1477
|
1 |
(* Title: FOLP/FOLP.thy
|
|
2 |
Author: Martin D Coen, Cambridge University Computer Laboratory
|
1142
|
3 |
Copyright 1992 University of Cambridge
|
|
4 |
*)
|
|
5 |
|
17480
|
6 |
header {* Classical First-Order Logic with Proofs *}
|
|
7 |
|
|
8 |
theory FOLP
|
|
9 |
imports IFOLP
|
|
10 |
uses
|
26322
|
11 |
("classical.ML") ("simp.ML") ("simpdata.ML")
|
17480
|
12 |
begin
|
|
13 |
|
41779
|
14 |
axiomatization cla :: "[p=>p]=>p"
|
|
15 |
where classical: "(!!x. x:~P ==> f(x):P) ==> cla(f):P"
|
17480
|
16 |
|
26322
|
17 |
|
|
18 |
(*** Classical introduction rules for | and EX ***)
|
|
19 |
|
36319
|
20 |
schematic_lemma disjCI:
|
26322
|
21 |
assumes "!!x. x:~Q ==> f(x):P"
|
|
22 |
shows "?p : P|Q"
|
|
23 |
apply (rule classical)
|
|
24 |
apply (assumption | rule assms disjI1 notI)+
|
|
25 |
apply (assumption | rule disjI2 notE)+
|
|
26 |
done
|
|
27 |
|
|
28 |
(*introduction rule involving only EX*)
|
36319
|
29 |
schematic_lemma ex_classical:
|
26322
|
30 |
assumes "!!u. u:~(EX x. P(x)) ==> f(u):P(a)"
|
|
31 |
shows "?p : EX x. P(x)"
|
|
32 |
apply (rule classical)
|
|
33 |
apply (rule exI, rule assms, assumption)
|
|
34 |
done
|
|
35 |
|
|
36 |
(*version of above, simplifying ~EX to ALL~ *)
|
36319
|
37 |
schematic_lemma exCI:
|
26322
|
38 |
assumes "!!u. u:ALL x. ~P(x) ==> f(u):P(a)"
|
|
39 |
shows "?p : EX x. P(x)"
|
|
40 |
apply (rule ex_classical)
|
|
41 |
apply (rule notI [THEN allI, THEN assms])
|
|
42 |
apply (erule notE)
|
|
43 |
apply (erule exI)
|
|
44 |
done
|
|
45 |
|
36319
|
46 |
schematic_lemma excluded_middle: "?p : ~P | P"
|
26322
|
47 |
apply (rule disjCI)
|
|
48 |
apply assumption
|
|
49 |
done
|
|
50 |
|
|
51 |
|
|
52 |
(*** Special elimination rules *)
|
17480
|
53 |
|
26322
|
54 |
(*Classical implies (-->) elimination. *)
|
36319
|
55 |
schematic_lemma impCE:
|
26322
|
56 |
assumes major: "p:P-->Q"
|
|
57 |
and r1: "!!x. x:~P ==> f(x):R"
|
|
58 |
and r2: "!!y. y:Q ==> g(y):R"
|
|
59 |
shows "?p : R"
|
|
60 |
apply (rule excluded_middle [THEN disjE])
|
|
61 |
apply (tactic {* DEPTH_SOLVE (atac 1 ORELSE
|
|
62 |
resolve_tac [@{thm r1}, @{thm r2}, @{thm major} RS @{thm mp}] 1) *})
|
|
63 |
done
|
|
64 |
|
|
65 |
(*Double negation law*)
|
36319
|
66 |
schematic_lemma notnotD: "p:~~P ==> ?p : P"
|
26322
|
67 |
apply (rule classical)
|
|
68 |
apply (erule notE)
|
|
69 |
apply assumption
|
|
70 |
done
|
|
71 |
|
|
72 |
|
|
73 |
(*** Tactics for implication and contradiction ***)
|
17480
|
74 |
|
26322
|
75 |
(*Classical <-> elimination. Proof substitutes P=Q in
|
|
76 |
~P ==> ~Q and P ==> Q *)
|
36319
|
77 |
schematic_lemma iffCE:
|
