| author | oheimb | 
| Thu, 30 Aug 2001 17:49:46 +0200 | |
| changeset 11508 | 168dbdaedb71 | 
| parent 11507 | 4b32a46ffd29 | 
| child 11565 | ab004c0ecc63 | 
| permissions | -rw-r--r-- | 
| 11376 | 1 | (* Title: HOL/NanoJava/Equivalence.thy | 
| 2 | ID: $Id$ | |
| 3 | Author: David von Oheimb | |
| 4 | Copyright 2001 Technische Universitaet Muenchen | |
| 5 | *) | |
| 6 | ||
| 7 | header "Equivalence of Operational and Axiomatic Semantics" | |
| 8 | ||
| 9 | theory Equivalence = OpSem + AxSem: | |
| 10 | ||
| 11 | subsection "Validity" | |
| 12 | ||
| 13 | constdefs | |
| 11476 | 14 |   valid   :: "[assn,stmt, assn] => bool"  ("|= {(1_)}/ (_)/ {(1_)}" [3,90,3] 60)
 | 
| 15 |  "|=  {P} c {Q} \<equiv> \<forall>s   t. P s --> (\<exists>n. s -c  -n-> t) --> Q   t"
 | |
| 16 | ||
| 17 |  evalid   :: "[assn,expr,vassn] => bool" ("|=e {(1_)}/ (_)/ {(1_)}" [3,90,3] 60)
 | |
| 18 |  "|=e {P} e {Q} \<equiv> \<forall>s v t. P s --> (\<exists>n. s -e>v-n-> t) --> Q v t"
 | |
| 19 | ||
| 11376 | 20 | |
| 11476 | 21 |  nvalid   :: "[nat, triple    ] => bool" ("|=_: _"  [61,61] 60)
 | 
| 22 | "|=n: t \<equiv> let (P,c,Q) = t in \<forall>s t. s -c -n-> t --> P s --> Q t" | |
| 11376 | 23 | |
| 11476 | 24 | envalid   :: "[nat,etriple    ] => bool" ("|=_:e _" [61,61] 60)
 | 
| 25 | "|=n:e t \<equiv> let (P,e,Q) = t in \<forall>s v t. s -e>v-n-> t --> P s --> Q v t" | |
| 26 | ||
| 27 |   nvalids :: "[nat,       triple set] => bool" ("||=_: _" [61,61] 60)
 | |
| 11376 | 28 | "||=n: T \<equiv> \<forall>t\<in>T. |=n: t" | 
| 29 | ||
| 11476 | 30 |  cnvalids :: "[triple set,triple set] => bool" ("_ ||=/ _"  [61,61] 60)
 | 
| 31 | "A ||= C \<equiv> \<forall>n. ||=n: A --> ||=n: C" | |
| 32 | ||
| 33 | cenvalid  :: "[triple set,etriple   ] => bool" ("_ ||=e/ _" [61,61] 60)
 | |
| 34 | "A ||=e t \<equiv> \<forall>n. ||=n: A --> |=n:e t" | |
| 11376 | 35 | |
| 36 | syntax (xsymbols) | |
| 11476 | 37 |    valid  :: "[assn,stmt, assn] => bool" ( "\<Turnstile> {(1_)}/ (_)/ {(1_)}" [3,90,3] 60)
 | 
| 11486 | 38 |   evalid  :: "[assn,expr,vassn] => bool" ("\<Turnstile>\<^sub>e {(1_)}/ (_)/ {(1_)}" [3,90,3] 60)
 | 
| 11476 | 39 |   nvalid  :: "[nat, triple          ] => bool" ("\<Turnstile>_: _"  [61,61] 60)
 | 
| 11486 | 40 |  envalid  :: "[nat,etriple          ] => bool" ("\<Turnstile>_:\<^sub>e _" [61,61] 60)
 | 
| 11476 | 41 |   nvalids :: "[nat,       triple set] => bool" ("|\<Turnstile>_: _"  [61,61] 60)
 | 
| 11376 | 42 |  cnvalids :: "[triple set,triple set] => bool" ("_ |\<Turnstile>/ _" [61,61] 60)
 | 
| 11486 | 43 | cenvalid  :: "[triple set,etriple   ] => bool" ("_ |\<Turnstile>\<^sub>e/ _"[61,61] 60)
 | 
| 11376 | 44 | |
| 45 | ||
| 11476 | 46 | lemma nvalid_def2: "\<Turnstile>n: (P,c,Q) \<equiv> \<forall>s t. s -c-n\<rightarrow> t \<longrightarrow> P s \<longrightarrow> Q t" | 
| 11376 | 47 | by (simp add: nvalid_def Let_def) | 
