| author | wenzelm | 
| Mon, 22 Feb 2021 12:30:05 +0100 | |
| changeset 73273 | 17c28251fff0 | 
| parent 69593 | 3dda49e08b9d | 
| child 80754 | 701912f5645a | 
| permissions | -rw-r--r-- | 
| 17456 | 1  | 
(* Title: CCL/Type.thy  | 
| 0 | 2  | 
Author: Martin Coen  | 
3  | 
Copyright 1993 University of Cambridge  | 
|
4  | 
*)  | 
|
5  | 
||
| 60770 | 6  | 
section \<open>Types in CCL are defined as sets of terms\<close>  | 
| 17456 | 7  | 
|
8  | 
theory Type  | 
|
9  | 
imports Term  | 
|
10  | 
begin  | 
|
| 0 | 11  | 
|
| 62143 | 12  | 
definition Subtype :: "['a set, 'a \<Rightarrow> o] \<Rightarrow> 'a set"  | 
13  | 
  where "Subtype(A, P) == {x. x:A \<and> P(x)}"
 | 
|
| 0 | 14  | 
|
| 14765 | 15  | 
syntax  | 
| 62143 | 16  | 
  "_Subtype" :: "[idt, 'a set, o] \<Rightarrow> 'a set"  ("(1{_: _ ./ _})")
 | 
17  | 
translations  | 
|
18  | 
  "{x: A. B}" == "CONST Subtype(A, \<lambda>x. B)"
 | 
|
| 
999
 
9bf3816298d0
Gave tighter priorities to SUM and PROD to reduce ambiguities.
 
lcp 
parents: 
22 
diff
changeset
 | 
19  | 
|
| 62143 | 20  | 
definition Unit :: "i set"  | 
21  | 
  where "Unit == {x. x=one}"
 | 
|
22  | 
||
23  | 
definition Bool :: "i set"  | 
|
24  | 
  where "Bool == {x. x=true | x=false}"
 | 
|
25  | 
||
26  | 
definition Plus :: "[i set, i set] \<Rightarrow> i set" (infixr "+" 55)  | 
|
27  | 
  where "A+B == {x. (EX a:A. x=inl(a)) | (EX b:B. x=inr(b))}"
 | 
|
| 17456 | 28  | 
|
| 62143 | 29  | 
definition Pi :: "[i set, i \<Rightarrow> i set] \<Rightarrow> i set"  | 
30  | 
  where "Pi(A,B) == {x. EX b. x=lam x. b(x) \<and> (ALL x:A. b(x):B(x))}"
 | 
|
31  | 
||
32  | 
definition Sigma :: "[i set, i \<Rightarrow> i set] \<Rightarrow> i set"  | 
|
33  | 
  where "Sigma(A,B) == {x. EX a:A. EX b:B(a).x=<a,b>}"
 | 
|
| 0 | 34  | 
|
| 62143 | 35  | 
syntax  | 
36  | 
  "_Pi" :: "[idt, i set, i set] \<Rightarrow> i set"  ("(3PROD _:_./ _)" [0,0,60] 60)
 | 
|
37  | 
  "_Sigma" :: "[idt, i set, i set] \<Rightarrow> i set"  ("(3SUM _:_./ _)" [0,0,60] 60)
 | 
|
38  | 
  "_arrow" :: "[i set, i set] \<Rightarrow> i set"  ("(_ ->/ _)"  [54, 53] 53)
 | 
|
39  | 
  "_star"  :: "[i set, i set] \<Rightarrow> i set"  ("(_ */ _)" [56, 55] 55)
 | 
|
| 0 | 40  | 
translations  | 
| 62143 | 41  | 
"PROD x:A. B" \<rightharpoonup> "CONST Pi(A, \<lambda>x. B)"  | 
42  | 
"A -> B" \<rightharpoonup> "CONST Pi(A, \<lambda>_. B)"  | 
|
43  | 
"SUM x:A. B" \<rightharpoonup> "CONST Sigma(A, \<lambda>x. B)"  | 
|
44  | 
"A * B" \<rightharpoonup> "CONST Sigma(A, \<lambda>_. B)"  | 
|
| 60770 | 45  | 
print_translation \<open>  | 
| 69593 | 46  | 
[(\<^const_syntax>\<open>Pi\<close>,  | 
47  | 
fn _ => Syntax_Trans.dependent_tr' (\<^syntax_const>\<open>_Pi\<close>, \<^syntax_const>\<open>_arrow\<close>)),  | 
|
48  | 
(\<^const_syntax>\<open>Sigma\<close>,  | 
|
49  | 
fn _ => Syntax_Trans.dependent_tr' (\<^syntax_const>\<open>_Sigma\<close>, \<^syntax_const>\<open>_star\<close>))]  | 
|
| 60770 | 50  | 
\<close>  | 
| 0 | 51  | 
|
| 62143 | 52  | 
definition Nat :: "i set"  | 
53  | 
where "Nat == lfp(\<lambda>X. Unit + X)"  | 
|
54  | 
||
55  | 
definition List :: "i set \<Rightarrow> i set"  | 
|
56  | 
where "List(A) == lfp(\<lambda>X. Unit + A*X)"  | 
|
57  | 
||
58  | 
definition Lists :: "i set \<Rightarrow> i set"  | 
|
59  | 
where "Lists(A) == gfp(\<lambda>X. Unit + A*X)"  | 
|
60  | 
||
61  | 
definition ILists :: "i set \<Rightarrow> i set"  | 
|
62  | 
  where "ILists(A) == gfp(\<lambda>X.{} + A*X)"
 | 
|
| 0 | 63  | 
|
| 62143 | 64  | 
|
65  | 
definition TAll :: "(i set \<Rightarrow> i set) \<Rightarrow> i set" (binder "TALL " 55)  | 
|
66  | 
  where "TALL X. B(X) == Inter({X. EX Y. X=B(Y)})"
 | 
