| author | boehmes | 
| Fri, 30 Oct 2009 11:26:38 +0100 | |
| changeset 33353 | 17d9c977f928 | 
| parent 33274 | b6ff7db522b5 | 
| child 33364 | 2bd12592c5e8 | 
| permissions | -rw-r--r-- | 
| 
3390
 
0c7625196d95
New theory "Power" of exponentiation (and binomial coefficients)
 
paulson 
parents:  
diff
changeset
 | 
1  | 
(* Title: HOL/Power.thy  | 
| 
 
0c7625196d95
New theory "Power" of exponentiation (and binomial coefficients)
 
paulson 
parents:  
diff
changeset
 | 
2  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
| 
 
0c7625196d95
New theory "Power" of exponentiation (and binomial coefficients)
 
paulson 
parents:  
diff
changeset
 | 
3  | 
Copyright 1997 University of Cambridge  | 
| 
 
0c7625196d95
New theory "Power" of exponentiation (and binomial coefficients)
 
paulson 
parents:  
diff
changeset
 | 
4  | 
*)  | 
| 
 
0c7625196d95
New theory "Power" of exponentiation (and binomial coefficients)
 
paulson 
parents:  
diff
changeset
 | 
5  | 
|
| 30960 | 6  | 
header {* Exponentiation *}
 | 
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
7  | 
|
| 15131 | 8  | 
theory Power  | 
| 21413 | 9  | 
imports Nat  | 
| 15131 | 10  | 
begin  | 
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
11  | 
|
| 30960 | 12  | 
subsection {* Powers for Arbitrary Monoids *}
 | 
13  | 
||
| 30996 | 14  | 
class power = one + times  | 
| 30960 | 15  | 
begin  | 
| 24996 | 16  | 
|
| 30960 | 17  | 
primrec power :: "'a \<Rightarrow> nat \<Rightarrow> 'a" (infixr "^" 80) where  | 
18  | 
power_0: "a ^ 0 = 1"  | 
|
19  | 
| power_Suc: "a ^ Suc n = a * a ^ n"  | 
|
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
20  | 
|
| 30996 | 21  | 
notation (latex output)  | 
22  | 
  power ("(_\<^bsup>_\<^esup>)" [1000] 1000)
 | 
|
23  | 
||
24  | 
notation (HTML output)  | 
|
25  | 
  power ("(_\<^bsup>_\<^esup>)" [1000] 1000)
 | 
|
26  | 
||
| 30960 | 27  | 
end  | 
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
28  | 
|
| 30996 | 29  | 
context monoid_mult  | 
30  | 
begin  | 
|
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
31  | 
|
| 30996 | 32  | 
subclass power ..  | 
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
33  | 
|
| 30996 | 34  | 
lemma power_one [simp]:  | 
35  | 
"1 ^ n = 1"  | 
|
| 
30273
 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 
huffman 
parents: 
30242 
diff
changeset
 | 
36  | 
by (induct n) simp_all  | 
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
37  | 
|
| 30996 | 38  | 
lemma power_one_right [simp]:  | 
| 31001 | 39  | 
"a ^ 1 = a"  | 
| 30996 | 40  | 
by simp  | 
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
41  | 
|
| 30996 | 42  | 
lemma power_commutes:  | 
43  | 
"a ^ n * a = a * a ^ n"  | 
|
| 
30273
 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 
huffman 
parents: 
30242 
diff
changeset
 | 
44  | 
by (induct n) (simp_all add: mult_assoc)  | 
| 
21199
 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 
krauss 
parents: 
17149 
diff
changeset
 | 
45  | 
|
| 30996 | 46  | 
lemma power_Suc2:  | 
47  | 
"a ^ Suc n = a ^ n * a"  | 
|
| 
30273
 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 
huffman 
parents: 
30242 
diff
changeset
 | 
48  | 
by (simp add: power_commutes)  | 
| 
28131
 