| 48 | ||
| 11476 | 49 | lemma valid_def2: "\<Turnstile> {P} c {Q} = (\<forall>n. \<Turnstile>n: (P,c,Q))"
 | 
| 50 | apply (simp add: valid_def nvalid_def2) | |
| 11376 | 51 | apply blast | 
| 52 | done | |
| 53 | ||
| 11486 | 54 | lemma envalid_def2: "\<Turnstile>n:\<^sub>e (P,e,Q) \<equiv> \<forall>s v t. s -e\<succ>v-n\<rightarrow> t \<longrightarrow> P s \<longrightarrow> Q v t" | 
| 11476 | 55 | by (simp add: envalid_def Let_def) | 
| 56 | ||
| 11486 | 57 | lemma evalid_def2: "\<Turnstile>\<^sub>e {P} e {Q} = (\<forall>n. \<Turnstile>n:\<^sub>e (P,e,Q))"
 | 
| 11476 | 58 | apply (simp add: evalid_def envalid_def2) | 
| 59 | apply blast | |
| 60 | done | |
| 61 | ||
| 62 | lemma cenvalid_def2: | |
| 11486 | 63 | "A|\<Turnstile>\<^sub>e (P,e,Q) = (\<forall>n. |\<Turnstile>n: A \<longrightarrow> (\<forall>s v t. s -e\<succ>v-n\<rightarrow> t \<longrightarrow> P s \<longrightarrow> Q v t))" | 
| 11476 | 64 | by(simp add: cenvalid_def envalid_def2) | 
| 65 | ||
| 11376 | 66 | |
| 67 | subsection "Soundness" | |
| 68 | ||
| 11476 | 69 | declare exec_elim_cases [elim!] eval_elim_cases [elim!] | 
| 11376 | 70 | |
| 11497 
0e66e0114d9a
corrected initialization of locals, streamlined Impl
 oheimb parents: 
11486diff
changeset | 71 | lemma Impl_nvalid_0: "\<Turnstile>0: (P,Impl M,Q)" | 
| 11476 | 72 | by (clarsimp simp add: nvalid_def2) | 
| 11376 | 73 | |
| 11497 
0e66e0114d9a
corrected initialization of locals, streamlined Impl
 oheimb parents: 
11486diff
changeset | 74 | lemma Impl_nvalid_Suc: "\<Turnstile>n: (P,body M,Q) \<Longrightarrow> \<Turnstile>Suc n: (P,Impl M,Q)" | 
| 11476 | 75 | by (clarsimp simp add: nvalid_def2) | 
| 11376 | 76 | |
| 77 | lemma nvalid_SucD: "\<And>t. \<Turnstile>Suc n:t \<Longrightarrow> \<Turnstile>n:t" | |
| 11476 | 78 | by (force simp add: split_paired_all nvalid_def2 intro: exec_mono) | 
| 11376 | 79 | |
| 80 | lemma nvalids_SucD: "Ball A (nvalid (Suc n)) \<Longrightarrow> Ball A (nvalid n)" | |
| 81 | by (fast intro: nvalid_SucD) | |
| 82 | ||
| 83 | lemma Loop_sound_lemma [rule_format (no_asm)]: | |
| 11476 | 84 | "\<forall>s t. s -c-n\<rightarrow> t \<longrightarrow> P s \<and> s<x> \<noteq> Null \<longrightarrow> P t \<Longrightarrow> | 
| 85 | (s -c0-n0\<rightarrow> t \<longrightarrow> P s \<longrightarrow> c0 = While (x) c \<longrightarrow> n0 = n \<longrightarrow> P t \<and> t<x> = Null)" | |
| 86 | apply (rule_tac "P2.1"="%s e v n t. True" in exec_eval.induct [THEN conjunct1]) | |
| 11376 | 87 | apply clarsimp+ | 
| 88 | done | |
| 89 | ||
| 90 | lemma Impl_sound_lemma: | |
| 11497 
0e66e0114d9a
corrected initialization of locals, streamlined Impl
 oheimb parents: 
11486diff
changeset | 91 | "\<lbrakk>\<forall>z n. Ball (A \<union> B) (nvalid n) \<longrightarrow> Ball (f z ` Ms) (nvalid n); | 