|
| 0 | 67  | 
|
| 62143 | 68  | 
definition TEx :: "(i set \<Rightarrow> i set) \<Rightarrow> i set" (binder "TEX " 55)  | 
69  | 
  where "TEX X. B(X) == Union({X. EX Y. X=B(Y)})"
 | 
|
| 0 | 70  | 
|
| 62143 | 71  | 
definition Lift :: "i set \<Rightarrow> i set"  ("(3[_])")
 | 
72  | 
  where "[A] == A Un {bot}"
 | 
|
73  | 
||
74  | 
definition SPLIT :: "[i, [i, i] \<Rightarrow> i set] \<Rightarrow> i set"  | 
|
75  | 
  where "SPLIT(p,B) == Union({A. EX x y. p=<x,y> \<and> A=B(x,y)})"
 | 
|
| 17456 | 76  | 
|
| 20140 | 77  | 
|
78  | 
lemmas simp_type_defs =  | 
|
| 62143 | 79  | 
Subtype_def Unit_def Bool_def Plus_def Sigma_def Pi_def Lift_def TAll_def TEx_def  | 
| 20140 | 80  | 
and ind_type_defs = Nat_def List_def  | 
81  | 
and simp_data_defs = one_def inl_def inr_def  | 
|
82  | 
and ind_data_defs = zero_def succ_def nil_def cons_def  | 
|
83  | 
||
| 58977 | 84  | 
lemma subsetXH: "A <= B \<longleftrightarrow> (ALL x. x:A \<longrightarrow> x:B)"  | 
| 20140 | 85  | 
by blast  | 
86  | 
||
87  | 
||
| 60770 | 88  | 
subsection \<open>Exhaustion Rules\<close>  | 
| 20140 | 89  | 
|
| 58977 | 90  | 
lemma EmptyXH: "\<And>a. a : {} \<longleftrightarrow> False"
 | 
91  | 
  and SubtypeXH: "\<And>a A P. a : {x:A. P(x)} \<longleftrightarrow> (a:A \<and> P(a))"
 | 
|
92  | 
and UnitXH: "\<And>a. a : Unit \<longleftrightarrow> a=one"  | 
|
93  | 
and BoolXH: "\<And>a. a : Bool \<longleftrightarrow> a=true | a=false"  | 
|
94  | 
and PlusXH: "\<And>a A B. a : A+B \<longleftrightarrow> (EX x:A. a=inl(x)) | (EX x:B. a=inr(x))"  | 
|
95  | 
and PiXH: "\<And>a A B. a : PROD x:A. B(x) \<longleftrightarrow> (EX b. a=lam x. b(x) \<and> (ALL x:A. b(x):B(x)))"  | 
|
96  | 
and SgXH: "\<And>a A B. a : SUM x:A. B(x) \<longleftrightarrow> (EX x:A. EX y:B(x).a=<x,y>)"  | 
|
| 20140 | 97  | 
unfolding simp_type_defs by blast+  | 
98  | 
||
99  | 
lemmas XHs = EmptyXH SubtypeXH UnitXH BoolXH PlusXH PiXH SgXH  | 
|
100  | 
||
| 58977 | 101  | 
lemma LiftXH: "a : [A] \<longleftrightarrow> (a=bot | a:A)"  | 
102  | 
and TallXH: "a : TALL X. B(X) \<longleftrightarrow> (ALL X. a:B(X))"  | 
|
103  | 
and TexXH: "a : TEX X. B(X) \<longleftrightarrow> (EX X. a:B(X))"  | 
|
| 20140 | 104  | 
unfolding simp_type_defs by blast+  | 
105  | 
||
| 60770 | 106  | 
ML \<open>ML_Thms.bind_thms ("case_rls", XH_to_Es @{thms XHs})\<close>
 | 
| 20140 | 107  | 
|
108  | 
||
| 60770 | 109  | 
subsection \<open>Canonical Type Rules\<close>  | 
| 20140 | 110  | 
|
111  | 
lemma oneT: "one : Unit"  | 
|
112  | 
and trueT: "true : Bool"  | 
|
113  | 
and falseT: "false : Bool"  | 
|
| 58977 | 114  | 
and lamT: "\<And>b B. (\<And>x. x:A \<Longrightarrow> b(x):B(x)) \<Longrightarrow> lam x. b(x) : Pi(A,B)"  | 
115  | 
and pairT: "\<And>b B. \<lbrakk>a:A; b:B(a)\<rbrakk> \<Longrightarrow> <a,b>:Sigma(A,B)"  | 
|
116  | 
and inlT: "a:A \<Longrightarrow> inl(a) : A+B"  | 
|
117  | 
and inrT: "b:B \<Longrightarrow> inr(b) : A+B"  | 
|
| 20140 | 118  | 
by (blast intro: XHs [THEN iffD2])+  | 
119  | 
||
120  | 
lemmas canTs = oneT trueT falseT pairT lamT inlT inrT  | 
|
121  | 
||
122  | 
||
| 60770 | 123  | 
subsection \<open>Non-Canonical Type Rules\<close>  | 
| 20140 | 124  | 
|
| 58977 | 125  | 
lemma lem: "\<lbrakk>a:B(u); u = v\<rbrakk> \<Longrightarrow> a : B(v)"  | 
| 20140 | 126  | 
by blast  | 
127  | 
||
128  | 
||
| 60770 | 129  | 
ML \<open>  | 
| 
32153
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
130  | 
fun mk_ncanT_tac top_crls crls =  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
131  | 
  SUBPROOF (fn {context = ctxt, prems = major :: prems, ...} =>
 | 
| 
59498
 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 
