111
apply (auto simp add: natify_succ natify_non_succ)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   112
done
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   113
14060
c0c4af41fa3b Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents: 13784
diff changeset
   114
lemma natify_ident [simp]: "n \<in> nat ==> natify(n) = n"
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   115
apply (induct_tac "n")
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   116
apply (auto simp add: natify_succ)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   117
done
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   118
14060
c0c4af41fa3b Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents: 13784
diff changeset
   119
lemma natify_eqE: "[|natify(x) = y;  x \<in> nat|] ==> x=y"
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   120
by auto
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   121
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   122
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   123
(*** Collapsing rules: to remove natify from arithmetic expressions ***)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   124
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   125
lemma natify_idem [simp]: "natify(natify(x)) = natify(x)"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   126
by simp
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   127
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   128
(** Addition **)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   129
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   130
lemma add_natify1 [simp]: "natify(m) #+ n = m #+ n"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   131
by (simp add: add_def)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   132
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   133
lemma add_natify2 [simp]: "m #+ natify(n) = m #+ n"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   134
by (simp add: add_def)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   135
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   136
(** Multiplication **)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   137
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   138
lemma mult_natify1 [simp]: "natify(m) #* n = m #* n"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   139
by (simp add: mult_def)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   140
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   141
lemma mult_natify2 [simp]: "m #* natify(n) = m #* n"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   142
by (simp add: mult_def)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   143
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   144
(** Difference **)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   145
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   146
lemma diff_natify1 [simp]: "natify(m) #- n = m #- n"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   147
by (simp add: diff_def)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   148
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   149
lemma diff_natify2 [simp]: "m #- natify(n) = m #- n"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   150
by (simp add: diff_def)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   151
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   152
(** Remainder **)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   153
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   154
lemma mod_natify1 [simp]: "natify(m) mod n = m mod n"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   155
by (simp add: mod_def)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   156
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   157
lemma mod_natify2 [simp]: "m mod natify(n) = m mod n"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   158
by (simp add: mod_def)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   159
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   160
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   161
(** Quotient **)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   162
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   163
lemma div_natify1 [simp]: "natify(m) div n = m div n"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   164
by (simp add: div_def)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   165
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   166
lemma div_natify2 [simp]: "m div natify(n) = m div n"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   167
by (simp add: div_def)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   168
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   169
13356
c9cfe1638bf2 improved presentation markup
paulson
parents: 13328
diff changeset
   170
subsection{*Typing rules*}
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   171
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   172
(** Addition **)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   173
14060
c0c4af41fa3b Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents: 13784
diff changeset
   174
lemma raw_add_type: "[| m\<in>nat;  n\<in>nat |] ==> raw_add (m, n) \<in> nat"
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   175
by (induct_tac "m", auto)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   176
14060
c0c4af41fa3b Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents: 13784
diff changeset
   177
lemma add_type [iff,TC]: "m #+ n \<in> nat"
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   178
by (simp add: add_def raw_add_type)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   179
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   180
(** Multiplication **)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   181
14060
c0c4af41fa3b Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents: 13784
diff changeset
   182
lemma raw_mult_type: "[| m\<in>nat;  n\<in>nat |] ==> raw_mult (m, n) \<in> nat"