3130d7b3149d
add lemma power_Suc2; generalize power_minus from class comm_ring_1 to ring_1
 
huffman 
parents: 
25874 
diff
changeset
 | 
49  | 
|
| 30996 | 50  | 
lemma power_add:  | 
51  | 
"a ^ (m + n) = a ^ m * a ^ n"  | 
|
52  | 
by (induct m) (simp_all add: algebra_simps)  | 
|
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
53  | 
|
| 30996 | 54  | 
lemma power_mult:  | 
55  | 
"a ^ (m * n) = (a ^ m) ^ n"  | 
|
| 
30273
 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 
huffman 
parents: 
30242 
diff
changeset
 | 
56  | 
by (induct n) (simp_all add: power_add)  | 
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
57  | 
|
| 30996 | 58  | 
end  | 
59  | 
||
60  | 
context comm_monoid_mult  | 
|
61  | 
begin  | 
|
62  | 
||
63  | 
lemma power_mult_distrib:  | 
|
64  | 
"(a * b) ^ n = (a ^ n) * (b ^ n)"  | 
|
| 
30273
 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 
huffman 
parents: 
30242 
diff
changeset
 | 
65  | 
by (induct n) (simp_all add: mult_ac)  | 
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
66  | 
|
| 30996 | 67  | 
end  | 
68  | 
||
69  | 
context semiring_1  | 
|
70  | 
begin  | 
|
71  | 
||
72  | 
lemma of_nat_power:  | 
|
73  | 
"of_nat (m ^ n) = of_nat m ^ n"  | 
|
74  | 
by (induct n) (simp_all add: of_nat_mult)  | 
|
75  | 
||
76  | 
end  | 
|
77  | 
||
78  | 
context comm_semiring_1  | 
|
79  | 
begin  | 
|
80  | 
||
81  | 
text {* The divides relation *}
 | 
|
82  | 
||
83  | 
lemma le_imp_power_dvd:  | 
|
84  | 
assumes "m \<le> n" shows "a ^ m dvd a ^ n"  | 
|
85  | 
proof  | 
|
86  | 
have "a ^ n = a ^ (m + (n - m))"  | 
|
87  | 
using `m \<le> n` by simp  | 
|
88  | 
also have "\<dots> = a ^ m * a ^ (n - m)"  | 
|
89  | 
by (rule power_add)  | 
|
90  | 
finally show "a ^ n = a ^ m * a ^ (n - m)" .  | 
|
91  | 
qed  | 
|
92  | 
||
93  | 
lemma power_le_dvd:  | 
|
94  | 
"a ^ n dvd b \<Longrightarrow> m \<le> n \<Longrightarrow> a ^ m dvd b"  | 
|
95  | 
by (rule dvd_trans [OF le_imp_power_dvd])  | 
|
96  | 
||
97  | 
lemma dvd_power_same:  | 
|
98  | 
"x dvd y \<Longrightarrow> x ^ n dvd y ^ n"  | 
|
99  | 
by (induct n) (auto simp add: mult_dvd_mono)  | 
|
100  | 
||
101  | 
lemma dvd_power_le:  | 
|
102  | 
"x dvd y \<Longrightarrow> m \<ge> n \<Longrightarrow> x ^ n dvd y ^ m"  | 
|
103  | 
by (rule power_le_dvd [OF dvd_power_same])  | 
|
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
104  | 
|
| 30996 | 105  | 
lemma dvd_power [simp]:  | 
106  | 
assumes "n > (0::nat) \<or> x = 1"  | 
|
107  | 
shows "x dvd (x ^ n)"  | 
|
108  | 
using assms proof  | 
|
109  | 
assume "0 < n"  | 
|
110  | 
then have "x ^ n = x ^ Suc (n - 1)" by simp  | 
|
111  | 
then show "x dvd (x ^ n)" by simp  | 
|
112  | 
next  | 
|
113  | 
assume "x = 1"  | 
|
114  | 
then show "x dvd (x ^ n)" by simp  | 
|
115  | 
qed  | 
|
116  | 
||
117  | 
end  | 
|
118  | 
||
119  | 
context ring_1  | 
|
120  | 
begin  | 
|
121  | 
||
122  | 
lemma power_minus:  | 
|
123  | 
"(- a) ^ n = (- 1) ^ n * a ^ n"  | 
|
124  | 
proof (induct n)  | 
|
125  | 
case 0 show ?case by simp  | 
|
126  | 
next  | 
|
127  | 
case (Suc n) then show ?case  | 
|
128  | 
by (simp del: power_Suc add: power_Suc2 mult_assoc)  | 
|
129  | 
qed  | 
|
130  | 
||
131  | 
end  | 
|
132  | 
||
133  | 
context ordered_semidom  | 
|
134  | 
begin  | 
|
135  | 
||
136  | 
lemma zero_less_power [simp]:  | 
|
137  | 
"0 < a \<Longrightarrow> 0 < a ^ n"  | 
|
138  | 
by (induct n) (simp_all add: mult_pos_pos)  | 
|
139  | 
||
140  | 
lemma zero_le_power [simp]:  | 
|
141  | 
"0 \<le> a \<Longrightarrow> 0 \<le> a ^ n"  | 
|
142  | 
by (induct n) (simp_all add: mult_nonneg_nonneg)  | 
|
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
143  | 
|
| 25874 | 144  | 
lemma one_le_power[simp]:  | 
| 30996 | 145  | 