wenzelm 
parents: 
58977 
diff
changeset
 | 
132  | 
resolve_tac ctxt ([major] RL top_crls) 1 THEN  | 
| 59499 | 133  | 
    REPEAT_SOME (eresolve_tac ctxt (crls @ @{thms exE bexE conjE disjE})) THEN
 | 
| 
51717
 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 
wenzelm 
parents: 
42814 
diff
changeset
 | 
134  | 
ALLGOALS (asm_simp_tac ctxt) THEN  | 
| 59499 | 135  | 
    ALLGOALS (assume_tac ctxt ORELSE' resolve_tac ctxt (prems RL [@{thm lem}])
 | 
136  | 
      ORELSE' eresolve_tac ctxt @{thms bspec}) THEN
 | 
|
| 42793 | 137  | 
safe_tac (ctxt addSIs prems))  | 
| 60770 | 138  | 
\<close>  | 
| 20140 | 139  | 
|
| 60770 | 140  | 
method_setup ncanT = \<open>  | 
| 
32153
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
141  | 
  Scan.succeed (SIMPLE_METHOD' o mk_ncanT_tac @{thms case_rls} @{thms case_rls})
 | 
| 60770 | 142  | 
\<close>  | 
| 20140 | 143  | 
|
| 58977 | 144  | 
lemma ifT: "\<lbrakk>b:Bool; b=true \<Longrightarrow> t:A(true); b=false \<Longrightarrow> u:A(false)\<rbrakk> \<Longrightarrow> if b then t else u : A(b)"  | 
| 
32153
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
145  | 
by ncanT  | 
| 20140 | 146  | 
|
| 58977 | 147  | 
lemma applyT: "\<lbrakk>f : Pi(A,B); a:A\<rbrakk> \<Longrightarrow> f ` a : B(a)"  | 
| 
32153
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
148  | 
by ncanT  | 
| 20140 | 149  | 
|
| 58977 | 150  | 
lemma splitT: "\<lbrakk>p:Sigma(A,B); \<And>x y. \<lbrakk>x:A; y:B(x); p=<x,y>\<rbrakk> \<Longrightarrow> c(x,y):C(<x,y>)\<rbrakk> \<Longrightarrow> split(p,c):C(p)"  | 
| 
32153
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
151  | 
by ncanT  | 
| 20140 | 152  | 
|
| 
32153
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
153  | 
lemma whenT:  | 
| 58977 | 154  | 
"\<lbrakk>p:A+B;  | 
155  | 
\<And>x. \<lbrakk>x:A; p=inl(x)\<rbrakk> \<Longrightarrow> a(x):C(inl(x));  | 
|
156  | 
\<And>y. \<lbrakk>y:B; p=inr(y)\<rbrakk> \<Longrightarrow> b(y):C(inr(y))\<rbrakk> \<Longrightarrow> when(p,a,b) : C(p)"  | 
|
| 
32153
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
157  | 
by ncanT  | 
| 20140 | 158  | 
|
159  | 
lemmas ncanTs = ifT applyT splitT whenT  | 
|
160  | 
||
161  | 
||
| 60770 | 162  | 
subsection \<open>Subtypes\<close>  | 
| 20140 | 163  | 
|
| 58977 | 164  | 
lemma SubtypeD1: "a : Subtype(A, P) \<Longrightarrow> a : A"  | 
165  | 
and SubtypeD2: "a : Subtype(A, P) \<Longrightarrow> P(a)"  | 
|
| 20140 | 166  | 
by (simp_all add: SubtypeXH)  | 
167  | 
||
| 58977 | 168  | 
lemma SubtypeI: "\<lbrakk>a:A; P(a)\<rbrakk> \<Longrightarrow> a : {x:A. P(x)}"
 | 
| 20140 | 169  | 
by (simp add: SubtypeXH)  | 
170  | 
||
| 58977 | 171  | 
lemma SubtypeE: "\<lbrakk>a : {x:A. P(x)}; \<lbrakk>a:A; P(a)\<rbrakk> \<Longrightarrow> Q\<rbrakk> \<Longrightarrow> Q"
 | 
| 20140 | 172  | 
by (simp add: SubtypeXH)  | 
173  | 
||
174  | 
||
| 60770 | 175  | 
subsection \<open>Monotonicity\<close>  | 
| 20140 | 176  | 
|
| 58977 | 177  | 
lemma idM: "mono (\<lambda>X. X)"  | 
| 20140 | 178  | 
apply (rule monoI)  | 
179  | 
apply assumption  | 
|
180  | 
done  | 
|
181  | 
||
| 58977 | 182  | 
lemma constM: "mono(\<lambda>X. A)"  | 
| 20140 | 183  | 
apply (rule monoI)  | 
184  | 
apply (rule subset_refl)  | 
|
185  | 
done  | 
|
186  | 
||
| 58977 | 187  | 
lemma "mono(\<lambda>X. A(X)) \<Longrightarrow> mono(\<lambda>X.[A(X)])"  | 
| 20140 | 188  | 
apply (rule subsetI [THEN monoI])  | 
189  | 
apply (drule LiftXH [THEN iffD1])  | 
|
190  | 
apply (erule disjE)  | 
|
191  | 
apply (erule disjI1 [THEN LiftXH [THEN iffD2]])  | 
|
192  | 
apply (rule disjI2 [THEN LiftXH [THEN iffD2]])  | 
|
193  | 
apply (drule (1) monoD)  | 
|
194  | 
