author | blanchet |
Tue, 06 Nov 2012 11:20:56 +0100 | |
changeset 50010 | 17488e45eb5a |
parent 47818 | 151d137f1095 |
child 52046 | bc01725d7918 |
permissions | -rw-r--r-- |
44656 | 1 |
(* Author: Tobias Nipkow *) |
2 |
||
45111 | 3 |
theory Abs_Int_den1 |
4 |
imports Abs_Int_den0_const |
|
44656 | 5 |
begin |
6 |
||
7 |
subsection "Backward Analysis of Expressions" |
|
8 |
||
9 |
class L_top_bot = SL_top + |
|
10 |
fixes meet :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "\<sqinter>" 65) |
|
11 |
and Bot :: "'a" |
|
12 |
assumes meet_le1 [simp]: "x \<sqinter> y \<sqsubseteq> x" |
|
13 |
and meet_le2 [simp]: "x \<sqinter> y \<sqsubseteq> y" |
|
14 |
and meet_greatest: "x \<sqsubseteq> y \<Longrightarrow> x \<sqsubseteq> z \<Longrightarrow> x \<sqsubseteq> y \<sqinter> z" |
|
15 |
assumes bot[simp]: "Bot \<sqsubseteq> x" |
|
16 |
||
17 |
locale Rep1 = Rep rep for rep :: "'a::L_top_bot \<Rightarrow> 'b set" + |
|
18 |
assumes inter_rep_subset_rep_meet: "rep a1 \<inter> rep a2 \<subseteq> rep(a1 \<sqinter> a2)" |
|
19 |
and rep_Bot: "rep Bot = {}" |
|
20 |
begin |
|
21 |
||
22 |
lemma in_rep_meet: "x <: a1 \<Longrightarrow> x <: a2 \<Longrightarrow> x <: a1 \<sqinter> a2" |
|
23 |
by (metis IntI inter_rep_subset_rep_meet set_mp) |
|
24 |
||
25 |
lemma rep_meet[simp]: "rep(a1 \<sqinter> a2) = rep a1 \<inter> rep a2" |
|
26 |
by (metis equalityI inter_rep_subset_rep_meet le_inf_iff le_rep meet_le1 meet_le2) |
|
27 |
||
28 |
end |
|
29 |
||
30 |
||
31 |
locale Val_abs1 = Val_abs rep num' plus' + Rep1 rep |
|
32 |
for rep :: "'a::L_top_bot \<Rightarrow> int set" and num' plus' + |
|
45023 | 33 |
fixes filter_plus' :: "'a \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'a * 'a" |
34 |
and filter_less' :: "bool \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'a * 'a" |
|
35 |
assumes filter_plus': "filter_plus' a a1 a2 = (a1',a2') \<Longrightarrow> |
|
44656 | 36 |
n1 <: a1 \<Longrightarrow> n2 <: a2 \<Longrightarrow> n1+n2 <: a \<Longrightarrow> n1 <: a1' \<and> n2 <: a2'" |
45023 | 37 |
and filter_less': "filter_less' (n1<n2) a1 a2 = (a1',a2') \<Longrightarrow> |
44656 | 38 |
n1 <: a1 \<Longrightarrow> n2 <: a2 \<Longrightarrow> n1 <: a1' \<and> n2 <: a2'" |
39 |
||
40 |
datatype 'a up = bot | Up 'a |
|
41 |
||
42 |
instantiation up :: (SL_top)SL_top |
|
43 |
begin |
|
44 |
||
45 |
fun le_up where |
|
46 |
"Up x \<sqsubseteq> Up y = (x \<sqsubseteq> y)" | |
|
47 |
"bot \<sqsubseteq> y = True" | |
|
48 |
"Up _ \<sqsubseteq> bot = False" |
|
49 |
||
50 |
lemma [simp]: "(x \<sqsubseteq> bot) = (x = bot)" |
|
51 |
by (cases x) simp_all |
|
52 |
||
53 |
lemma [simp]: "(Up x \<sqsubseteq> u) = (EX y. u = Up y & x \<sqsubseteq> y)" |
|
54 |
by (cases u) auto |
|
55 |
||
56 |
fun join_up where |
|
57 |
"Up x \<squnion> Up y = Up(x \<squnion> y)" | |
|
58 |
"bot \<squnion> y = y" | |
|
59 |
"x \<squnion> bot = x" |
|
60 |
||
61 |
lemma [simp]: "x \<squnion> bot = x" |
|
62 |
by (cases x) simp_all |
|
63 |
||
64 |
||
65 |
definition "Top = Up Top" |
|
66 |
||
67 |
instance proof |
|
68 |
case goal1 show ?case by(cases x, simp_all) |
|
69 |
next |
|
70 |
case goal2 thus ?case |
|
71 |
by(cases z, simp, cases y, simp, cases x, auto intro: le_trans) |
|
72 |
next |
|
73 |
case goal3 thus ?case by(cases x, simp, cases y, simp_all) |
|
74 |
next |
|
75 |
case goal4 thus ?case by(cases y, simp, cases x, simp_all) |
|
76 |
next |