| 11508 | 92 | Cm\<in>Ms; Ball A (nvalid na); Ball B (nvalid na)\<rbrakk> \<Longrightarrow> nvalid na (f z Cm)" | 
| 11376 | 93 | by blast | 
| 94 | ||
| 11476 | 95 | lemma all_conjunct2: "\<forall>l. P' l \<and> P l \<Longrightarrow> \<forall>l. P l" | 
| 96 | by fast | |
| 97 | ||
| 98 | lemma all3_conjunct2: | |
| 99 | "\<forall>a p l. (P' a p l \<and> P a p l) \<Longrightarrow> \<forall>a p l. P a p l" | |
| 100 | by fast | |
| 101 | ||
| 102 | lemma cnvalid1_eq: | |
| 103 |   "A |\<Turnstile> {(P,c,Q)} \<equiv> \<forall>n. |\<Turnstile>n: A \<longrightarrow> (\<forall>s t. s -c-n\<rightarrow> t \<longrightarrow> P s \<longrightarrow> Q t)"
 | |
| 104 | by(simp add: cnvalids_def nvalids_def nvalid_def2) | |
| 105 | ||
| 11486 | 106 | lemma hoare_sound_main:"\<And>t. (A |\<turnstile> C \<longrightarrow> A |\<Turnstile> C) \<and> (A |\<turnstile>\<^sub>e t \<longrightarrow> A |\<Turnstile>\<^sub>e t)" | 
| 11476 | 107 | apply (tactic "split_all_tac 1", rename_tac P e Q) | 
| 108 | apply (rule hoare_ehoare.induct) | |
| 109 | apply (tactic {* ALLGOALS (REPEAT o dresolve_tac [thm "all_conjunct2", thm "all3_conjunct2"]) *})
 | |
| 110 | apply (tactic {* ALLGOALS (REPEAT o thin_tac "?x :  hoare") *})
 | |
| 111 | apply (tactic {* ALLGOALS (REPEAT o thin_tac "?x : ehoare") *})
 | |
| 112 | apply (simp_all only: cnvalid1_eq cenvalid_def2) | |
| 113 | apply fast | |
| 114 | apply fast | |
| 115 | apply fast | |
| 116 | apply (clarify,tactic "smp_tac 1 1",erule(2) Loop_sound_lemma,(rule HOL.refl)+) | |
| 117 | apply fast | |
| 118 | apply fast | |
| 119 | apply fast | |
| 120 | apply fast | |
| 121 | apply fast | |
| 122 | apply fast | |
| 11376 | 123 | apply (clarsimp del: Meth_elim_cases) (* Call *) | 
| 11476 | 124 | apply (tactic "smp_tac 1 1", tactic "smp_tac 3 1", tactic "smp_tac 0 1") | 
| 125 | apply (tactic "smp_tac 2 1", tactic "smp_tac 3 1", tactic "smp_tac 0 1") | |
| 126 | apply (tactic "smp_tac 4 1", tactic "smp_tac 2 1", fast) | |
| 11497 
0e66e0114d9a
corrected initialization of locals, streamlined Impl
 oheimb parents: 
11486diff
changeset | 127 | apply (force del: Impl_elim_cases) (* Meth *) | 
| 11376 | 128 | defer | 
| 11476 | 129 | prefer 4 apply blast (* Conseq *) | 
| 130 | prefer 4 apply blast (* eConseq *) | |
| 11376 | 131 | apply (simp_all (no_asm_use) only: cnvalids_def nvalids_def) | 
| 132 | apply blast | |
| 133 | apply blast | |
| 134 | apply blast | |
| 135 | (* Impl *) | |
| 136 | apply (rule allI) | |
| 11497 
0e66e0114d9a
corrected initialization of locals, streamlined Impl
 oheimb parents: 
11486diff
changeset | 137 | apply (rule_tac x=z in spec) | 
| 11376 | 138 | apply (induct_tac "n") | 
| 139 | apply (clarify intro!: Impl_nvalid_0) | |
| 140 | apply (clarify intro!: Impl_nvalid_Suc) | |
| 141 | apply (drule nvalids_SucD) | |
| 11497 
0e66e0114d9a
corrected initialization of locals, streamlined Impl
 oheimb parents: 