apply blast  | 
|
195  | 
done  | 
|
196  | 
||
197  | 
lemma SgM:  | 
|
| 58977 | 198  | 
"\<lbrakk>mono(\<lambda>X. A(X)); \<And>x X. x:A(X) \<Longrightarrow> mono(\<lambda>X. B(X,x))\<rbrakk> \<Longrightarrow>  | 
199  | 
mono(\<lambda>X. Sigma(A(X),B(X)))"  | 
|
| 20140 | 200  | 
by (blast intro!: subsetI [THEN monoI] canTs elim!: case_rls  | 
201  | 
dest!: monoD [THEN subsetD])  | 
|
202  | 
||
| 58977 | 203  | 
lemma PiM: "(\<And>x. x:A \<Longrightarrow> mono(\<lambda>X. B(X,x))) \<Longrightarrow> mono(\<lambda>X. Pi(A,B(X)))"  | 
| 20140 | 204  | 
by (blast intro!: subsetI [THEN monoI] canTs elim!: case_rls  | 
205  | 
dest!: monoD [THEN subsetD])  | 
|
206  | 
||
| 58977 | 207  | 
lemma PlusM: "\<lbrakk>mono(\<lambda>X. A(X)); mono(\<lambda>X. B(X))\<rbrakk> \<Longrightarrow> mono(\<lambda>X. A(X)+B(X))"  | 
| 20140 | 208  | 
by (blast intro!: subsetI [THEN monoI] canTs elim!: case_rls  | 
209  | 
dest!: monoD [THEN subsetD])  | 
|
210  | 
||
211  | 
||
| 60770 | 212  | 
subsection \<open>Recursive types\<close>  | 
| 20140 | 213  | 
|
| 60770 | 214  | 
subsubsection \<open>Conversion Rules for Fixed Points via monotonicity and Tarski\<close>  | 
| 20140 | 215  | 
|
| 58977 | 216  | 
lemma NatM: "mono(\<lambda>X. Unit+X)"  | 
| 20140 | 217  | 
apply (rule PlusM constM idM)+  | 
218  | 
done  | 
|
219  | 
||
220  | 
lemma def_NatB: "Nat = Unit + Nat"  | 
|
221  | 
apply (rule def_lfp_Tarski [OF Nat_def])  | 
|
222  | 
apply (rule NatM)  | 
|
223  | 
done  | 
|
224  | 
||
| 58977 | 225  | 
lemma ListM: "mono(\<lambda>X.(Unit+Sigma(A,\<lambda>y. X)))"  | 
| 20140 | 226  | 
apply (rule PlusM SgM constM idM)+  | 
227  | 
done  | 
|
228  | 
||
229  | 
lemma def_ListB: "List(A) = Unit + A * List(A)"  | 
|
230  | 
apply (rule def_lfp_Tarski [OF List_def])  | 
|
231  | 
apply (rule ListM)  | 
|
232  | 
done  | 
|
233  | 
||
234  | 
lemma def_ListsB: "Lists(A) = Unit + A * Lists(A)"  | 
|
235  | 
apply (rule def_gfp_Tarski [OF Lists_def])  | 
|
236  | 
apply (rule ListM)  | 
|
237  | 
done  | 
|
238  | 
||
| 58977 | 239  | 
lemma IListsM: "mono(\<lambda>X.({} + Sigma(A,\<lambda>y. X)))"
 | 
| 20140 | 240  | 
apply (rule PlusM SgM constM idM)+  | 
241  | 
done  | 
|
242  | 
||
243  | 
lemma def_IListsB: "ILists(A) = {} + A * ILists(A)"
 | 
|
244  | 
apply (rule def_gfp_Tarski [OF ILists_def])  | 
|
245  | 
apply (rule IListsM)  | 
|
246  | 
done  | 
|
247  | 
||
248  | 
lemmas ind_type_eqs = def_NatB def_ListB def_ListsB def_IListsB  | 
|
249  | 
||
250  | 
||
| 60770 | 251  | 
subsection \<open>Exhaustion Rules\<close>  | 
| 20140 | 252  | 
|
| 58977 | 253  | 
lemma NatXH: "a : Nat \<longleftrightarrow> (a=zero | (EX x:Nat. a=succ(x)))"  | 
254  | 
and ListXH: "a : List(A) \<longleftrightarrow> (a=[] | (EX x:A. EX xs:List(A).a=x$xs))"  | 
|
255  | 
and ListsXH: "a : Lists(A) \<longleftrightarrow> (a=[] | (EX x:A. EX xs:Lists(A).a=x$xs))"  | 
|
256  | 
and IListsXH: "a : ILists(A) \<longleftrightarrow> (EX x:A. EX xs:ILists(A).a=x$xs)"  | 
|
| 20140 | 257  | 
unfolding ind_data_defs  | 
258  | 
by (rule ind_type_eqs [THEN XHlemma1], blast intro!: canTs elim!: case_rls)+  | 
|
259  | 
||
260  | 
lemmas iXHs = NatXH ListXH  | 
|
261  | 
||
| 60770 | 262  | 
ML \<open>ML_Thms.bind_thms ("icase_rls", XH_to_Es @{thms iXHs})\<close>
 | 
| 20140 | 263  | 
|
264  | 
||
| 60770 | 265  | 
subsection \<open>Type Rules\<close>  | 
| 20140 | 266  | 
|
267  | 
lemma zeroT: "zero : Nat"  | 
|
| 58977 | 268  | 
and succT: "n:Nat \<Longrightarrow> succ(n) : Nat"  | 
| 20140 | 269  | 
and nilT: "[] : List(A)"  | 
| 58977 | 270  | 
and consT: "\<lbrakk>h:A; t:List(A)\<rbrakk> \<Longrightarrow> h$t : List(A)"  | 
| 20140 | 271  | 