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   183
apply (induct_tac "m")
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   184
apply (simp_all add: raw_add_type)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   185
done
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   186
14060
c0c4af41fa3b Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents: 13784
diff changeset
   187
lemma mult_type [iff,TC]: "m #* n \<in> nat"
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   188
by (simp add: mult_def raw_mult_type)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   189
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   190
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   191
(** Difference **)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   192
14060
c0c4af41fa3b Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents: 13784
diff changeset
   193
lemma raw_diff_type: "[| m\<in>nat;  n\<in>nat |] ==> raw_diff (m, n) \<in> nat"
13173
8f4680be79cc new version of nat_case, nat_case3
paulson
parents: 13163
diff changeset
   194
by (induct_tac "n", auto)
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   195
14060
c0c4af41fa3b Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents: 13784
diff changeset
   196
lemma diff_type [iff,TC]: "m #- n \<in> nat"
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   197
by (simp add: diff_def raw_diff_type)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   198
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   199
lemma diff_0_eq_0 [simp]: "0 #- n = 0"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   200
apply (unfold diff_def)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   201
apply (rule natify_in_nat [THEN nat_induct], auto)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   202
done
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   203
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   204
(*Must simplify BEFORE the induction: else we get a critical pair*)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   205
lemma diff_succ_succ [simp]: "succ(m) #- succ(n) = m #- n"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   206
apply (simp add: natify_succ diff_def)
13784
b9f6154427a4 tidying (by script)
paulson
parents: 13361
diff changeset
   207
apply (rule_tac x1 = n in natify_in_nat [THEN nat_induct], auto)
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   208
done
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   209
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   210
(*This defining property is no longer wanted*)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   211
declare raw_diff_succ [simp del]
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   212
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   213
(*Natify has weakened this law, compared with the older approach*)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   214
lemma diff_0 [simp]: "m #- 0 = natify(m)"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   215
by (simp add: diff_def)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   216
14060
c0c4af41fa3b Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents: 13784
diff changeset
   217
lemma diff_le_self: "m\<in>nat ==> (m #- n) le m"
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   218
apply (subgoal_tac " (m #- natify (n)) le m")
13784
b9f6154427a4 tidying (by script)
paulson
parents: 13361
diff changeset
   219
apply (rule_tac [2] m = m and n = "natify (n) " in diff_induct)
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   220
apply (erule_tac [6] leE)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   221
apply (simp_all add: le_iff)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   222
done
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   223
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   224
13356
c9cfe1638bf2 improved presentation markup
paulson
parents: 13328
diff changeset
   225
subsection{*Addition*}
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   226
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   227
(*Natify has weakened this law, compared with the older approach*)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   228
lemma add_0_natify [simp]: "0 #+ m = natify(m)"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   229
by (simp add: add_def)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   230
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   231
lemma add_succ [simp]: "succ(m) #+ n = succ(m #+ n)"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   232
by (simp add: natify_succ add_def)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   233
14060
c0c4af41fa3b Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents: 13784
diff changeset
   234
lemma add_0: "m \<in> nat ==> 0 #+ m = m"
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   235
by simp
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   236
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   237
(*Associative law for addition*)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   238
lemma add_assoc: "(m #+ n) #+ k = m #+ (n #+ k)"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   239
apply (subgoal_tac "(natify(m) #+ natify(n)) #+ natify(k) =
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   240
                    natify(m) #+ (natify(n) #+ natify(k))")
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   241
apply (rule_tac [2] n = "natify(m)" in nat_induct)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   242
apply auto
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   243
done
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   244
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   245
(*The following two lemmas are used for add_commute and sometimes
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   246
  elsewhere, since they are safe for rewriting.*)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   247