11486diff
changeset | 142 | apply (simp only: all_simps) | 
| 11376 | 143 | apply (erule (1) impE) | 
| 11497 
0e66e0114d9a
corrected initialization of locals, streamlined Impl
 oheimb parents: 
11486diff
changeset | 144 | apply (drule (2) Impl_sound_lemma) | 
| 
0e66e0114d9a
corrected initialization of locals, streamlined Impl
 oheimb parents: 
11486diff
changeset | 145 | apply blast | 
| 
0e66e0114d9a
corrected initialization of locals, streamlined Impl
 oheimb parents: 
11486diff
changeset | 146 | apply assumption | 
| 11376 | 147 | done | 
| 148 | ||
| 149 | theorem hoare_sound: "{} \<turnstile> {P} c {Q} \<Longrightarrow> \<Turnstile> {P} c {Q}"
 | |
| 150 | apply (simp only: valid_def2) | |
| 11476 | 151 | apply (drule hoare_sound_main [THEN conjunct1, rule_format]) | 
| 11376 | 152 | apply (unfold cnvalids_def nvalids_def) | 
| 153 | apply fast | |
| 154 | done | |
| 155 | ||
| 11486 | 156 | theorem ehoare_sound: "{} \<turnstile>\<^sub>e {P} e {Q} \<Longrightarrow> \<Turnstile>\<^sub>e {P} e {Q}"
 | 
| 11476 | 157 | apply (simp only: evalid_def2) | 
| 158 | apply (drule hoare_sound_main [THEN conjunct2, rule_format]) | |
| 159 | apply (unfold cenvalid_def nvalids_def) | |
| 160 | apply fast | |
| 161 | done | |
| 162 | ||
| 11376 | 163 | |
| 164 | subsection "(Relative) Completeness" | |
| 165 | ||
| 11476 | 166 | constdefs MGT :: "stmt => state => triple" | 
| 11486 | 167 | "MGT c z \<equiv> (\<lambda>s. z = s, c, \<lambda> t. \<exists>n. z -c- n-> t)" | 
| 168 | MGTe :: "expr => state => etriple" | |
| 169 | "MGTe e z \<equiv> (\<lambda>s. z = s, e, \<lambda>v t. \<exists>n. z -e>v-n-> t)" | |
| 170 | syntax (xsymbols) | |
| 171 |          MGTe    :: "expr => state => etriple" ("MGT\<^sub>e")
 | |
| 11376 | 172 | |
| 173 | lemma MGF_implies_complete: | |
| 11476 | 174 |  "\<forall>z. {} |\<turnstile> { MGT c z} \<Longrightarrow> \<Turnstile>  {P} c {Q} \<Longrightarrow> {} \<turnstile>  {P} c {Q}"
 | 
| 11376 | 175 | apply (simp only: valid_def2) | 
| 176 | apply (unfold MGT_def) | |
| 11476 | 177 | apply (erule hoare_ehoare.Conseq) | 
| 178 | apply (clarsimp simp add: nvalid_def2) | |
| 11376 | 179 | done | 
| 180 | ||
| 11476 | 181 | lemma eMGF_implies_complete: | 
| 11486 | 182 |  "\<forall>z. {} |\<turnstile>\<^sub>e MGT\<^sub>e e z \<Longrightarrow> \<Turnstile>\<^sub>e {P} e {Q} \<Longrightarrow> {} \<turnstile>\<^sub>e {P} e {Q}"
 | 
| 11476 | 183 | apply (simp only: evalid_def2) | 
| 11486 | 184 | apply (unfold MGTe_def) | 
| 11476 | 185 | apply (erule hoare_ehoare.eConseq) | 
| 186 | apply (clarsimp simp add: envalid_def2) | |
| 187 | done | |
| 11376 | 188 | |
| 11476 | 189 | declare exec_eval.intros[intro!] | 
| 11376 | 190 | |
| 191 | lemma MGF_Loop: "\<forall>z. A \<turnstile> {op = z} c {\<lambda>t. \<exists>n. z -c-n\<rightarrow> t} \<Longrightarrow> 
 | |
