author | wenzelm |
Thu, 20 Mar 2008 00:20:51 +0100 | |
changeset 26346 | 17debd2fff8e |
parent 25482 | 4ed49eccb1eb |
child 26791 | 3581a9c71909 |
permissions | -rw-r--r-- |
15300 | 1 |
(* ID: $Id$ |
2 |
Authors: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
3 |
Copyright 1996 University of Cambridge |
|
4 |
*) |
|
5 |
||
6 |
header {* Equivalence Relations in Higher-Order Set Theory *} |
|
7 |
||
8 |
theory Equiv_Relations |
|
24728 | 9 |
imports Finite_Set Relation |
15300 | 10 |
begin |
11 |
||
12 |
subsection {* Equivalence relations *} |
|
13 |
||
14 |
locale equiv = |
|
15 |
fixes A and r |
|
16 |
assumes refl: "refl A r" |
|
17 |
and sym: "sym r" |
|
18 |
and trans: "trans r" |
|
19 |
||
20 |
text {* |
|
21 |
Suppes, Theorem 70: @{text r} is an equiv relation iff @{text "r\<inverse> O |
|
22 |
r = r"}. |
|
23 |
||
24 |
First half: @{text "equiv A r ==> r\<inverse> O r = r"}. |
|
25 |
*} |
|
26 |
||
27 |
lemma sym_trans_comp_subset: |
|
28 |
"sym r ==> trans r ==> r\<inverse> O r \<subseteq> r" |
|
29 |
by (unfold trans_def sym_def converse_def) blast |
|
30 |
||
31 |
lemma refl_comp_subset: "refl A r ==> r \<subseteq> r\<inverse> O r" |
|
32 |
by (unfold refl_def) blast |
|
33 |
||
34 |
lemma equiv_comp_eq: "equiv A r ==> r\<inverse> O r = r" |
|
35 |
apply (unfold equiv_def) |
|
36 |
apply clarify |
|
37 |
apply (rule equalityI) |
|
17589 | 38 |
apply (iprover intro: sym_trans_comp_subset refl_comp_subset)+ |
15300 | 39 |
done |
40 |
||
41 |
text {* Second half. *} |
|
42 |
||
43 |
lemma comp_equivI: |
|
44 |
"r\<inverse> O r = r ==> Domain r = A ==> equiv A r" |
|
45 |
apply (unfold equiv_def refl_def sym_def trans_def) |
|
46 |
apply (erule equalityE) |
|
47 |
apply (subgoal_tac "\<forall>x y. (x, y) \<in> r --> (y, x) \<in> r") |
|
48 |
apply fast |
|
49 |
apply fast |
|
50 |
done |
|
51 |
||
52 |
||
53 |
subsection {* Equivalence classes *} |
|
54 |
||
55 |
lemma equiv_class_subset: |
|
56 |
"equiv A r ==> (a, b) \<in> r ==> r``{a} \<subseteq> r``{b}" |
|
57 |
-- {* lemma for the next result *} |
|
58 |
by (unfold equiv_def trans_def sym_def) blast |
|
59 |
||
60 |
theorem equiv_class_eq: "equiv A r ==> (a, b) \<in> r ==> r``{a} = r``{b}" |
|
61 |
apply (assumption | rule equalityI equiv_class_subset)+ |
|
62 |
apply (unfold equiv_def sym_def) |
|
63 |
apply blast |
|
64 |
done |
|
65 |
||
66 |
lemma equiv_class_self: "equiv A r ==> a \<in> A ==> a \<in> r``{a}" |
|
67 |
by (unfold equiv_def refl_def) blast |
|
68 |
||
69 |
lemma subset_equiv_class: |
|
70 |
"equiv A r ==> r``{b} \<subseteq> r``{a} ==> b \<in> A ==> (a,b) \<in> r" |
|
71 |
-- {* lemma for the next result *} |
|
72 |
by (unfold equiv_def refl_def) blast |
|
73 |
||
74 |
lemma eq_equiv_class: |
|
75 |