by (blast intro: iXHs [THEN iffD2])+  | 
272  | 
||
273  | 
lemmas icanTs = zeroT succT nilT consT  | 
|
274  | 
||
| 
32153
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
275  | 
|
| 60770 | 276  | 
method_setup incanT = \<open>  | 
| 
32153
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
277  | 
  Scan.succeed (SIMPLE_METHOD' o mk_ncanT_tac @{thms icase_rls} @{thms case_rls})
 | 
| 60770 | 278  | 
\<close>  | 
| 20140 | 279  | 
|
| 58977 | 280  | 
lemma ncaseT: "\<lbrakk>n:Nat; n=zero \<Longrightarrow> b:C(zero); \<And>x. \<lbrakk>x:Nat; n=succ(x)\<rbrakk> \<Longrightarrow> c(x):C(succ(x))\<rbrakk>  | 
281  | 
\<Longrightarrow> ncase(n,b,c) : C(n)"  | 
|
| 
32153
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
282  | 
by incanT  | 
| 20140 | 283  | 
|
| 58977 | 284  | 
lemma lcaseT: "\<lbrakk>l:List(A); l = [] \<Longrightarrow> b:C([]); \<And>h t. \<lbrakk>h:A; t:List(A); l=h$t\<rbrakk> \<Longrightarrow> c(h,t):C(h$t)\<rbrakk>  | 
285  | 
\<Longrightarrow> lcase(l,b,c) : C(l)"  | 
|
| 
32153
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
286  | 
by incanT  | 
| 20140 | 287  | 
|
288  | 
lemmas incanTs = ncaseT lcaseT  | 
|
289  | 
||
290  | 
||
| 60770 | 291  | 
subsection \<open>Induction Rules\<close>  | 
| 20140 | 292  | 
|
293  | 
lemmas ind_Ms = NatM ListM  | 
|
294  | 
||
| 58977 | 295  | 
lemma Nat_ind: "\<lbrakk>n:Nat; P(zero); \<And>x. \<lbrakk>x:Nat; P(x)\<rbrakk> \<Longrightarrow> P(succ(x))\<rbrakk> \<Longrightarrow> P(n)"  | 
| 20140 | 296  | 
apply (unfold ind_data_defs)  | 
297  | 
apply (erule def_induct [OF Nat_def _ NatM])  | 
|
298  | 
apply (blast intro: canTs elim!: case_rls)  | 
|
299  | 
done  | 
|
300  | 
||
| 58977 | 301  | 
lemma List_ind: "\<lbrakk>l:List(A); P([]); \<And>x xs. \<lbrakk>x:A; xs:List(A); P(xs)\<rbrakk> \<Longrightarrow> P(x$xs)\<rbrakk> \<Longrightarrow> P(l)"  | 
| 20140 | 302  | 
apply (unfold ind_data_defs)  | 
303  | 
apply (erule def_induct [OF List_def _ ListM])  | 
|
304  | 
apply (blast intro: canTs elim!: case_rls)  | 
|
305  | 
done  | 
|
306  | 
||
307  | 
lemmas inds = Nat_ind List_ind  | 
|
308  | 
||
309  | 
||
| 60770 | 310  | 
subsection \<open>Primitive Recursive Rules\<close>  | 
| 20140 | 311  | 
|
| 58977 | 312  | 
lemma nrecT: "\<lbrakk>n:Nat; b:C(zero); \<And>x g. \<lbrakk>x:Nat; g:C(x)\<rbrakk> \<Longrightarrow> c(x,g):C(succ(x))\<rbrakk>  | 
313  | 
\<Longrightarrow> nrec(n,b,c) : C(n)"  | 
|
| 20140 | 314  | 
by (erule Nat_ind) auto  | 
315  | 
||
| 58977 | 316  | 
lemma lrecT: "\<lbrakk>l:List(A); b:C([]); \<And>x xs g. \<lbrakk>x:A; xs:List(A); g:C(xs)\<rbrakk> \<Longrightarrow> c(x,xs,g):C(x$xs) \<rbrakk>  | 
317  | 
\<Longrightarrow> lrec(l,b,c) : C(l)"  | 
|
| 20140 | 318  | 
by (erule List_ind) auto  | 
319  | 
||
320  | 
lemmas precTs = nrecT lrecT  | 
|
321  | 
||
322  | 
||
| 60770 | 323  | 
subsection \<open>Theorem proving\<close>  | 
| 20140 | 324  | 
|
| 58977 | 325  | 
lemma SgE2: "\<lbrakk><a,b> : Sigma(A,B); \<lbrakk>a:A; b:B(a)\<rbrakk> \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P"  | 
| 20140 | 326  | 
unfolding SgXH by blast  | 
327  | 
||
328  | 
(* General theorem proving ignores non-canonical term-formers, *)  | 
|
329  | 
(* - intro rules are type rules for canonical terms *)  | 
|
330  | 
(* - elim rules are case rules (no non-canonical terms appear) *)  | 
|
331  | 
||
| 60770 | 332  | 
ML \<open>ML_Thms.bind_thms ("XHEs", XH_to_Es @{thms XHs})\<close>
 | 
| 20140 | 333  | 
|
334  | 
lemmas [intro!] = SubtypeI canTs icanTs  | 
|
335  | 
and [elim!] = SubtypeE XHEs  | 
|
336  | 
||
337  | 
||
| 60770 | 338  | 
subsection \<open>Infinite Data Types\<close>  | 
| 20140 | 339  | 