"1 \<le> a \<Longrightarrow> 1 \<le> a ^ n"  | 
146  | 
apply (induct n)  | 
|
147  | 
apply simp_all  | 
|
148  | 
apply (rule order_trans [OF _ mult_mono [of 1 _ 1]])  | 
|
149  | 
apply (simp_all add: order_trans [OF zero_le_one])  | 
|
150  | 
done  | 
|
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
151  | 
|
| 
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
152  | 
lemma power_gt1_lemma:  | 
| 30996 | 153  | 
assumes gt1: "1 < a"  | 
154  | 
shows "1 < a * a ^ n"  | 
|
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
155  | 
proof -  | 
| 30996 | 156  | 
from gt1 have "0 \<le> a"  | 
157  | 
by (fact order_trans [OF zero_le_one less_imp_le])  | 
|
158  | 
have "1 * 1 < a * 1" using gt1 by simp  | 
|
159  | 
also have "\<dots> \<le> a * a ^ n" using gt1  | 
|
160  | 
by (simp only: mult_mono `0 \<le> a` one_le_power order_less_imp_le  | 
|
| 14577 | 161  | 
zero_le_one order_refl)  | 
162  | 
finally show ?thesis by simp  | 
|
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
163  | 
qed  | 
| 
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
164  | 
|
| 30996 | 165  | 
lemma power_gt1:  | 
166  | 
"1 < a \<Longrightarrow> 1 < a ^ Suc n"  | 
|
167  | 
by (simp add: power_gt1_lemma)  | 
|
| 24376 | 168  | 
|
| 30996 | 169  | 
lemma one_less_power [simp]:  | 
170  | 
"1 < a \<Longrightarrow> 0 < n \<Longrightarrow> 1 < a ^ n"  | 
|
171  | 
by (cases n) (simp_all add: power_gt1_lemma)  | 
|
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
172  | 
|
| 
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
173  | 
lemma power_le_imp_le_exp:  | 
| 30996 | 174  | 
assumes gt1: "1 < a"  | 
175  | 
shows "a ^ m \<le> a ^ n \<Longrightarrow> m \<le> n"  | 
|
176  | 
proof (induct m arbitrary: n)  | 
|
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
177  | 
case 0  | 
| 14577 | 178  | 
show ?case by simp  | 
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
179  | 
next  | 
| 
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
180  | 
case (Suc m)  | 
| 14577 | 181  | 
show ?case  | 
182  | 
proof (cases n)  | 
|
183  | 
case 0  | 
|
| 30996 | 184  | 
with Suc.prems Suc.hyps have "a * a ^ m \<le> 1" by simp  | 
| 14577 | 185  | 
with gt1 show ?thesis  | 
186  | 
by (force simp only: power_gt1_lemma  | 
|
| 30996 | 187  | 
not_less [symmetric])  | 
| 14577 | 188  | 
next  | 
189  | 
case (Suc n)  | 
|
| 30996 | 190  | 
with Suc.prems Suc.hyps show ?thesis  | 
| 14577 | 191  | 
by (force dest: mult_left_le_imp_le  | 
| 30996 | 192  | 
simp add: less_trans [OF zero_less_one gt1])  | 
| 14577 | 193  | 
qed  | 
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
194  | 
qed  | 
| 
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
195  | 
|
| 14577 | 196  | 
text{*Surely we can strengthen this? It holds for @{text "0<a<1"} too.*}
 | 
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
197  | 
lemma power_inject_exp [simp]:  | 
| 30996 | 198  | 
"1 < a \<Longrightarrow> a ^ m = a ^ n \<longleftrightarrow> m = n"  | 
| 14577 | 199  | 
by (force simp add: order_antisym power_le_imp_le_exp)  | 
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
200  | 
|
| 
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
201  | 
text{*Can relax the first premise to @{term "0<a"} in the case of the
 | 
| 
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
202  | 
natural numbers.*}  | 
| 
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
203  | 
lemma power_less_imp_less_exp:  | 
| 30996 | 204  | 
"1 < a \<Longrightarrow> a ^ m < a ^ n \<Longrightarrow> m < n"  | 
205  | 
by (simp add: order_less_le [of m n] less_le [of "a^m" "a^n"]  | 
|
206  | 
power_le_imp_le_exp)  | 
|
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
207  | 
|
| 
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
208  | 