26322
|
78 |
assumes major: "p:P<->Q"
|
|
79 |
and r1: "!!x y.[| x:P; y:Q |] ==> f(x,y):R"
|
|
80 |
and r2: "!!x y.[| x:~P; y:~Q |] ==> g(x,y):R"
|
|
81 |
shows "?p : R"
|
|
82 |
apply (insert major)
|
|
83 |
apply (unfold iff_def)
|
|
84 |
apply (rule conjE)
|
|
85 |
apply (tactic {* DEPTH_SOLVE_1 (etac @{thm impCE} 1 ORELSE
|
|
86 |
eresolve_tac [@{thm notE}, @{thm impE}] 1 THEN atac 1 ORELSE atac 1 ORELSE
|
|
87 |
resolve_tac [@{thm r1}, @{thm r2}] 1) *})+
|
|
88 |
done
|
|
89 |
|
|
90 |
|
|
91 |
(*Should be used as swap since ~P becomes redundant*)
|
36319
|
92 |
schematic_lemma swap:
|
26322
|
93 |
assumes major: "p:~P"
|
|
94 |
and r: "!!x. x:~Q ==> f(x):P"
|
|
95 |
shows "?p : Q"
|
|
96 |
apply (rule classical)
|
|
97 |
apply (rule major [THEN notE])
|
|
98 |
apply (rule r)
|
|
99 |
apply assumption
|
|
100 |
done
|
|
101 |
|
17480
|
102 |
use "classical.ML" (* Patched 'cos matching won't instantiate proof *)
|
|
103 |
use "simp.ML" (* Patched 'cos matching won't instantiate proof *)
|
|
104 |
|
|
105 |
ML {*
|
|
106 |
(*** Applying ClassicalFun to create a classical prover ***)
|
|
107 |
structure Classical_Data =
|
26322
|
108 |
struct
|
17480
|
109 |
val sizef = size_of_thm
|
26322
|
110 |
val mp = @{thm mp}
|
|
111 |
val not_elim = @{thm notE}
|
|
112 |
val swap = @{thm swap}
|
|
113 |
val hyp_subst_tacs = [hyp_subst_tac]
|
|
114 |
end;
|
17480
|
115 |
|
|
116 |
structure Cla = ClassicalFun(Classical_Data);
|
|
117 |
open Cla;
|
|
118 |
|
|
119 |
(*Propositional rules
|
|
120 |
-- iffCE might seem better, but in the examples in ex/cla
|
|
121 |
run about 7% slower than with iffE*)
|
26322
|
122 |
val prop_cs =
|
|
123 |
empty_cs addSIs [@{thm refl}, @{thm TrueI}, @{thm conjI}, @{thm disjCI},
|
|
124 |
@{thm impI}, @{thm notI}, @{thm iffI}]
|
|
125 |
addSEs [@{thm conjE}, @{thm disjE}, @{thm impCE}, @{thm FalseE}, @{thm iffE}];
|
17480
|
126 |
|
|
127 |
(*Quantifier rules*)
|
26322
|
128 |
val FOLP_cs =
|
|
129 |
prop_cs addSIs [@{thm allI}] addIs [@{thm exI}, @{thm ex1I}]
|
|
130 |
addSEs [@{thm exE}, @{thm ex1E}] addEs [@{thm allE}];
|
17480
|
131 |
|
26322
|
132 |
val FOLP_dup_cs =
|
|
133 |
prop_cs addSIs [@{thm allI}] addIs [@{thm exCI}, @{thm ex1I}]
|
|
134 |
addSEs [@{thm exE}, @{thm ex1E}] addEs [@{thm all_dupE}];
|
|
135 |
*}
|
17480
|
136 |
|
36319
|
137 |
schematic_lemma cla_rews:
|
26322
|
138 |
"?p1 : P | ~P"
|
|
139 |
"?p2 : ~P | P"
|
|
140 |
"?p3 : ~ ~ P <-> P"
|
|
141 |
"?p4 : (~P --> P) <-> P"
|
|
142 |
apply (tactic {* ALLGOALS (Cla.fast_tac FOLP_cs) *})
|
|
143 |
done
|
17480
|
144 |
|
|
145 |
use "simpdata.ML"
|
|
146 |
|
0
|
147 |
end
|