|
| 58977 | 340  | 
lemma lfp_subset_gfp: "mono(f) \<Longrightarrow> lfp(f) <= gfp(f)"  | 
| 20140 | 341  | 
apply (rule lfp_lowerbound [THEN subset_trans])  | 
342  | 
apply (erule gfp_lemma3)  | 
|
343  | 
apply (rule subset_refl)  | 
|
344  | 
done  | 
|
345  | 
||
346  | 
lemma gfpI:  | 
|
347  | 
assumes "a:A"  | 
|
| 58977 | 348  | 
and "\<And>x X. \<lbrakk>x:A; ALL y:A. t(y):X\<rbrakk> \<Longrightarrow> t(x) : B(X)"  | 
| 20140 | 349  | 
shows "t(a) : gfp(B)"  | 
350  | 
apply (rule coinduct)  | 
|
| 58977 | 351  | 
apply (rule_tac P = "\<lambda>x. EX y:A. x=t (y)" in CollectI)  | 
| 41526 | 352  | 
apply (blast intro!: assms)+  | 
| 20140 | 353  | 
done  | 
354  | 
||
| 58977 | 355  | 
lemma def_gfpI: "\<lbrakk>C == gfp(B); a:A; \<And>x X. \<lbrakk>x:A; ALL y:A. t(y):X\<rbrakk> \<Longrightarrow> t(x) : B(X)\<rbrakk> \<Longrightarrow> t(a) : C"  | 
| 20140 | 356  | 
apply unfold  | 
357  | 
apply (erule gfpI)  | 
|
358  | 
apply blast  | 
|
359  | 
done  | 
|
360  | 
||
361  | 
(* EG *)  | 
|
362  | 
lemma "letrec g x be zero$g(x) in g(bot) : Lists(Nat)"  | 
|
363  | 
apply (rule refl [THEN UnitXH [THEN iffD2], THEN Lists_def [THEN def_gfpI]])  | 
|
364  | 
apply (subst letrecB)  | 
|
365  | 
apply (unfold cons_def)  | 
|
366  | 
apply blast  | 
|
367  | 
done  | 
|
368  | 
||
369  | 
||
| 62020 | 370  | 
subsection \<open>Lemmas and tactics for using the rule \<open>coinduct3\<close> on \<open>[=\<close> and \<open>=\<close>\<close>  | 
| 20140 | 371  | 
|
| 58977 | 372  | 
lemma lfpI: "\<lbrakk>mono(f); a : f(lfp(f))\<rbrakk> \<Longrightarrow> a : lfp(f)"  | 
| 20140 | 373  | 
apply (erule lfp_Tarski [THEN ssubst])  | 
374  | 
apply assumption  | 
|
375  | 
done  | 
|
376  | 
||
| 58977 | 377  | 
lemma ssubst_single: "\<lbrakk>a = a'; a' : A\<rbrakk> \<Longrightarrow> a : A"  | 
| 20140 | 378  | 
by simp  | 
379  | 
||
| 58977 | 380  | 
lemma ssubst_pair: "\<lbrakk>a = a'; b = b'; <a',b'> : A\<rbrakk> \<Longrightarrow> <a,b> : A"  | 
| 20140 | 381  | 
by simp  | 
382  | 
||
383  | 
||
| 60770 | 384  | 
ML \<open>  | 
| 
32153
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
385  | 
  val coinduct3_tac = SUBPROOF (fn {context = ctxt, prems = mono :: prems, ...} =>
 | 
| 42793 | 386  | 
    fast_tac (ctxt addIs (mono RS @{thm coinduct3_mono_lemma} RS @{thm lfpI}) :: prems) 1);
 | 
| 60770 | 387  | 
\<close>  | 
| 
32153
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
388  | 
|
| 60770 | 389  | 
method_setup coinduct3 = \<open>Scan.succeed (SIMPLE_METHOD' o coinduct3_tac)\<close>  | 
| 
32153
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
390  | 
|
| 58977 | 391  | 
lemma ci3_RI: "\<lbrakk>mono(Agen); a : R\<rbrakk> \<Longrightarrow> a : lfp(\<lambda>x. Agen(x) Un R Un A)"  | 
| 
32153
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
392  | 
by coinduct3  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
393  | 
|
| 58977 | 394  | 
lemma ci3_AgenI: "\<lbrakk>mono(Agen); a : Agen(lfp(\<lambda>x. Agen(x) Un R Un A))\<rbrakk> \<Longrightarrow>  | 
395  | 
a : lfp(\<lambda>x. Agen(x) Un R Un A)"  | 
|
| 
32153
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
396  | 
by coinduct3  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
397  | 
|
| 58977 | 398  | 
lemma ci3_AI: "\<lbrakk>mono(Agen); a : A\<rbrakk> \<Longrightarrow> a : lfp(\<lambda>x. Agen(x) Un R Un A)"  | 
| 
32153
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
399  | 
by coinduct3  | 
| 20140 | 400  | 
|
| 60770 | 401  | 
ML \<open>  | 
| 
32153
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
402  | 
fun genIs_tac ctxt genXH gen_mono =  | 
| 60754 | 403  | 
  resolve_tac ctxt [genXH RS @{thm iffD2}] THEN'