lemma power_mono:  | 
| 30996 | 209  | 
"a \<le> b \<Longrightarrow> 0 \<le> a \<Longrightarrow> a ^ n \<le> b ^ n"  | 
210  | 
by (induct n)  | 
|
211  | 
(auto intro: mult_mono order_trans [of 0 a b])  | 
|
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
212  | 
|
| 
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
213  | 
lemma power_strict_mono [rule_format]:  | 
| 30996 | 214  | 
"a < b \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 < n \<longrightarrow> a ^ n < b ^ n"  | 
215  | 
by (induct n)  | 
|
216  | 
(auto simp add: mult_strict_mono le_less_trans [of 0 a b])  | 
|
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
217  | 
|
| 
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
218  | 
text{*Lemma for @{text power_strict_decreasing}*}
 | 
| 
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
219  | 
lemma power_Suc_less:  | 
| 30996 | 220  | 
"0 < a \<Longrightarrow> a < 1 \<Longrightarrow> a * a ^ n < a ^ n"  | 
221  | 
by (induct n)  | 
|
222  | 
(auto simp add: mult_strict_left_mono)  | 
|
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
223  | 
|
| 30996 | 224  | 
lemma power_strict_decreasing [rule_format]:  | 
225  | 
"n < N \<Longrightarrow> 0 < a \<Longrightarrow> a < 1 \<longrightarrow> a ^ N < a ^ n"  | 
|
226  | 
proof (induct N)  | 
|
227  | 
case 0 then show ?case by simp  | 
|
228  | 
next  | 
|
229  | 
case (Suc N) then show ?case  | 
|
230  | 
apply (auto simp add: power_Suc_less less_Suc_eq)  | 
|
231  | 
apply (subgoal_tac "a * a^N < 1 * a^n")  | 
|
232  | 
apply simp  | 
|
233  | 
apply (rule mult_strict_mono) apply auto  | 
|
234  | 
done  | 
|
235  | 
qed  | 
|
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
236  | 
|
| 
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
237  | 
text{*Proof resembles that of @{text power_strict_decreasing}*}
 | 
| 30996 | 238  | 
lemma power_decreasing [rule_format]:  | 
239  | 
"n \<le> N \<Longrightarrow> 0 \<le> a \<Longrightarrow> a \<le> 1 \<longrightarrow> a ^ N \<le> a ^ n"  | 
|
240  | 
proof (induct N)  | 
|
241  | 
case 0 then show ?case by simp  | 
|
242  | 
next  | 
|
243  | 
case (Suc N) then show ?case  | 
|
244  | 
apply (auto simp add: le_Suc_eq)  | 
|
245  | 
apply (subgoal_tac "a * a^N \<le> 1 * a^n", simp)  | 
|
246  | 
apply (rule mult_mono) apply auto  | 
|
247  | 
done  | 
|
248  | 
qed  | 
|
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
249  | 
|
| 
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
250  | 
lemma power_Suc_less_one:  | 
| 30996 | 251  | 
"0 < a \<Longrightarrow> a < 1 \<Longrightarrow> a ^ Suc n < 1"  | 
252  | 
using power_strict_decreasing [of 0 "Suc n" a] by simp  | 
|
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
253  | 
|
| 
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
254  | 
text{*Proof again resembles that of @{text power_strict_decreasing}*}
 | 
| 30996 | 255  | 
lemma power_increasing [rule_format]:  | 
256  | 
"n \<le> N \<Longrightarrow> 1 \<le> a \<Longrightarrow> a ^ n \<le> a ^ N"  | 
|
257  | 
proof (induct N)  | 
|
258  | 
case 0 then show ?case by simp  | 
|
259  | 
next  | 
|
260  | 
case (Suc N) then show ?case  | 
|
261  | 
apply (auto simp add: le_Suc_eq)  | 
|
262  | 
apply (subgoal_tac "1 * a^n \<le> a * a^N", simp)  | 
|
263  | 
apply (rule mult_mono) apply (auto simp add: order_trans [OF zero_le_one])  | 
|
264  | 
done  | 
|
265  | 
qed  | 
|
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
266  | 
|
| 
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
267  | 
text{*Lemma for @{text power_strict_increasing}*}
 | 
| 
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
268  | 
lemma power_less_power_Suc:  | 
| 30996 | 269  | 
"1 < a \<Longrightarrow> a ^ n < a * a ^ n"  | 
270  | 
by (induct n) (auto simp add: mult_strict_left_mono less_trans [OF zero_less_one])  | 