| 11486 | 192 |   A \<turnstile> {op = z} While (x) c {\<lambda>t. \<exists>n. z -While (x) c-n\<rightarrow> t}"
 | 
| 193 | apply (rule_tac P' = "\<lambda>z s. (z,s) \<in> ({(s,t). \<exists>n. s<x> \<noteq> Null \<and> s -c-n\<rightarrow> t})^*"
 | |
| 11476 | 194 | in hoare_ehoare.Conseq) | 
| 11376 | 195 | apply (rule allI) | 
| 11476 | 196 | apply (rule hoare_ehoare.Loop) | 
| 197 | apply (erule hoare_ehoare.Conseq) | |
| 11376 | 198 | apply clarsimp | 
| 199 | apply (blast intro:rtrancl_into_rtrancl) | |
| 200 | apply (erule thin_rl) | |
| 201 | apply clarsimp | |
| 202 | apply (erule_tac x = z in allE) | |
| 203 | apply clarsimp | |
| 204 | apply (erule converse_rtrancl_induct) | |
| 205 | apply blast | |
| 206 | apply clarsimp | |
| 11476 | 207 | apply (drule (1) exec_exec_max) | 
| 11376 | 208 | apply (blast del: exec_elim_cases) | 
| 209 | done | |
| 210 | ||
| 11497 
0e66e0114d9a
corrected initialization of locals, streamlined Impl
 oheimb parents: 
11486diff
changeset | 211 | lemma MGF_lemma: "\<forall>M z. A |\<turnstile> {MGT (Impl M) z} \<Longrightarrow> 
 | 
| 11486 | 212 |  (\<forall>z. A |\<turnstile> {MGT c z}) \<and> (\<forall>z. A |\<turnstile>\<^sub>e MGT\<^sub>e e z)"
 | 
| 213 | apply (simp add: MGT_def MGTe_def) | |
| 11476 | 214 | apply (rule stmt_expr.induct) | 
| 215 | apply (rule_tac [!] allI) | |
| 11376 | 216 | |
| 11476 | 217 | apply (rule Conseq1 [OF hoare_ehoare.Skip]) | 
| 11376 | 218 | apply blast | 
| 219 | ||
| 11476 | 220 | apply (rule hoare_ehoare.Comp) | 
| 11376 | 221 | apply (erule spec) | 
| 11476 | 222 | apply (erule hoare_ehoare.Conseq) | 
| 11376 | 223 | apply clarsimp | 
| 11476 | 224 | apply (drule (1) exec_exec_max) | 
| 11376 | 225 | apply blast | 
| 226 | ||
| 11476 | 227 | apply (erule thin_rl) | 
| 228 | apply (rule hoare_ehoare.Cond) | |
| 229 | apply (erule spec) | |
| 230 | apply (rule allI) | |
| 231 | apply (simp) | |
| 232 | apply (rule conjI) | |
| 233 | apply (rule impI, erule hoare_ehoare.Conseq, clarsimp, drule (1) eval_exec_max, | |
| 234 | erule thin_rl, erule thin_rl, force)+ | |
| 11376 | 235 | |
| 236 | apply (erule MGF_Loop) | |
| 237 | ||
| 11476 | 238 | apply (erule hoare_ehoare.eConseq [THEN hoare_ehoare.LAss]) | 
| 239 | apply fast | |
| 11376 | 240 | |
| 11476 | 241 | apply (erule thin_rl) | 
| 242 | apply (rule_tac Q = "\<lambda>a s. \<exists>n. z -expr1\<succ>Addr a-n\<rightarrow> s" in hoare_ehoare.FAss) | |
| 243 | apply (drule spec) | |
| 244 | apply (erule eConseq2) | |
| 245 | apply fast | |
| 246 | apply (rule allI) | |
| 247 | apply (erule hoare_ehoare.eConseq) | |
| 248 | apply clarsimp | |
| 249 | apply (drule (1) eval_eval_max) | |
| 11376 | 250 | apply blast | 
| 251 | ||
| 11507 | 252 | apply (simp only: split_paired_all) | 
| 11476 | 253 | apply (rule hoare_ehoare.Meth) | 
| 11376 | 254 | apply (rule allI) | 