|
77 |
case goal5 thus ?case by(cases z, simp, cases y, simp, cases x, simp_all) |
|
78 |
next |
|
79 |
case goal6 thus ?case by(cases x, simp_all add: Top_up_def) |
|
80 |
qed |
|
81 |
||
82 |
end |
|
83 |
||
84 |
||
44932 | 85 |
locale Abs_Int1 = Val_abs1 + |
44944 | 86 |
fixes pfp :: "('a astate up \<Rightarrow> 'a astate up) \<Rightarrow> 'a astate up \<Rightarrow> 'a astate up" |
87 |
assumes pfp: "f(pfp f x0) \<sqsubseteq> pfp f x0" |
|
88 |
assumes above: "x0 \<sqsubseteq> pfp f x0" |
|
44656 | 89 |
begin |
90 |
||
91 |
(* FIXME avoid duplicating this defn *) |
|
92 |
abbreviation astate_in_rep (infix "<:" 50) where |
|
93 |
"s <: S == ALL x. s x <: lookup S x" |
|
94 |
||
95 |
abbreviation in_rep_up :: "state \<Rightarrow> 'a astate up \<Rightarrow> bool" (infix "<::" 50) where |
|
96 |
"s <:: S == EX S0. S = Up S0 \<and> s <: S0" |
|
97 |
||
98 |
lemma in_rep_up_trans: "(s::state) <:: S \<Longrightarrow> S \<sqsubseteq> T \<Longrightarrow> s <:: T" |
|
99 |
apply auto |
|
100 |
by (metis in_mono le_astate_def le_rep lookup_def top) |
|
101 |
||
102 |
lemma in_rep_join_UpI: "s <:: S1 | s <:: S2 \<Longrightarrow> s <:: S1 \<squnion> S2" |
|
103 |
by (metis in_rep_up_trans SL_top_class.join_ge1 SL_top_class.join_ge2) |
|
104 |
||
105 |
fun aval' :: "aexp \<Rightarrow> 'a astate up \<Rightarrow> 'a" ("aval\<^isup>#") where |
|
106 |
"aval' _ bot = Bot" | |
|
107 |
"aval' (N n) _ = num' n" | |
|
108 |
"aval' (V x) (Up S) = lookup S x" | |
|
109 |
"aval' (Plus a1 a2) S = plus' (aval' a1 S) (aval' a2 S)" |
|
110 |
||
111 |
lemma aval'_sound: "s <:: S \<Longrightarrow> aval a s <: aval' a S" |
|
112 |
by (induct a) (auto simp: rep_num' rep_plus') |
|
113 |
||
114 |
fun afilter :: "aexp \<Rightarrow> 'a \<Rightarrow> 'a astate up \<Rightarrow> 'a astate up" where |
|
115 |
"afilter (N n) a S = (if n <: a then S else bot)" | |
|
116 |
"afilter (V x) a S = (case S of bot \<Rightarrow> bot | Up S \<Rightarrow> |
|
117 |
let a' = lookup S x \<sqinter> a in |
|
44932 | 118 |
if a' \<sqsubseteq> Bot then bot else Up(update S x a'))" | |
44656 | 119 |
"afilter (Plus e1 e2) a S = |
45023 | 120 |
(let (a1,a2) = filter_plus' a (aval' e1 S) (aval' e2 S) |
44656 | 121 |
in afilter e1 a1 (afilter e2 a2 S))" |
122 |
||
44932 | 123 |
text{* The test for @{const Bot} in the @{const V}-case is important: @{const |
124 |
Bot} indicates that a variable has no possible values, i.e.\ that the current |
|
45017 | 125 |
program point is unreachable. But then the abstract state should collapse to |
44932 | 126 |
@{const bot}. Put differently, we maintain the invariant that in an abstract |
127 |
state all variables are mapped to non-@{const Bot} values. Otherwise the |
|
128 |
(pointwise) join of two abstract states, one of which contains @{const Bot} |
|
129 |
values, may produce too large a result, thus making the analysis less |
|
130 |
precise. *} |
|
131 |
||
132 |
||
44656 | 133 |
fun bfilter :: "bexp \<Rightarrow> bool \<Rightarrow> 'a astate up \<Rightarrow> 'a astate up" where |
45200 | 134 |
"bfilter (Bc v) res S = (if v=res then S else bot)" | |
44656 | 135 |
"bfilter (Not b) res S = bfilter b (\<not> res) S" | |
136 |
"bfilter (And b1 b2) res S = |
|
137 |
(if res then bfilter b1 True (bfilter b2 True S) |
|
138 |
else bfilter b1 False S \<squnion> bfilter b2 False S)" | |
|
139 |
"bfilter (Less e1 e2) res S = |
|
45023 | 140 |