|
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
271  | 
|
| 30996 | 272  | 
lemma power_strict_increasing [rule_format]:  | 
273  | 
"n < N \<Longrightarrow> 1 < a \<longrightarrow> a ^ n < a ^ N"  | 
|
274  | 
proof (induct N)  | 
|
275  | 
case 0 then show ?case by simp  | 
|
276  | 
next  | 
|
277  | 
case (Suc N) then show ?case  | 
|
278  | 
apply (auto simp add: power_less_power_Suc less_Suc_eq)  | 
|
279  | 
apply (subgoal_tac "1 * a^n < a * a^N", simp)  | 
|
280  | 
apply (rule mult_strict_mono) apply (auto simp add: less_trans [OF zero_less_one] less_imp_le)  | 
|
281  | 
done  | 
|
282  | 
qed  | 
|
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
283  | 
|
| 
25134
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25062 
diff
changeset
 | 
284  | 
lemma power_increasing_iff [simp]:  | 
| 30996 | 285  | 
"1 < b \<Longrightarrow> b ^ x \<le> b ^ y \<longleftrightarrow> x \<le> y"  | 
286  | 
by (blast intro: power_le_imp_le_exp power_increasing less_imp_le)  | 
|
| 15066 | 287  | 
|
288  | 
lemma power_strict_increasing_iff [simp]:  | 
|
| 30996 | 289  | 
"1 < b \<Longrightarrow> b ^ x < b ^ y \<longleftrightarrow> x < y"  | 
| 
25134
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25062 
diff
changeset
 | 
290  | 
by (blast intro: power_less_imp_less_exp power_strict_increasing)  | 
| 15066 | 291  | 
|
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
292  | 
lemma power_le_imp_le_base:  | 
| 30996 | 293  | 
assumes le: "a ^ Suc n \<le> b ^ Suc n"  | 
294  | 
and ynonneg: "0 \<le> b"  | 
|
295  | 
shows "a \<le> b"  | 
|
| 
25134
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25062 
diff
changeset
 | 
296  | 
proof (rule ccontr)  | 
| 
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25062 
diff
changeset
 | 
297  | 
assume "~ a \<le> b"  | 
| 
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25062 
diff
changeset
 | 
298  | 
then have "b < a" by (simp only: linorder_not_le)  | 
| 
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25062 
diff
changeset
 | 
299  | 
then have "b ^ Suc n < a ^ Suc n"  | 
| 
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25062 
diff
changeset
 | 
300  | 
by (simp only: prems power_strict_mono)  | 
| 30996 | 301  | 
from le and this show False  | 
| 
25134
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25062 
diff
changeset
 | 
302  | 
by (simp add: linorder_not_less [symmetric])  | 
| 
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25062 
diff
changeset
 | 
303  | 
qed  | 
| 14577 | 304  | 
|
| 22853 | 305  | 
lemma power_less_imp_less_base:  | 
306  | 
assumes less: "a ^ n < b ^ n"  | 
|
307  | 
assumes nonneg: "0 \<le> b"  | 
|
308  | 
shows "a < b"  | 
|
309  | 
proof (rule contrapos_pp [OF less])  | 
|
310  | 
assume "~ a < b"  | 
|
311  | 
hence "b \<le> a" by (simp only: linorder_not_less)  | 
|
312  | 
hence "b ^ n \<le> a ^ n" using nonneg by (rule power_mono)  | 
|
| 30996 | 313  | 
thus "\<not> a ^ n < b ^ n" by (simp only: linorder_not_less)  | 
| 22853 | 314  | 
qed  | 
315  | 
||
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
316  | 
lemma power_inject_base:  | 
| 30996 | 317  | 
"a ^ Suc n = b ^ Suc n \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> a = b"  | 
318  | 
by (blast intro: power_le_imp_le_base antisym eq_refl sym)  | 
|
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
319  | 
|
| 22955 | 320  | 
lemma power_eq_imp_eq_base:  | 
| 30996 | 321  | 
"a ^ n = b ^ n \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 < n \<Longrightarrow> a = b"  | 
322  | 
by (cases n) (simp_all del: power_Suc, rule power_inject_base)  | 
|
| 22955 | 323  | 
|
| 30996 | 324  | 
end  | 
325  | 
||
326  | 
context ordered_idom  | 
|
327  | 
begin  | 
|
| 
29978
 