| 11476 | 255 | apply (drule spec, drule spec, erule hoare_ehoare.Conseq) | 
| 11376 | 256 | apply blast | 
| 257 | ||
| 11497 
0e66e0114d9a
corrected initialization of locals, streamlined Impl
 oheimb parents: 
11486diff
changeset | 258 | apply (simp add: split_paired_all) | 
| 11476 | 259 | |
| 260 | apply (rule eConseq1 [OF hoare_ehoare.NewC]) | |
| 261 | apply blast | |
| 262 | ||
| 263 | apply (erule hoare_ehoare.eConseq [THEN hoare_ehoare.Cast]) | |
| 264 | apply fast | |
| 265 | ||
| 266 | apply (rule eConseq1 [OF hoare_ehoare.LAcc]) | |
| 267 | apply blast | |
| 268 | ||
| 269 | apply (erule hoare_ehoare.eConseq [THEN hoare_ehoare.FAcc]) | |
| 270 | apply fast | |
| 271 | ||
| 272 | apply (rule_tac R = "\<lambda>a v s. \<exists>n1 n2 t. z -expr1\<succ>a-n1\<rightarrow> t \<and> t -expr2\<succ>v-n2\<rightarrow> s" in | |
| 273 | hoare_ehoare.Call) | |
| 274 | apply (erule spec) | |
| 275 | apply (rule allI) | |
| 276 | apply (erule hoare_ehoare.eConseq) | |
| 277 | apply clarsimp | |
| 278 | apply blast | |
| 279 | apply (rule allI)+ | |
| 280 | apply (rule hoare_ehoare.Meth) | |
| 281 | apply (rule allI) | |
| 282 | apply (drule spec, drule spec, erule hoare_ehoare.Conseq) | |
| 283 | apply (erule thin_rl, erule thin_rl) | |
| 284 | apply (clarsimp del: Impl_elim_cases) | |
| 285 | apply (drule (2) eval_eval_exec_max) | |
| 286 | apply (fast del: Impl_elim_cases) | |
| 11376 | 287 | done | 
| 288 | ||
| 11497 
0e66e0114d9a
corrected initialization of locals, streamlined Impl
 oheimb parents: 
11486diff
changeset | 289 | lemma MGF_Impl: "{} |\<turnstile> {MGT (Impl M) z}"
 | 
| 11376 | 290 | apply (unfold MGT_def) | 
| 291 | apply (rule Impl1) | |
| 292 | apply (rule_tac [2] UNIV_I) | |
| 293 | apply clarsimp | |
| 11476 | 294 | apply (rule hoare_ehoare.ConjI) | 
| 11376 | 295 | apply clarsimp | 
| 296 | apply (rule ssubst [OF Impl_body_eq]) | |
| 297 | apply (fold MGT_def) | |
| 11476 | 298 | apply (rule MGF_lemma [THEN conjunct1, rule_format]) | 
| 299 | apply (rule hoare_ehoare.Asm) | |
| 11376 | 300 | apply force | 
| 301 | done | |
| 302 | ||
| 303 | theorem hoare_relative_complete: "\<Turnstile> {P} c {Q} \<Longrightarrow> {} \<turnstile> {P} c {Q}"
 | |
| 304 | apply (rule MGF_implies_complete) | |
| 305 | apply (erule_tac [2] asm_rl) | |
| 306 | apply (rule allI) | |
| 11476 | 307 | apply (rule MGF_lemma [THEN conjunct1, rule_format]) | 
| 308 | apply (rule MGF_Impl) | |
| 309 | done | |
| 310 | ||
| 11486 | 311 | theorem ehoare_relative_complete: "\<Turnstile>\<^sub>e {P} e {Q} \<Longrightarrow> {} \<turnstile>\<^sub>e {P} e {Q}"
 | 
| 11476 | 312 | apply (rule eMGF_implies_complete) | 
| 313 | apply (erule_tac [2] asm_rl) | |
| 314 | apply (rule allI) | |
| 315 | apply (rule MGF_lemma [THEN conjunct2, rule_format]) | |
| 11376 | 316 | apply (rule MGF_Impl) | 
| 317 | done | |
| 318 | ||
| 319 | end |