lemma add_0_right_natify [simp]: "m #+ 0 = natify(m)"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   248
apply (subgoal_tac "natify(m) #+ 0 = natify(m)")
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   249
apply (rule_tac [2] n = "natify(m)" in nat_induct)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   250
apply auto
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   251
done
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   252
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   253
lemma add_succ_right [simp]: "m #+ succ(n) = succ(m #+ n)"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   254
apply (unfold add_def)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   255
apply (rule_tac n = "natify(m) " in nat_induct)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   256
apply (auto simp add: natify_succ)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   257
done
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   258
14060
c0c4af41fa3b Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents: 13784
diff changeset
   259
lemma add_0_right: "m \<in> nat ==> m #+ 0 = m"
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   260
by auto
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   261
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   262
(*Commutative law for addition*)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   263
lemma add_commute: "m #+ n = n #+ m"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   264
apply (subgoal_tac "natify(m) #+ natify(n) = natify(n) #+ natify(m) ")
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   265
apply (rule_tac [2] n = "natify(m) " in nat_induct)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   266
apply auto
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   267
done
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   268
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   269
(*for a/c rewriting*)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   270
lemma add_left_commute: "m#+(n#+k)=n#+(m#+k)"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   271
apply (rule add_commute [THEN trans])
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   272
apply (rule add_assoc [THEN trans])
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   273
apply (rule add_commute [THEN subst_context])
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   274
done
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   275
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   276
(*Addition is an AC-operator*)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   277
lemmas add_ac = add_assoc add_commute add_left_commute
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   278
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   279
(*Cancellation law on the left*)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   280
lemma raw_add_left_cancel:
14060
c0c4af41fa3b Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents: 13784
diff changeset
   281
     "[| raw_add(k, m) = raw_add(k, n);  k\<in>nat |] ==> m=n"
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   282
apply (erule rev_mp)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   283
apply (induct_tac "k", auto)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   284
done
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   285
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   286
lemma add_left_cancel_natify: "k #+ m = k #+ n ==> natify(m) = natify(n)"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   287
apply (unfold add_def)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   288
apply (drule raw_add_left_cancel, auto)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   289
done
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   290
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   291
lemma add_left_cancel:
14060
c0c4af41fa3b Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents: 13784
diff changeset
   292
     "[| i = j;  i #+ m = j #+ n;  m\<in>nat;  n\<in>nat |] ==> m = n"
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   293
by (force dest!: add_left_cancel_natify)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   294
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   295
(*Thanks to Sten Agerholm*)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   296
lemma add_le_elim1_natify: "k#+m le k#+n ==> natify(m) le natify(n)"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   297
apply (rule_tac P = "natify(k) #+m le natify(k) #+n" in rev_mp)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   298
apply (rule_tac [2] n = "natify(k) " in nat_induct)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   299
apply auto
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   300
done
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   301
14060
c0c4af41fa3b Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents: 13784
diff changeset
   302
lemma add_le_elim1: "[| k#+m le k#+n; m \<in> nat; n \<in> nat |] ==> m le n"
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   303
by (drule add_le_elim1_natify, auto)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   304
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   305
lemma add_lt_elim1_natify: "k#+m < k#+n ==> natify(m) < natify(n)"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   306
apply (rule_tac P = "natify(k) #+m < natify(k) #+n" in rev_mp)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   307
apply (rule_tac [2] n = "natify(k) " in nat_induct)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   308
apply auto
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   309
done
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   310
14060
c0c4af41fa3b Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents: 13784
diff changeset
   311
lemma add_lt_elim1: "[| k#+m < k#+n; m \<in> nat; n \<in> nat |] ==> m < n"
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   312
by (drule add_lt_elim1_natify, auto)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   313