33df3c4eb629
generalize le_imp_power_dvd and power_le_dvd; move from Divides to Power
 
huffman 
parents: 
29608 
diff
changeset
 | 
328  | 
|
| 30996 | 329  | 
lemma power_abs:  | 
330  | 
"abs (a ^ n) = abs a ^ n"  | 
|
331  | 
by (induct n) (auto simp add: abs_mult)  | 
|
332  | 
||
333  | 
lemma abs_power_minus [simp]:  | 
|
334  | 
"abs ((-a) ^ n) = abs (a ^ n)"  | 
|
335  | 
by (simp add: abs_minus_cancel power_abs)  | 
|
336  | 
||
337  | 
lemma zero_less_power_abs_iff [simp, noatp]:  | 
|
338  | 
"0 < abs a ^ n \<longleftrightarrow> a \<noteq> 0 \<or> n = 0"  | 
|
339  | 
proof (induct n)  | 
|
340  | 
case 0 show ?case by simp  | 
|
341  | 
next  | 
|
342  | 
case (Suc n) show ?case by (auto simp add: Suc zero_less_mult_iff)  | 
|
| 
29978
 
33df3c4eb629
generalize le_imp_power_dvd and power_le_dvd; move from Divides to Power
 
huffman 
parents: 
29608 
diff
changeset
 | 
343  | 
qed  | 
| 
 
33df3c4eb629
generalize le_imp_power_dvd and power_le_dvd; move from Divides to Power
 
huffman 
parents: 
29608 
diff
changeset
 | 
344  | 
|
| 30996 | 345  | 
lemma zero_le_power_abs [simp]:  | 
346  | 
"0 \<le> abs a ^ n"  | 
|
347  | 
by (rule zero_le_power [OF abs_ge_zero])  | 
|
348  | 
||
349  | 
end  | 
|
350  | 
||
351  | 
context ring_1_no_zero_divisors  | 
|
352  | 
begin  | 
|
353  | 
||
354  | 
lemma field_power_not_zero:  | 
|
355  | 
"a \<noteq> 0 \<Longrightarrow> a ^ n \<noteq> 0"  | 
|
356  | 
by (induct n) auto  | 
|
357  | 
||
358  | 
end  | 
|
359  | 
||
360  | 
context division_ring  | 
|
361  | 
begin  | 
|
| 
29978
 
33df3c4eb629
generalize le_imp_power_dvd and power_le_dvd; move from Divides to Power
 