"r``{a} = r``{b} ==> equiv A r ==> b \<in> A ==> (a, b) \<in> r" |
|
17589 | 76 |
by (iprover intro: equalityD2 subset_equiv_class) |
15300 | 77 |
|
78 |
lemma equiv_class_nondisjoint: |
|
79 |
"equiv A r ==> x \<in> (r``{a} \<inter> r``{b}) ==> (a, b) \<in> r" |
|
80 |
by (unfold equiv_def trans_def sym_def) blast |
|
81 |
||
82 |
lemma equiv_type: "equiv A r ==> r \<subseteq> A \<times> A" |
|
83 |
by (unfold equiv_def refl_def) blast |
|
84 |
||
85 |
theorem equiv_class_eq_iff: |
|
86 |
"equiv A r ==> ((x, y) \<in> r) = (r``{x} = r``{y} & x \<in> A & y \<in> A)" |
|
87 |
by (blast intro!: equiv_class_eq dest: eq_equiv_class equiv_type) |
|
88 |
||
89 |
theorem eq_equiv_class_iff: |
|
90 |
"equiv A r ==> x \<in> A ==> y \<in> A ==> (r``{x} = r``{y}) = ((x, y) \<in> r)" |
|
91 |
by (blast intro!: equiv_class_eq dest: eq_equiv_class equiv_type) |
|
92 |
||
93 |
||
94 |
subsection {* Quotients *} |
|
95 |
||
96 |
constdefs |
|
97 |
quotient :: "['a set, ('a*'a) set] => 'a set set" (infixl "'/'/" 90) |
|
98 |
"A//r == \<Union>x \<in> A. {r``{x}}" -- {* set of equiv classes *} |
|
99 |
||
100 |
lemma quotientI: "x \<in> A ==> r``{x} \<in> A//r" |
|
101 |
by (unfold quotient_def) blast |
|
102 |
||
103 |
lemma quotientE: |
|
104 |
"X \<in> A//r ==> (!!x. X = r``{x} ==> x \<in> A ==> P) ==> P" |
|
105 |
by (unfold quotient_def) blast |
|
106 |
||
107 |
lemma Union_quotient: "equiv A r ==> Union (A//r) = A" |
|
108 |
by (unfold equiv_def refl_def quotient_def) blast |
|
109 |
||
110 |
lemma quotient_disj: |
|
111 |
"equiv A r ==> X \<in> A//r ==> Y \<in> A//r ==> X = Y | (X \<inter> Y = {})" |
|
112 |
apply (unfold quotient_def) |
|
113 |
apply clarify |
|
114 |
apply (rule equiv_class_eq) |
|
115 |
apply assumption |
|
116 |
apply (unfold equiv_def trans_def sym_def) |
|
117 |
apply blast |
|
118 |
done |
|
119 |
||
120 |
lemma quotient_eqI: |
|
121 |
"[|equiv A r; X \<in> A//r; Y \<in> A//r; x \<in> X; y \<in> Y; (x,y) \<in> r|] ==> X = Y" |
|
122 |
apply (clarify elim!: quotientE) |
|
123 |
apply (rule equiv_class_eq, assumption) |
|
124 |
apply (unfold equiv_def sym_def trans_def, blast) |
|
125 |
done |
|
126 |
||
127 |
lemma quotient_eq_iff: |
|
128 |
"[|equiv A r; X \<in> A//r; Y \<in> A//r; x \<in> X; y \<in> Y|] ==> (X = Y) = ((x,y) \<in> r)" |
|
129 |
apply (rule iffI) |
|
130 |
prefer 2 apply (blast del: equalityI intro: quotient_eqI) |
|
131 |
apply (clarify elim!: quotientE) |
|
132 |
apply (unfold equiv_def sym_def trans_def, blast) |
|
133 |
done |
|
134 |
||
18493 | 135 |
lemma eq_equiv_class_iff2: |
136 |
"\<lbrakk> equiv A r; x \<in> A; y \<in> A \<rbrakk> \<Longrightarrow> ({x}//r = {y}//r) = ((x,y) : r)" |
|
137 |
by(simp add:quotient_def eq_equiv_class_iff) |
|
138 |
||
15300 | 139 |
|
140 |
lemma quotient_empty [simp]: "{}//r = {}" |