15201
d73f9d49d835 converted ZF/Induct/Multiset to Isar script
paulson
parents: 14060
diff changeset
   314
lemma zero_less_add: "[| n \<in> nat; m \<in> nat |] ==> 0 < m #+ n <-> (0<m | 0<n)"
d73f9d49d835 converted ZF/Induct/Multiset to Isar script
paulson
parents: 14060
diff changeset
   315
by (induct_tac "n", auto)
d73f9d49d835 converted ZF/Induct/Multiset to Isar script
paulson
parents: 14060
diff changeset
   316
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   317
13356
c9cfe1638bf2 improved presentation markup
paulson
parents: 13328
diff changeset
   318
subsection{*Monotonicity of Addition*}
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   319
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   320
(*strict, in 1st argument; proof is by rule induction on 'less than'.
14060
c0c4af41fa3b Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents: 13784
diff changeset
   321
  Still need j\<in>nat, for consider j = omega.  Then we can have i<omega,
c0c4af41fa3b Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents: 13784
diff changeset
   322
  which is the same as i\<in>nat, but natify(j)=0, so the conclusion fails.*)
c0c4af41fa3b Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents: 13784
diff changeset
   323
lemma add_lt_mono1: "[| i<j; j\<in>nat |] ==> i#+k < j#+k"
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   324
apply (frule lt_nat_in_nat, assumption)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   325
apply (erule succ_lt_induct)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   326
apply (simp_all add: leI)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   327
done
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   328
14060
c0c4af41fa3b Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents: 13784
diff changeset
   329
text{*strict, in second argument*}
c0c4af41fa3b Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents: 13784
diff changeset
   330
lemma add_lt_mono2: "[| i<j; j\<in>nat |] ==> k#+i < k#+j"
c0c4af41fa3b Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents: 13784
diff changeset
   331
by (simp add: add_commute [of k] add_lt_mono1)
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   332
14060
c0c4af41fa3b Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents: 13784
diff changeset
   333
text{*A [clumsy] way of lifting < monotonicity to @{text "\<le>"} monotonicity*}
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   334
lemma Ord_lt_mono_imp_le_mono:
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   335
  assumes lt_mono: "!!i j. [| i<j; j:k |] ==> f(i) < f(j)"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   336
      and ford:    "!!i. i:k ==> Ord(f(i))"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   337
      and leij:    "i le j"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   338
      and jink:    "j:k"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   339
  shows "f(i) le f(j)"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   340
apply (insert leij jink) 
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   341
apply (blast intro!: leCI lt_mono ford elim!: leE)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   342
done
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   343
14060
c0c4af41fa3b Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents: 13784
diff changeset
   344
text{*@{text "\<le>"} monotonicity, 1st argument*}
c0c4af41fa3b Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents: 13784
diff changeset
   345
lemma add_le_mono1: "[| i le j; j\<in>nat |] ==> i#+k le j#+k"
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   346
apply (rule_tac f = "%j. j#+k" in Ord_lt_mono_imp_le_mono, typecheck) 
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   347
apply (blast intro: add_lt_mono1 add_type [THEN nat_into_Ord])+
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   348
done
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   349
14060
c0c4af41fa3b Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents: 13784
diff changeset
   350
text{*@{text "\<le>"} monotonicity, both arguments*}
c0c4af41fa3b Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents: 13784
diff changeset
   351
lemma add_le_mono: "[| i le j; k le l; j\<in>nat; l\<in>nat |] ==> i#+k le j#+l"
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   352
apply (rule add_le_mono1 [THEN le_trans], assumption+)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   353
apply (subst add_commute, subst add_commute, rule add_le_mono1, assumption+)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   354
done
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   355
14060
c0c4af41fa3b Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents: 13784
diff changeset
   356
text{*Combinations of less-than and less-than-or-equals*}
c0c4af41fa3b Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents: 13784
diff changeset
   357
c0c4af41fa3b Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents: 13784
diff changeset
   358
lemma add_lt_le_mono: "[| i<j; k\<le>l; j\<in>nat; l\<in>nat |] ==> i#+k < j#+l"
c0c4af41fa3b Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents: 13784
diff changeset
   359
apply (rule add_lt_mono1 [THEN lt_trans2], assumption+)
c0c4af41fa3b Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents: 13784
diff changeset
   360
apply (subst add_commute, subst add_commute, rule add_le_mono1, assumption+)
c0c4af41fa3b Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents: 13784
diff changeset
   361
done
c0c4af41fa3b Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents: 13784
diff changeset
   362
c0c4af41fa3b Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents: 13784
diff changeset
   363
lemma add_le_lt_mono: "[| i\<le>j; k<l; j\<in>nat; l\<in>nat |] ==> i#+k < j#+l"
c0c4af41fa3b Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents: 13784
diff changeset
   364
by (subst add_commute, subst add_commute, erule add_lt_le_mono, assumption+)
c0c4af41fa3b Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents: 13784
