33366
|
1 |
(* Author: Various *)
|
|
2 |
|
|
3 |
header {* Combination and Cancellation Simprocs for Numeral Expressions *}
|
|
4 |
|
|
5 |
theory Numeral_Simprocs
|
|
6 |
imports Divides
|
|
7 |
uses
|
|
8 |
"~~/src/Provers/Arith/assoc_fold.ML"
|
|
9 |
"~~/src/Provers/Arith/cancel_numerals.ML"
|
|
10 |
"~~/src/Provers/Arith/combine_numerals.ML"
|
|
11 |
"~~/src/Provers/Arith/cancel_numeral_factor.ML"
|
|
12 |
"~~/src/Provers/Arith/extract_common_term.ML"
|
|
13 |
("Tools/numeral_simprocs.ML")
|
|
14 |
("Tools/nat_numeral_simprocs.ML")
|
|
15 |
begin
|
|
16 |
|
|
17 |
declare split_div [of _ _ "number_of k", standard, arith_split]
|
|
18 |
declare split_mod [of _ _ "number_of k", standard, arith_split]
|
|
19 |
|
|
20 |
text {* For @{text combine_numerals} *}
|
|
21 |
|
|
22 |
lemma left_add_mult_distrib: "i*u + (j*u + k) = (i+j)*u + (k::nat)"
|
|
23 |
by (simp add: add_mult_distrib)
|
|
24 |
|
|
25 |
text {* For @{text cancel_numerals} *}
|
|
26 |
|
|
27 |
lemma nat_diff_add_eq1:
|
|
28 |
"j <= (i::nat) ==> ((i*u + m) - (j*u + n)) = (((i-j)*u + m) - n)"
|
|
29 |
by (simp split add: nat_diff_split add: add_mult_distrib)
|
|
30 |
|
|
31 |
lemma nat_diff_add_eq2:
|
|
32 |
"i <= (j::nat) ==> ((i*u + m) - (j*u + n)) = (m - ((j-i)*u + n))"
|
|
33 |
by (simp split add: nat_diff_split add: add_mult_distrib)
|
|
34 |
|
|
35 |
lemma nat_eq_add_iff1:
|
|
36 |
"j <= (i::nat) ==> (i*u + m = j*u + n) = ((i-j)*u + m = n)"
|
|
37 |
by (auto split add: nat_diff_split simp add: add_mult_distrib)
|
|
38 |
|
|
39 |
lemma nat_eq_add_iff2:
|
|
40 |
"i <= (j::nat) ==> (i*u + m = j*u + n) = (m = (j-i)*u + n)"
|
|
41 |
by (auto split add: nat_diff_split simp add: add_mult_distrib)
|
|
42 |
|
|
43 |
lemma nat_less_add_iff1:
|
|
44 |
"j <= (i::nat) ==> (i*u + m < j*u + n) = ((i-j)*u + m < n)"
|
|
45 |
by (auto split add: nat_diff_split simp add: add_mult_distrib)
|
|
46 |
|
|
47 |
lemma nat_less_add_iff2:
|
|
48 |
"i <= (j::nat) ==> (i*u + m < j*u + n) = (m < (j-i)*u + n)"
|
|
49 |
by (auto split add: nat_diff_split simp add: add_mult_distrib)
|
|
50 |
|
|
51 |
lemma nat_le_add_iff1:
|
|
52 |
"j <= (i::nat) ==> (i*u + m <= j*u + n) = ((i-j)*u + m <= n)"
|
|
53 |
by (auto split add: nat_diff_split simp add: add_mult_distrib)
|
|
54 |
|
|
55 |
lemma nat_le_add_iff2:
|
|
56 |
"i <= (j::nat) ==> (i*u + m <= j*u + n) = (m <= (j-i)*u + n)"
|
|
57 |
by (auto split add: nat_diff_split simp add: add_mult_distrib)
|
|
58 |
|
|
59 |
text {* For @{text cancel_numeral_factors} *}
|
|
60 |
|
|
61 |
lemma nat_mult_le_cancel1: "(0::nat) < k ==> (k*m <= k*n) = (m<=n)"