|
141 |
by(simp add: quotient_def) |
|
142 |
||
143 |
lemma quotient_is_empty [iff]: "(A//r = {}) = (A = {})" |
|
144 |
by(simp add: quotient_def) |
|
145 |
||
146 |
lemma quotient_is_empty2 [iff]: "({} = A//r) = (A = {})" |
|
147 |
by(simp add: quotient_def) |
|
148 |
||
149 |
||
15302 | 150 |
lemma singleton_quotient: "{x}//r = {r `` {x}}" |
151 |
by(simp add:quotient_def) |
|
152 |
||
153 |
lemma quotient_diff1: |
|
154 |
"\<lbrakk> inj_on (%a. {a}//r) A; a \<in> A \<rbrakk> \<Longrightarrow> (A - {a})//r = A//r - {a}//r" |
|
155 |
apply(simp add:quotient_def inj_on_def) |
|
156 |
apply blast |
|
157 |
done |
|
158 |
||
15300 | 159 |
subsection {* Defining unary operations upon equivalence classes *} |
160 |
||
161 |
text{*A congruence-preserving function*} |
|
162 |
locale congruent = |
|
163 |
fixes r and f |
|
164 |
assumes congruent: "(y,z) \<in> r ==> f y = f z" |
|
165 |
||
19363 | 166 |
abbreviation |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
19979
diff
changeset
|
167 |
RESPECTS :: "('a => 'b) => ('a * 'a) set => bool" |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
19979
diff
changeset
|
168 |
(infixr "respects" 80) where |
19363 | 169 |
"f respects r == congruent r f" |
15300 | 170 |
|
171 |
||
172 |
lemma UN_constant_eq: "a \<in> A ==> \<forall>y \<in> A. f y = c ==> (\<Union>y \<in> A. f(y))=c" |
|
173 |
-- {* lemma required to prove @{text UN_equiv_class} *} |
|
174 |
by auto |
|
175 |
||
176 |
lemma UN_equiv_class: |
|
177 |
"equiv A r ==> f respects r ==> a \<in> A |
|
178 |
==> (\<Union>x \<in> r``{a}. f x) = f a" |
|
179 |
-- {* Conversion rule *} |
|
180 |
apply (rule equiv_class_self [THEN UN_constant_eq], assumption+) |
|
181 |
apply (unfold equiv_def congruent_def sym_def) |
|
182 |
apply (blast del: equalityI) |
|
183 |
done |
|
184 |
||
185 |
lemma UN_equiv_class_type: |
|
186 |
"equiv A r ==> f respects r ==> X \<in> A//r ==> |
|
187 |
(!!x. x \<in> A ==> f x \<in> B) ==> (\<Union>x \<in> X. f x) \<in> B" |
|
188 |
apply (unfold quotient_def) |
|
189 |
apply clarify |
|
190 |
apply (subst UN_equiv_class) |
|
191 |
apply auto |
|
192 |
done |
|
193 |
||
194 |
text {* |
|
195 |
Sufficient conditions for injectiveness. Could weaken premises! |
|
196 |
major premise could be an inclusion; bcong could be @{text "!!y. y \<in> |
|
197 |
A ==> f y \<in> B"}. |
|
198 |
*} |
|
199 |
||
200 |
lemma UN_equiv_class_inject: |
|
201 |
"equiv A r ==> f respects r ==> |
|
202 |
(\<Union>x \<in> X. f x) = (\<Union>y \<in> Y. f y) ==> X \<in> A//r ==> Y \<in> A//r |
|
203 |
==> (!!x y. x \<in> A ==> y \<in> A ==> f x = f y ==> (x, y) \<in> r) |
|
204 |
==> X = Y" |
|
205 |
apply (unfold quotient_def) |
|
206 |
apply clarify |
|
207 |
apply (rule equiv_class_eq) |
|
208 |
apply assumption |
|