 | 
| 
51717
 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 
wenzelm 
parents: 
42814 
diff
changeset
 | 
404  | 
simp_tac ctxt THEN'  | 
| 42793 | 405  | 
TRY o fast_tac  | 
406  | 
    (ctxt addIs [genXH RS @{thm iffD2}, gen_mono RS @{thm coinduct3_mono_lemma} RS @{thm lfpI}])
 | 
|
| 60770 | 407  | 
\<close>  | 
| 20140 | 408  | 
|
| 60770 | 409  | 
method_setup genIs = \<open>  | 
| 42814 | 410  | 
Attrib.thm -- Attrib.thm >>  | 
411  | 
(fn (genXH, gen_mono) => fn ctxt => SIMPLE_METHOD' (genIs_tac ctxt genXH gen_mono))  | 
|
| 60770 | 412  | 
\<close>  | 
| 20140 | 413  | 
|
414  | 
||
| 60770 | 415  | 
subsection \<open>POgen\<close>  | 
| 20140 | 416  | 
|
417  | 
lemma PO_refl: "<a,a> : PO"  | 
|
| 
32153
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
418  | 
by (rule po_refl [THEN PO_iff [THEN iffD1]])  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
419  | 
|
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
420  | 
lemma POgenIs:  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
421  | 
"<true,true> : POgen(R)"  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
422  | 
"<false,false> : POgen(R)"  | 
| 58977 | 423  | 
"\<lbrakk><a,a'> : R; <b,b'> : R\<rbrakk> \<Longrightarrow> <<a,b>,<a',b'>> : POgen(R)"  | 
424  | 
"\<And>b b'. (\<And>x. <b(x),b'(x)> : R) \<Longrightarrow> <lam x. b(x),lam x. b'(x)> : POgen(R)"  | 
|
| 
32153
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
425  | 
"<one,one> : POgen(R)"  | 
| 58977 | 426  | 
"<a,a'> : lfp(\<lambda>x. POgen(x) Un R Un PO) \<Longrightarrow>  | 
427  | 
<inl(a),inl(a')> : POgen(lfp(\<lambda>x. POgen(x) Un R Un PO))"  | 
|
428  | 
"<b,b'> : lfp(\<lambda>x. POgen(x) Un R Un PO) \<Longrightarrow>  | 
|
429  | 
<inr(b),inr(b')> : POgen(lfp(\<lambda>x. POgen(x) Un R Un PO))"  | 
|
430  | 
"<zero,zero> : POgen(lfp(\<lambda>x. POgen(x) Un R Un PO))"  | 
|
431  | 
"<n,n'> : lfp(\<lambda>x. POgen(x) Un R Un PO) \<Longrightarrow>  | 
|
432  | 
<succ(n),succ(n')> : POgen(lfp(\<lambda>x. POgen(x) Un R Un PO))"  | 
|
433  | 
"<[],[]> : POgen(lfp(\<lambda>x. POgen(x) Un R Un PO))"  | 
|
434  | 
"\<lbrakk><h,h'> : lfp(\<lambda>x. POgen(x) Un R Un PO); <t,t'> : lfp(\<lambda>x. POgen(x) Un R Un PO)\<rbrakk>  | 
|
435  | 
\<Longrightarrow> <h$t,h'$t'> : POgen(lfp(\<lambda>x. POgen(x) Un R Un PO))"  | 
|
| 
32153
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
436  | 
unfolding data_defs by (genIs POgenXH POgen_mono)+  | 
| 20140 | 437  | 
|
| 60770 | 438  | 
ML \<open>  | 
| 
32153
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
439  | 
fun POgen_tac ctxt (rla, rlb) i =  | 
| 42793 | 440  | 
SELECT_GOAL (safe_tac ctxt) i THEN  | 
| 60754 | 441  | 
  resolve_tac ctxt [rlb RS (rla RS @{thm ssubst_pair})] i THEN
 | 
| 
59498
 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 
wenzelm 
parents: 
58977 
diff
changeset
 | 
442  | 
(REPEAT (resolve_tac ctxt  | 
| 
32153
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
443  | 
      (@{thms POgenIs} @ [@{thm PO_refl} RS (@{thm POgen_mono} RS @{thm ci3_AI})] @
 | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
444  | 
        (@{thms POgenIs} RL [@{thm POgen_mono} RS @{thm ci3_AgenI}]) @
 | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
445  | 
        [@{thm POgen_mono} RS @{thm ci3_RI}]) i))
 | 
| 60770 | 446  | 
\<close>  | 
| 20140 | 447  | 
|
448  | 
||
| 60770 | 449  | 
subsection \<open>EQgen\<close>  | 
| 20140 | 450  | 
|
451  | 
lemma EQ_refl: "<a,a> : EQ"  | 
|
| 
32153
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
452  | 
by (rule refl [THEN EQ_iff [THEN iffD1]])  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
453  | 
|