(let (res1,res2) = filter_less' res (aval' e1 S) (aval' e2 S) |
44656 | 141 |
in afilter e1 res1 (afilter e2 res2 S))" |
142 |
||
143 |
lemma afilter_sound: "s <:: S \<Longrightarrow> aval e s <: a \<Longrightarrow> s <:: afilter e a S" |
|
45015 | 144 |
proof(induction e arbitrary: a S) |
44656 | 145 |
case N thus ?case by simp |
146 |
next |
|
147 |
case (V x) |
|
148 |
obtain S' where "S = Up S'" and "s <: S'" using `s <:: S` by auto |
|
149 |
moreover hence "s x <: lookup S' x" by(simp) |
|
150 |
moreover have "s x <: a" using V by simp |
|
151 |
ultimately show ?case using V(1) |
|
152 |
by(simp add: lookup_update Let_def) |
|
153 |
(metis le_rep emptyE in_rep_meet rep_Bot subset_empty) |
|
154 |
next |
|
155 |
case (Plus e1 e2) thus ?case |
|
45023 | 156 |
using filter_plus'[OF _ aval'_sound[OF Plus(3)] aval'_sound[OF Plus(3)]] |
44656 | 157 |
by (auto split: prod.split) |
158 |
qed |
|
159 |
||
160 |
lemma bfilter_sound: "s <:: S \<Longrightarrow> bv = bval b s \<Longrightarrow> s <:: bfilter b bv S" |
|
45015 | 161 |
proof(induction b arbitrary: S bv) |
45200 | 162 |
case Bc thus ?case by simp |
44656 | 163 |
next |
164 |
case (Not b) thus ?case by simp |
|
165 |
next |
|
166 |
case (And b1 b2) thus ?case by (auto simp: in_rep_join_UpI) |
|
167 |
next |
|
168 |
case (Less e1 e2) thus ?case |
|
169 |
by (auto split: prod.split) |
|
45023 | 170 |
(metis afilter_sound filter_less' aval'_sound Less) |
44656 | 171 |
qed |
172 |
||
173 |
fun AI :: "com \<Rightarrow> 'a astate up \<Rightarrow> 'a astate up" where |
|
174 |
"AI SKIP S = S" | |
|
175 |
"AI (x ::= a) S = |
|
176 |
(case S of bot \<Rightarrow> bot | Up S \<Rightarrow> Up(update S x (aval' a (Up S))))" | |
|
177 |
"AI (c1;c2) S = AI c2 (AI c1 S)" | |
|
178 |
"AI (IF b THEN c1 ELSE c2) S = |
|
179 |
AI c1 (bfilter b True S) \<squnion> AI c2 (bfilter b False S)" | |
|
180 |
"AI (WHILE b DO c) S = |
|
44944 | 181 |
bfilter b False (pfp (\<lambda>S. AI c (bfilter b True S)) S)" |
44656 | 182 |
|
183 |
lemma AI_sound: "(c,s) \<Rightarrow> t \<Longrightarrow> s <:: S \<Longrightarrow> t <:: AI c S" |
|
45015 | 184 |
proof(induction c arbitrary: s t S) |
44890
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
nipkow
parents:
44656
diff
changeset
|
185 |
case SKIP thus ?case by fastforce |
44656 | 186 |
next |
187 |
case Assign thus ?case |
|
188 |
by (auto simp: lookup_update aval'_sound) |
|
189 |
next |
|
47818 | 190 |
case Seq thus ?case by fastforce |
44656 | 191 |
next |
192 |
case If thus ?case by (auto simp: in_rep_join_UpI bfilter_sound) |
|
193 |
next |
|
194 |
case (While b c) |
|
44944 | 195 |
let ?P = "pfp (\<lambda>S. AI c (bfilter b True S)) S" |
44656 | 196 |
{ fix s t |
197 |
have "(WHILE b DO c,s) \<Rightarrow> t \<Longrightarrow> s <:: ?P \<Longrightarrow> |
|
198 |
t <:: bfilter b False ?P" |
|
45015 | 199 |
proof(induction "WHILE b DO c" s t rule: big_step_induct) |
44656 | 200 |
case WhileFalse thus ?case by(metis bfilter_sound) |
201 |
next |
|
202 |
case WhileTrue show ?case |
|
203 |
by(rule WhileTrue, rule in_rep_up_trans[OF _ pfp], |
|
45015 | 204 |
rule While.IH[OF WhileTrue(2)], |
44656 | 205 |
rule bfilter_sound[OF WhileTrue.prems], simp add: WhileTrue(1)) |
206 |
qed |
|
207 |
} |
|
44932 | 208 |
with in_rep_up_trans[OF `s <:: S` above] While(2,3) AI.simps(5) |
44656 | 209 |
show ?case by simp |
210 |
qed |
|
211 |
||
212 |
end |
|
213 |
||
214 |
end |