209 |
apply (subgoal_tac "f x = f xa") |
|
210 |
apply blast |
|
211 |
apply (erule box_equals) |
|
212 |
apply (assumption | rule UN_equiv_class)+ |
|
213 |
done |
|
214 |
||
215 |
||
216 |
subsection {* Defining binary operations upon equivalence classes *} |
|
217 |
||
218 |
text{*A congruence-preserving function of two arguments*} |
|
219 |
locale congruent2 = |
|
220 |
fixes r1 and r2 and f |
|
221 |
assumes congruent2: |
|
222 |
"(y1,z1) \<in> r1 ==> (y2,z2) \<in> r2 ==> f y1 y2 = f z1 z2" |
|
223 |
||
224 |
text{*Abbreviation for the common case where the relations are identical*} |
|
19979 | 225 |
abbreviation |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
19979
diff
changeset
|
226 |
RESPECTS2:: "['a => 'a => 'b, ('a * 'a) set] => bool" |
21749 | 227 |
(infixr "respects2" 80) where |
19979 | 228 |
"f respects2 r == congruent2 r r f" |
229 |
||
15300 | 230 |
|
231 |
lemma congruent2_implies_congruent: |
|
232 |
"equiv A r1 ==> congruent2 r1 r2 f ==> a \<in> A ==> congruent r2 (f a)" |
|
233 |
by (unfold congruent_def congruent2_def equiv_def refl_def) blast |
|
234 |
||
235 |
lemma congruent2_implies_congruent_UN: |
|
236 |
"equiv A1 r1 ==> equiv A2 r2 ==> congruent2 r1 r2 f ==> a \<in> A2 ==> |
|
237 |
congruent r1 (\<lambda>x1. \<Union>x2 \<in> r2``{a}. f x1 x2)" |
|
238 |
apply (unfold congruent_def) |
|
239 |
apply clarify |
|
240 |
apply (rule equiv_type [THEN subsetD, THEN SigmaE2], assumption+) |
|
241 |
apply (simp add: UN_equiv_class congruent2_implies_congruent) |
|
242 |
apply (unfold congruent2_def equiv_def refl_def) |
|
243 |
apply (blast del: equalityI) |
|
244 |
done |
|
245 |
||
246 |
lemma UN_equiv_class2: |
|
247 |
"equiv A1 r1 ==> equiv A2 r2 ==> congruent2 r1 r2 f ==> a1 \<in> A1 ==> a2 \<in> A2 |
|
248 |
==> (\<Union>x1 \<in> r1``{a1}. \<Union>x2 \<in> r2``{a2}. f x1 x2) = f a1 a2" |
|
249 |
by (simp add: UN_equiv_class congruent2_implies_congruent |
|
250 |
congruent2_implies_congruent_UN) |
|
251 |
||
252 |
lemma UN_equiv_class_type2: |
|
253 |
"equiv A1 r1 ==> equiv A2 r2 ==> congruent2 r1 r2 f |
|
254 |
==> X1 \<in> A1//r1 ==> X2 \<in> A2//r2 |
|
255 |
==> (!!x1 x2. x1 \<in> A1 ==> x2 \<in> A2 ==> f x1 x2 \<in> B) |
|
256 |
==> (\<Union>x1 \<in> X1. \<Union>x2 \<in> X2. f x1 x2) \<in> B" |
|
257 |
apply (unfold quotient_def) |
|
258 |
apply clarify |
|
259 |
apply (blast intro: UN_equiv_class_type congruent2_implies_congruent_UN |
|
260 |
congruent2_implies_congruent quotientI) |
|
261 |
done |
|
262 |
||
263 |
lemma UN_UN_split_split_eq: |
|
264 |
"(\<Union>(x1, x2) \<in> X. \<Union>(y1, y2) \<in> Y. A x1 x2 y1 y2) = |
|
265 |
(\<Union>x \<in> X. \<Union>y \<in> Y. (\<lambda>(x1, x2). (\<lambda>(y1, y2). A x1 x2 y1 y2) y) x)" |
|
266 |
-- {* Allows a natural expression of binary operators, *} |