huffman 
parents: 
29608 
diff
changeset
 | 
362  | 
|
| 30997 | 363  | 
text {* FIXME reorient or rename to @{text nonzero_inverse_power} *}
 | 
| 30996 | 364  | 
lemma nonzero_power_inverse:  | 
365  | 
"a \<noteq> 0 \<Longrightarrow> inverse (a ^ n) = (inverse a) ^ n"  | 
|
366  | 
by (induct n)  | 
|
367  | 
(simp_all add: nonzero_inverse_mult_distrib power_commutes field_power_not_zero)  | 
|
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
368  | 
|
| 30996 | 369  | 
end  | 
370  | 
||
371  | 
context field  | 
|
372  | 
begin  | 
|
373  | 
||
374  | 
lemma nonzero_power_divide:  | 
|
375  | 
"b \<noteq> 0 \<Longrightarrow> (a / b) ^ n = a ^ n / b ^ n"  | 
|
376  | 
by (simp add: divide_inverse power_mult_distrib nonzero_power_inverse)  | 
|
377  | 
||
378  | 
end  | 
|
379  | 
||
380  | 
lemma power_0_Suc [simp]:  | 
|
381  | 
  "(0::'a::{power, semiring_0}) ^ Suc n = 0"
 | 
|
382  | 
by simp  | 
|
| 30313 | 383  | 
|
| 30996 | 384  | 
text{*It looks plausible as a simprule, but its effect can be strange.*}
 | 
385  | 
lemma power_0_left:  | 
|
386  | 
  "0 ^ n = (if n = 0 then 1 else (0::'a::{power, semiring_0}))"
 | 
|
387  | 
by (induct n) simp_all  | 
|
388  | 
||
389  | 
lemma power_eq_0_iff [simp]:  | 
|
390  | 
"a ^ n = 0 \<longleftrightarrow>  | 
|
391  | 
     a = (0::'a::{mult_zero,zero_neq_one,no_zero_divisors,power}) \<and> n \<noteq> 0"
 | 
|
392  | 
by (induct n)  | 
|
393  | 
(auto simp add: no_zero_divisors elim: contrapos_pp)  | 
|
394  | 
||
395  | 
lemma power_diff:  | 
|
396  | 
fixes a :: "'a::field"  | 
|
397  | 
assumes nz: "a \<noteq> 0"  | 
|
398  | 
shows "n \<le> m \<Longrightarrow> a ^ (m - n) = a ^ m / a ^ n"  | 
|
399  | 
by (induct m n rule: diff_induct) (simp_all add: nz)  | 
|
| 30313 | 400  | 
|
| 30996 | 401  | 
text{*Perhaps these should be simprules.*}
 | 
402  | 
lemma power_inverse:  | 
|
403  | 
  fixes a :: "'a::{division_ring,division_by_zero,power}"
 | 
|
404  | 
shows "inverse (a ^ n) = (inverse a) ^ n"  | 
|
405  | 
apply (cases "a = 0")  | 
|
406  | 
apply (simp add: power_0_left)  | 
|
407  | 
apply (simp add: nonzero_power_inverse)  | 
|
408  | 
done (* TODO: reorient or rename to inverse_power *)  | 
|
409  | 
||
410  | 
lemma power_one_over:  | 
|
411  | 
  "1 / (a::'a::{field,division_by_zero, power}) ^ n =  (1 / a) ^ n"
 | 
|
412  | 
by (simp add: divide_inverse) (rule power_inverse)  | 
|
413  | 
||
414  | 
lemma power_divide:  | 
|
415  | 
  "(a / b) ^ n = (a::'a::{field,division_by_zero}) ^ n / b ^ n"
 | 
|
416  | 
apply (cases "b = 0")  | 
|
417  | 
apply (simp add: power_0_left)  | 
|
418  | 
apply (rule nonzero_power_divide)  | 
|
419  | 
apply assumption  | 
|
| 30313 | 420  | 
done  | 
421  | 
||
422  | 
||
| 30960 | 423  | 
subsection {* Exponentiation for the Natural Numbers *}
 | 
| 14577 | 424  | 
|
| 30996 | 425  | 
lemma nat_one_le_power [simp]:  | 
426  | 
"Suc 0 \<le> i \<Longrightarrow> Suc 0 \<le> i ^ n"  | 
|
427  | 
by (rule one_le_power [of i n, unfolded One_nat_def])  | 
|
| 23305 | 428  | 
|
| 30996 | 429  | 
lemma nat_zero_less_power_iff [simp]:  | 
430  | 
"x ^ n > 0 \<longleftrightarrow> x > (0::nat) \<or> n = 0"  | 
|
431  | 
by (induct n) auto  | 
|
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
432  | 
|
| 30056 | 433  | 
lemma nat_power_eq_Suc_0_iff [simp]:  | 
| 30996 | 434  | 
"x ^ m = Suc 0 \<longleftrightarrow> m = 0 \<or> x = Suc 0"  | 
435  | 
by (induct m) auto  | 
|
| 30056 | 436  | 
|
| 30996 | 437  | 
lemma power_Suc_0 [simp]:  | 
438  | 
"Suc 0 ^ n = Suc 0"  | 
|
439  | 
by simp  | 
|
| 30056 | 440  | 
|
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
441  | 
text{*Valid for the naturals, but what if @{text"0<i<1"}?
 | 
| 
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
442  | 
Premises cannot be weakened: consider the case where @{term "i=0"},
 | 
| 
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
443  | 
@{term "m=1"} and @{term "n=0"}.*}
 | 
| 21413 | 444  | 
lemma nat_power_less_imp_less:  | 
445  | 
assumes nonneg: "0 < (i\<Colon>nat)"  | 
|
| 30996 | 446  | 
assumes less: "i ^ m < i ^ n"  | 
| 21413 | 447  | 
shows "m < n"  | 
448  | 
proof (cases "i = 1")  | 
|
449  | 
case True with less power_one [where 'a = nat] show ?thesis by simp  | 
|
450  | 
next  | 
|
451  | 
case False with nonneg have "1 < i" by auto  | 
|
452  | 
from power_strict_increasing_iff [OF this] less show ?thesis ..  | 
|
453  | 
qed  | 
|
| 
14348
 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 
paulson 
parents: 
8844 
diff
changeset
 | 
454  | 
|
| 
33274
 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 
haftmann 
parents: 
31998 
diff
changeset
 | 
455  | 
lemma power_dvd_imp_le:  | 
| 
 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 
haftmann 
parents: 
31998 
diff
changeset
 | 
456  | 
"i ^ m dvd i ^ n \<Longrightarrow> (1::nat) < i \<Longrightarrow> m \<le> n"  | 
| 
 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 
haftmann 
parents: 
31998 
diff
changeset
 | 
457  | 
apply (rule power_le_imp_le_exp, assumption)  | 
| 
 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 
haftmann 
parents: 
31998 
diff
changeset
 | 
458  | 
apply (erule dvd_imp_le, simp)  | 
| 
 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 
haftmann 
parents: 
31998 
diff
changeset
 | 
459  | 
done  | 
| 
 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 
haftmann 
parents: 
31998 
diff
changeset
 | 
460  | 
|
| 
31155
 