|
|
62 |
by auto
|
|
63 |
|
|
64 |
lemma nat_mult_less_cancel1: "(0::nat) < k ==> (k*m < k*n) = (m<n)"
|
|
65 |
by auto
|
|
66 |
|
|
67 |
lemma nat_mult_eq_cancel1: "(0::nat) < k ==> (k*m = k*n) = (m=n)"
|
|
68 |
by auto
|
|
69 |
|
|
70 |
lemma nat_mult_div_cancel1: "(0::nat) < k ==> (k*m) div (k*n) = (m div n)"
|
|
71 |
by auto
|
|
72 |
|
|
73 |
lemma nat_mult_dvd_cancel_disj[simp]:
|
|
74 |
"(k*m) dvd (k*n) = (k=0 | m dvd (n::nat))"
|
|
75 |
by(auto simp: dvd_eq_mod_eq_0 mod_mult_distrib2[symmetric])
|
|
76 |
|
|
77 |
lemma nat_mult_dvd_cancel1: "0 < k \<Longrightarrow> (k*m) dvd (k*n::nat) = (m dvd n)"
|
|
78 |
by(auto)
|
|
79 |
|
|
80 |
text {* For @{text cancel_factor} *}
|
|
81 |
|
|
82 |
lemma nat_mult_le_cancel_disj: "(k*m <= k*n) = ((0::nat) < k --> m<=n)"
|
|
83 |
by auto
|
|
84 |
|
|
85 |
lemma nat_mult_less_cancel_disj: "(k*m < k*n) = ((0::nat) < k & m<n)"
|
|
86 |
by auto
|
|
87 |
|
|
88 |
lemma nat_mult_eq_cancel_disj: "(k*m = k*n) = (k = (0::nat) | m=n)"
|
|
89 |
by auto
|
|
90 |
|
|
91 |
lemma nat_mult_div_cancel_disj[simp]:
|
|
92 |
"(k*m) div (k*n) = (if k = (0::nat) then 0 else m div n)"
|
|
93 |
by (simp add: nat_mult_div_cancel1)
|
|
94 |
|
|
95 |
|
|
96 |
use "Tools/numeral_simprocs.ML"
|
|
97 |
|
|
98 |
use "Tools/nat_numeral_simprocs.ML"
|
|
99 |
|
|
100 |
declaration {*
|
|
101 |
K (Lin_Arith.add_simps (@{thms neg_simps} @ [@{thm Suc_nat_number_of}, @{thm int_nat_number_of}])
|
|
102 |
#> Lin_Arith.add_simps (@{thms ring_distribs} @ [@{thm Let_number_of}, @{thm Let_0}, @{thm Let_1},
|
|
103 |
@{thm nat_0}, @{thm nat_1},
|
|
104 |
@{thm add_nat_number_of}, @{thm diff_nat_number_of}, @{thm mult_nat_number_of},
|
|
105 |
@{thm eq_nat_number_of}, @{thm less_nat_number_of}, @{thm le_number_of_eq_not_less},
|
|
106 |
@{thm le_Suc_number_of}, @{thm le_number_of_Suc},
|
|
107 |
@{thm less_Suc_number_of}, @{thm less_number_of_Suc},
|
|
108 |
@{thm Suc_eq_number_of}, @{thm eq_number_of_Suc},
|
|
109 |
@{thm mult_Suc}, @{thm mult_Suc_right},
|
|
110 |
@{thm add_Suc}, @{thm add_Suc_right},
|
|
111 |
@{thm eq_number_of_0}, @{thm eq_0_number_of}, @{thm less_0_number_of},
|
|
112 |
@{thm of_int_number_of_eq}, @{thm of_nat_number_of_eq}, @{thm nat_number_of},
|
|
113 |
@{thm if_True}, @{thm if_False}])
|
|
114 |
#> Lin_Arith.add_simprocs (Numeral_Simprocs.assoc_fold_simproc
|
|
115 |
:: Numeral_Simprocs.combine_numerals
|
|
116 |
:: Numeral_Simprocs.cancel_numerals)
|
|
117 |
#> Lin_Arith.add_simprocs (Nat_Numeral_Simprocs.combine_numerals :: Nat_Numeral_Simprocs.cancel_numerals))
|
|
118 |
*}
|
|
119 |
|
|
120 |
end |