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
454  | 
lemma EQgenIs:  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
455  | 
"<true,true> : EQgen(R)"  | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
456  | 
"<false,false> : EQgen(R)"  | 
| 58977 | 457  | 
"\<lbrakk><a,a'> : R; <b,b'> : R\<rbrakk> \<Longrightarrow> <<a,b>,<a',b'>> : EQgen(R)"  | 
458  | 
"\<And>b b'. (\<And>x. <b(x),b'(x)> : R) \<Longrightarrow> <lam x. b(x),lam x. b'(x)> : EQgen(R)"  | 
|
| 
32153
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
459  | 
"<one,one> : EQgen(R)"  | 
| 58977 | 460  | 
"<a,a'> : lfp(\<lambda>x. EQgen(x) Un R Un EQ) \<Longrightarrow>  | 
461  | 
<inl(a),inl(a')> : EQgen(lfp(\<lambda>x. EQgen(x) Un R Un EQ))"  | 
|
462  | 
"<b,b'> : lfp(\<lambda>x. EQgen(x) Un R Un EQ) \<Longrightarrow>  | 
|
463  | 
<inr(b),inr(b')> : EQgen(lfp(\<lambda>x. EQgen(x) Un R Un EQ))"  | 
|
464  | 
"<zero,zero> : EQgen(lfp(\<lambda>x. EQgen(x) Un R Un EQ))"  | 
|
465  | 
"<n,n'> : lfp(\<lambda>x. EQgen(x) Un R Un EQ) \<Longrightarrow>  | 
|
466  | 
<succ(n),succ(n')> : EQgen(lfp(\<lambda>x. EQgen(x) Un R Un EQ))"  | 
|
467  | 
"<[],[]> : EQgen(lfp(\<lambda>x. EQgen(x) Un R Un EQ))"  | 
|
468  | 
"\<lbrakk><h,h'> : lfp(\<lambda>x. EQgen(x) Un R Un EQ); <t,t'> : lfp(\<lambda>x. EQgen(x) Un R Un EQ)\<rbrakk>  | 
|
469  | 
\<Longrightarrow> <h$t,h'$t'> : EQgen(lfp(\<lambda>x. EQgen(x) Un R Un EQ))"  | 
|
| 
32153
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
470  | 
unfolding data_defs by (genIs EQgenXH EQgen_mono)+  | 
| 20140 | 471  | 
|
| 60770 | 472  | 
ML \<open>  | 
| 
59498
 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 
wenzelm 
parents: 
58977 
diff
changeset
 | 
473  | 
fun EQgen_raw_tac ctxt i =  | 
| 
 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 
wenzelm 
parents: 
58977 
diff
changeset
 | 
474  | 
  (REPEAT (resolve_tac ctxt (@{thms EQgenIs} @
 | 
| 
32153
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
475  | 
        [@{thm EQ_refl} RS (@{thm EQgen_mono} RS @{thm ci3_AI})] @
 | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
476  | 
        (@{thms EQgenIs} RL [@{thm EQgen_mono} RS @{thm ci3_AgenI}]) @
 | 
| 
 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 
wenzelm 
parents: 
32149 
diff
changeset
 | 
477  | 
        [@{thm EQgen_mono} RS @{thm ci3_RI}]) i))
 | 
| 20140 | 478  | 
|
479  | 
(* Goals of the form R <= EQgen(R) - rewrite elements <a,b> : EQgen(R) using rews and *)  | 
|
480  | 
(* then reduce this to a goal <a',b'> : R (hopefully?) *)  | 
|
481  | 
(* rews are rewrite rules that would cause looping in the simpifier *)  | 
|
482  | 
||
| 
23894
 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 
wenzelm 
parents: 
20140 
diff
changeset
 | 
483  | 
fun EQgen_tac ctxt rews i =  | 
| 20140 | 484  | 
SELECT_GOAL  | 
| 42793 | 485  | 
(TRY (safe_tac ctxt) THEN  | 
| 
59498
 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 
wenzelm 
parents: 
58977 
diff
changeset
 | 
486  | 
    resolve_tac ctxt ((rews @ [@{thm refl}]) RL ((rews @ [@{thm refl}]) RL [@{thm ssubst_pair}])) i THEN
 | 
| 
51717
 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 
wenzelm 
parents: 
42814 
diff
changeset
 | 
487  | 
ALLGOALS (simp_tac ctxt) THEN  | 
| 
59498
 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 
wenzelm 
parents: 
58977 
diff
changeset
 | 
488  | 
ALLGOALS (EQgen_raw_tac ctxt)) i  | 
| 60770 | 489  | 
\<close>  | 
| 0 | 490  | 
|
| 60770 | 491  | 
method_setup EQgen = \<open>  | 
| 58971 | 492  | 
Attrib.thms >> (fn ths => fn ctxt => SIMPLE_METHOD' (EQgen_tac ctxt ths))  | 
| 60770 | 493  | 
\<close>  | 
| 58971 | 494  | 
|
| 0 | 495  | 
end  |