92d8ff6af82c
monomorphic code generation for power operations
 
haftmann 
parents: 
31021 
diff
changeset
 | 
461  | 
|
| 
 
92d8ff6af82c
monomorphic code generation for power operations
 
haftmann 
parents: 
31021 
diff
changeset
 | 
462  | 
subsection {* Code generator tweak *}
 | 
| 
 
92d8ff6af82c
monomorphic code generation for power operations
 
haftmann 
parents: 
31021 
diff
changeset
 | 
463  | 
|
| 
31998
 
2c7a24f74db9
code attributes use common underscore convention
 
haftmann 
parents: 
31155 
diff
changeset
 | 
464  | 
lemma power_power_power [code, code_unfold, code_inline del]:  | 
| 
31155
 
92d8ff6af82c
monomorphic code generation for power operations
 
haftmann 
parents: 
31021 
diff
changeset
 | 
465  | 
  "power = power.power (1::'a::{power}) (op *)"
 | 
| 
 
92d8ff6af82c
monomorphic code generation for power operations
 
haftmann 
parents: 
31021 
diff
changeset
 | 
466  | 
unfolding power_def power.power_def ..  | 
| 
 
92d8ff6af82c
monomorphic code generation for power operations
 
haftmann 
parents: 
31021 
diff
changeset
 | 
467  | 
|
| 
 
92d8ff6af82c
monomorphic code generation for power operations
 
haftmann 
parents: 
31021 
diff
changeset
 | 
468  | 
declare power.power.simps [code]  | 
| 
 
92d8ff6af82c
monomorphic code generation for power operations
 
haftmann 
parents: 
31021 
diff
changeset
 | 
469  | 
|
| 
3390
 
0c7625196d95
New theory "Power" of exponentiation (and binomial coefficients)
 
paulson 
parents:  
diff
changeset
 | 
470  | 
end  |