diff changeset
   365
c0c4af41fa3b Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents: 13784
diff changeset
   366
text{*Less-than: in other words, strict in both arguments*}
c0c4af41fa3b Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents: 13784
diff changeset
   367
lemma add_lt_mono: "[| i<j; k<l; j\<in>nat; l\<in>nat |] ==> i#+k < j#+l"
c0c4af41fa3b Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents: 13784
diff changeset
   368
apply (rule add_lt_le_mono) 
c0c4af41fa3b Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents: 13784
diff changeset
   369
apply (auto intro: leI) 
c0c4af41fa3b Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents: 13784
diff changeset
   370
done
c0c4af41fa3b Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents: 13784
diff changeset
   371
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   372
(** Subtraction is the inverse of addition. **)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   373
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   374
lemma diff_add_inverse: "(n#+m) #- n = natify(m)"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   375
apply (subgoal_tac " (natify(n) #+ m) #- natify(n) = natify(m) ")
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   376
apply (rule_tac [2] n = "natify(n) " in nat_induct)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   377
apply auto
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   378
done
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   379
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   380
lemma diff_add_inverse2: "(m#+n) #- n = natify(m)"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   381
by (simp add: add_commute [of m] diff_add_inverse)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   382
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   383
lemma diff_cancel: "(k#+m) #- (k#+n) = m #- n"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   384
apply (subgoal_tac "(natify(k) #+ natify(m)) #- (natify(k) #+ natify(n)) =
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   385
                    natify(m) #- natify(n) ")
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   386
apply (rule_tac [2] n = "natify(k) " in nat_induct)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   387
apply auto
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   388
done
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   389
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   390
lemma diff_cancel2: "(m#+k) #- (n#+k) = m #- n"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   391
by (simp add: add_commute [of _ k] diff_cancel)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   392
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   393
lemma diff_add_0: "n #- (n#+m) = 0"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   394
apply (subgoal_tac "natify(n) #- (natify(n) #+ natify(m)) = 0")
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   395
apply (rule_tac [2] n = "natify(n) " in nat_induct)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   396
apply auto
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   397
done
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   398
13361
5005d34425bb new lemmas
paulson
parents: 13356
diff changeset
   399
lemma pred_0 [simp]: "pred(0) = 0"
5005d34425bb new lemmas
paulson
parents: 13356
diff changeset
   400
by (simp add: pred_def)
5005d34425bb new lemmas
paulson
parents: 13356
diff changeset
   401
5005d34425bb new lemmas
paulson
parents: 13356
diff changeset
   402
lemma eq_succ_imp_eq_m1: "[|i = succ(j); i\<in>nat|] ==> j = i #- 1 & j \<in>nat"
5005d34425bb new lemmas
paulson
parents: 13356
diff changeset
   403
by simp 
5005d34425bb new lemmas
paulson
parents: 13356
diff changeset
   404
5005d34425bb new lemmas
paulson
parents: 13356
diff changeset
   405
lemma pred_Un_distrib:
5005d34425bb new lemmas
paulson
parents: 13356
diff changeset
   406
    "[|i\<in>nat; j\<in>nat|] ==> pred(i Un j) = pred(i) Un pred(j)"
5005d34425bb new lemmas
paulson
parents: 13356
diff changeset
   407
apply (erule_tac n=i in natE, simp) 
5005d34425bb new lemmas
paulson
parents: 13356
diff changeset
   408
apply (erule_tac n=j in natE, simp) 
5005d34425bb new lemmas
paulson
parents: 13356
diff changeset
   409
apply (simp add:  succ_Un_distrib [symmetric])
5005d34425bb new lemmas
paulson
parents: 13356
diff changeset
   410
done
5005d34425bb new lemmas
paulson
parents: 13356
diff changeset
   411
5005d34425bb new lemmas
paulson
parents: 13356
diff changeset
   412
lemma pred_type [TC,simp]:
5005d34425bb new lemmas
paulson
parents: 13356
diff changeset
   413
    "i \<in> nat ==> pred(i) \<in> nat"
5005d34425bb new lemmas
paulson
parents: 13356
diff changeset
   414
by (simp add: pred_def split: split_nat_case)
5005d34425bb new lemmas
paulson
parents: 13356
diff changeset
   415
5005d34425bb new lemmas
paulson
parents: 13356
diff changeset
   416
lemma nat_diff_pred: "[|i\<in>nat; j\<in>nat|] ==> i #- succ(j) = pred(i #- j)";
5005d34425bb new lemmas
paulson
parents: 13356
diff changeset
   417
apply (rule_tac m=i and n=j in diff_induct) 
5005d34425bb new lemmas
paulson
parents: 13356
diff changeset
   418
apply (auto simp add: pred_def nat_imp_quasinat split: split_nat_case)
5005d34425bb new lemmas
paulson
parents: 13356
diff changeset
   419
done
5005d34425bb new lemmas
paulson
parents: 13356
diff changeset
   420
5005d34425bb new lemmas
paulson
parents: 13356
diff changeset
   421
lemma diff_succ_eq_pred: "i #- succ(j) = pred(i #- j)";
5005d34425bb new lemmas
paulson
parents: 13356
diff changeset
   422
apply (insert nat_diff_pred [of "natify(i)" "natify(j)"])
5005d34425bb new lemmas
paulson
parents: 13356
diff changeset
   423
apply (simp add: natify_succ [symmetric]) 
5005d34425bb new lemmas
paulson
parents: 13356
diff changeset
   424
done
5005d34425bb new lemmas
paulson
parents: 13356
diff changeset
   425
5005d34425bb new lemmas
paulson
parents: 13356
diff changeset
   426
lemma nat_diff_Un_distrib:
5005d34425bb new lemmas
paulson
parents: 13356
diff changeset
   427
    "[|i\<in>nat; j\<in>nat; k\<in>nat|] ==> (i Un j) #- k = (i#-k) Un (j#-k)"
5005d34425bb new lemmas
paulson
parents: 13356
diff changeset
   428
apply (rule_tac n=k in nat_induct) 
5005d34425bb new lemmas
paulson
parents: 13356
diff changeset
   429
apply (simp_all add: diff_succ_eq_pred pred_Un_distrib) 
5005d34425bb new lemmas
paulson
parents: 13356
diff changeset
   430
done
5005d34425bb new lemmas
paulson
parents: 13356
diff changeset
   431
5005d34425bb new lemmas
paulson
parents: 13356
diff changeset
   432
lemma diff_Un_distrib:
5005d34425bb new lemmas
paulson
parents: 13356
diff changeset
   433
    "[|i\<in>nat; j\<in>nat|] ==> (i Un j) #- k = (i#-k) Un (j#-k)"
5005d34425bb new lemmas
paulson
parents: 13356
diff changeset
   434
by (insert nat_diff_Un_distrib [of i j "natify(k)"], simp)
5005d34425bb new lemmas
paulson
parents: 13356
diff changeset
   435
5005d34425bb new lemmas
paulson
parents: 13356
diff changeset
   436
text{*We actually prove @{term "i #- j #- k = i #- (j #+ k)"}*}
5005d34425bb new lemmas
paulson
parents: 13356
diff changeset
   437
lemma diff_diff_left [simplified]:
5005d34425bb new lemmas
paulson
parents: 13356
diff changeset
   438
     "natify(i)#-natify(j)#-k = natify(i) #- (natify(j)#+k)";
5005d34425bb new lemmas
paulson
parents: 13356
diff changeset
   439
by (rule_tac m="natify(i)" and n="natify(j)" in diff_induct, auto)
5005d34425bb new lemmas
paulson
parents: 13356
diff changeset
   440
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   441
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   442
(** Lemmas for the CancelNumerals simproc **)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   443
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   444
lemma eq_add_iff: "(u #+ m = u #+ n) <-> (0 #+ m = natify(n))"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   445
apply auto
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   446
apply (blast dest: add_left_cancel_natify)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   447
apply (simp add: add_def)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   448
done
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   449
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   450
lemma less_add_iff: "(u #+ m < u #+ n) <-> (0 #+ m < natify(n))"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   451
apply (auto simp add: add_lt_elim1_natify)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   452
apply (drule add_lt_mono1)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   453
apply (auto simp add: add_commute [of u])
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   454
done
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   455
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   456
lemma diff_add_eq: "((u #+ m) #- (u #+ n)) = ((0 #+ m) #- n)"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   457
by (simp add: diff_cancel)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   458
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   459
(*To tidy up the result of a simproc.  Only the RHS will be simplified.*)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   460
lemma eq_cong2: "u = u' ==> (t==u) == (t==u')"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   461
by auto
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   462
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   463
lemma iff_cong2: "u <-> u' ==> (t==u) == (t==u')"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   464
by auto
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   465
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   466
13356
c9cfe1638bf2 improved presentation markup
paulson
parents: 13328
diff changeset
   467
subsection{*Multiplication*}
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   468
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   469
lemma mult_0 [simp]: "0 #* m = 0"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   470
by (simp add: mult_def)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   471
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   472
lemma mult_succ [simp]: "succ(m) #* n = n #+ (m #* n)"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   473
by (simp add: add_def mult_def natify_succ raw_mult_type)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   474
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   475
(*right annihilation in product*)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   476
lemma mult_0_right [simp]: "m #* 0 = 0"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   477
apply (unfold mult_def)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   478
apply (rule_tac n = "natify(m) " in nat_induct)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   479
apply auto
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   480
done
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   481
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   482
(*right successor law for multiplication*)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   483
lemma mult_succ_right [simp]: "m #* succ(n) = m #+ (m #* n)"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   484
apply (subgoal_tac "natify(m) #* succ (natify(n)) =
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   485
                    natify(m) #+ (natify(m) #* natify(n))")
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   486
apply (simp (no_asm_use) add: natify_succ add_def mult_def)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   487
apply (rule_tac n = "natify(m) " in nat_induct)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   488
apply (simp_all add: add_ac)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   489
done
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   490
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   491
lemma mult_1_natify [simp]: "1 #* n = natify(n)"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   492
by auto