|
267 |
-- {* without explicit calls to @{text split} *} |
|
268 |
by auto |
|
269 |
||
270 |
lemma congruent2I: |
|
271 |
"equiv A1 r1 ==> equiv A2 r2 |
|
272 |
==> (!!y z w. w \<in> A2 ==> (y,z) \<in> r1 ==> f y w = f z w) |
|
273 |
==> (!!y z w. w \<in> A1 ==> (y,z) \<in> r2 ==> f w y = f w z) |
|
274 |
==> congruent2 r1 r2 f" |
|
275 |
-- {* Suggested by John Harrison -- the two subproofs may be *} |
|
276 |
-- {* \emph{much} simpler than the direct proof. *} |
|
277 |
apply (unfold congruent2_def equiv_def refl_def) |
|
278 |
apply clarify |
|
279 |
apply (blast intro: trans) |
|
280 |
done |
|
281 |
||
282 |
lemma congruent2_commuteI: |
|
283 |
assumes equivA: "equiv A r" |
|
284 |
and commute: "!!y z. y \<in> A ==> z \<in> A ==> f y z = f z y" |
|
285 |
and congt: "!!y z w. w \<in> A ==> (y,z) \<in> r ==> f w y = f w z" |
|
286 |
shows "f respects2 r" |
|
287 |
apply (rule congruent2I [OF equivA equivA]) |
|
288 |
apply (rule commute [THEN trans]) |
|
289 |
apply (rule_tac [3] commute [THEN trans, symmetric]) |
|
290 |
apply (rule_tac [5] sym) |
|
25482 | 291 |
apply (rule congt | assumption | |
15300 | 292 |
erule equivA [THEN equiv_type, THEN subsetD, THEN SigmaE2])+ |
293 |
done |
|
294 |
||
24728 | 295 |
|
296 |
subsection {* Quotients and finiteness *} |
|
297 |
||
298 |
text {*Suggested by Florian Kammüller*} |
|
299 |
||
300 |
lemma finite_quotient: "finite A ==> r \<subseteq> A \<times> A ==> finite (A//r)" |
|
301 |
-- {* recall @{thm equiv_type} *} |
|
302 |
apply (rule finite_subset) |
|
303 |
apply (erule_tac [2] finite_Pow_iff [THEN iffD2]) |
|
304 |
apply (unfold quotient_def) |
|
305 |
apply blast |
|
306 |
done |
|
307 |
||
308 |
lemma finite_equiv_class: |
|
309 |
"finite A ==> r \<subseteq> A \<times> A ==> X \<in> A//r ==> finite X" |
|
310 |
apply (unfold quotient_def) |
|
311 |
apply (rule finite_subset) |
|
312 |
prefer 2 apply assumption |
|
313 |
apply blast |
|
314 |
done |
|
315 |
||
316 |
lemma equiv_imp_dvd_card: |
|
317 |
"finite A ==> equiv A r ==> \<forall>X \<in> A//r. k dvd card X |
|
318 |
==> k dvd card A" |
|
319 |
apply (rule Union_quotient [THEN subst]) |
|
320 |
apply assumption |
|
321 |
apply (rule dvd_partition) |
|
322 |
prefer 3 apply (blast dest: quotient_disj) |
|
323 |
apply (simp_all add: Union_quotient equiv_type) |
|
324 |
done |
|
325 |
||
326 |
lemma card_quotient_disjoint: |
|
327 |
"\<lbrakk> finite A; inj_on (\<lambda>x. {x} // r) A \<rbrakk> \<Longrightarrow> card(A//r) = card A" |
|
328 |
apply(simp add:quotient_def) |
|
329 |
apply(subst card_UN_disjoint) |
|
330 |
apply assumption |
|
331 |
apply simp |
|
332 |
apply(fastsimp simp add:inj_on_def) |
|
333 |
apply (simp add:setsum_constant) |
|
334 |
done |
|
335 |
||
15300 | 336 |
end |