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   493
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   494
lemma mult_1_right_natify [simp]: "n #* 1 = natify(n)"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   495
by auto
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   496
14060
c0c4af41fa3b Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents: 13784
diff changeset
   497
lemma mult_1: "n \<in> nat ==> 1 #* n = n"
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   498
by simp
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   499
14060
c0c4af41fa3b Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents: 13784
diff changeset
   500
lemma mult_1_right: "n \<in> nat ==> n #* 1 = n"
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   501
by simp
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   502
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   503
(*Commutative law for multiplication*)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   504
lemma mult_commute: "m #* n = n #* m"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   505
apply (subgoal_tac "natify(m) #* natify(n) = natify(n) #* natify(m) ")
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   506
apply (rule_tac [2] n = "natify(m) " in nat_induct)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   507
apply auto
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   508
done
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   509
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   510
(*addition distributes over multiplication*)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   511
lemma add_mult_distrib: "(m #+ n) #* k = (m #* k) #+ (n #* k)"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   512
apply (subgoal_tac "(natify(m) #+ natify(n)) #* natify(k) =
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   513
                    (natify(m) #* natify(k)) #+ (natify(n) #* natify(k))")
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   514
apply (rule_tac [2] n = "natify(m) " in nat_induct)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   515
apply (simp_all add: add_assoc [symmetric])
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   516
done
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   517
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   518
(*Distributive law on the left*)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   519
lemma add_mult_distrib_left: "k #* (m #+ n) = (k #* m) #+ (k #* n)"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   520
apply (subgoal_tac "natify(k) #* (natify(m) #+ natify(n)) =
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   521
                    (natify(k) #* natify(m)) #+ (natify(k) #* natify(n))")
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   522
apply (rule_tac [2] n = "natify(m) " in nat_induct)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   523
apply (simp_all add: add_ac)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   524
done
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   525
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   526
(*Associative law for multiplication*)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   527
lemma mult_assoc: "(m #* n) #* k = m #* (n #* k)"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   528
apply (subgoal_tac "(natify(m) #* natify(n)) #* natify(k) =
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   529
                    natify(m) #* (natify(n) #* natify(k))")
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   530
apply (rule_tac [2] n = "natify(m) " in nat_induct)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   531
apply (simp_all add: add_mult_distrib)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   532
done
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   533
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   534
(*for a/c rewriting*)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   535
lemma mult_left_commute: "m #* (n #* k) = n #* (m #* k)"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   536
apply (rule mult_commute [THEN trans])
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   537
apply (rule mult_assoc [THEN trans])
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   538
apply (rule mult_commute [THEN subst_context])
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   539
done
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   540
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   541
lemmas mult_ac = mult_assoc mult_commute mult_left_commute
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   542
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   543
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   544
lemma lt_succ_eq_0_disj:
14060
c0c4af41fa3b Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents: 13784
diff changeset
   545
     "[| m\<in>nat; n\<in>nat |]
c0c4af41fa3b Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents: 13784
diff changeset
   546
      ==> (m < succ(n)) <-> (m = 0 | (\<exists>j\<in>nat. m = succ(j) & j < n))"
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   547
by (induct_tac "m", auto)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   548
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   549
lemma less_diff_conv [rule_format]:
14060
c0c4af41fa3b Adding the theory UNITY/AllocImpl.thy, with supporting lemmas
paulson
parents: 13784
diff changeset
   550
     "[| j\<in>nat; k\<in>nat |] ==> \<forall>i\<in>nat. (i < j #- k) <-> (i #+ k < j)"
13784
b9f6154427a4 tidying (by script)
paulson
parents: 13361
diff changeset
   551
by (erule_tac m = k in diff_induct, auto)
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   552
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   553
lemmas nat_typechecks = rec_type nat_0I nat_1I nat_succI Ord_nat
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 12114
diff changeset
   554
0
a5a9c433f639 Initial revision
clasohm
parents:
diff changeset
   555
end