| author | blanchet | 
| Thu, 29 Jul 2010 00:28:57 +0200 | |
| changeset 38064 | 17fc92d33c24 | 
| parent 37706 | c63649d8d75b | 
| child 38322 | 5888841c38da | 
| permissions | -rw-r--r-- | 
| 20946 | 1  | 
theory Classes  | 
| 28565 | 2  | 
imports Main Setup  | 
| 20946 | 3  | 
begin  | 
4  | 
||
5  | 
section {* Introduction *}
 | 
|
6  | 
||
7  | 
text {*
 | 
|
| 31691 | 8  | 
  Type classes were introduced by Wadler and Blott \cite{wadler89how}
 | 
9  | 
into the Haskell language to allow for a reasonable implementation  | 
|
| 22317 | 10  | 
  of overloading\footnote{throughout this tutorial, we are referring
 | 
11  | 
to classical Haskell 1.0 type classes, not considering  | 
|
12  | 
later additions in expressiveness}.  | 
|
13  | 
As a canonical example, a polymorphic equality function  | 
|
14  | 
  @{text "eq \<Colon> \<alpha> \<Rightarrow> \<alpha> \<Rightarrow> bool"} which is overloaded on different
 | 
|
| 22550 | 15  | 
  types for @{text "\<alpha>"}, which is achieved by splitting introduction
 | 
| 22317 | 16  | 
  of the @{text eq} function from its overloaded definitions by means
 | 
17  | 
  of @{text class} and @{text instance} declarations:
 | 
|
| 30227 | 18  | 
  \footnote{syntax here is a kind of isabellized Haskell}
 | 
| 22317 | 19  | 
|
| 28565 | 20  | 
  \begin{quote}
 | 
21  | 
||
| 30227 | 22  | 
  \noindent@{text "class eq where"} \\
 | 
| 28565 | 23  | 
  \hspace*{2ex}@{text "eq \<Colon> \<alpha> \<Rightarrow> \<alpha> \<Rightarrow> bool"}
 | 
| 20946 | 24  | 
|
| 28565 | 25  | 
  \medskip\noindent@{text "instance nat \<Colon> eq where"} \\
 | 
26  | 
  \hspace*{2ex}@{text "eq 0 0 = True"} \\
 | 
|
27  | 
  \hspace*{2ex}@{text "eq 0 _ = False"} \\
 | 
|
28  | 
  \hspace*{2ex}@{text "eq _ 0 = False"} \\
 | 
|
29  | 
  \hspace*{2ex}@{text "eq (Suc n) (Suc m) = eq n m"}
 | 
|
| 22317 | 30  | 
|
| 28948 | 31  | 
  \medskip\noindent@{text "instance (\<alpha>\<Colon>eq, \<beta>\<Colon>eq) pair \<Colon> eq where"} \\
 | 
| 28565 | 32  | 
  \hspace*{2ex}@{text "eq (x1, y1) (x2, y2) = eq x1 x2 \<and> eq y1 y2"}
 | 
| 20946 | 33  | 
|
| 28565 | 34  | 
  \medskip\noindent@{text "class ord extends eq where"} \\
 | 
35  | 
  \hspace*{2ex}@{text "less_eq \<Colon> \<alpha> \<Rightarrow> \<alpha> \<Rightarrow> bool"} \\
 | 
|
36  | 
  \hspace*{2ex}@{text "less \<Colon> \<alpha> \<Rightarrow> \<alpha> \<Rightarrow> bool"}
 | 
|
| 22317 | 37  | 
|
| 28565 | 38  | 
  \end{quote}
 | 
39  | 
||
40  | 
\noindent Type variables are annotated with (finitely many) classes;  | 
|
| 22317 | 41  | 
these annotations are assertions that a particular polymorphic type  | 
42  | 
provides definitions for overloaded functions.  | 
|
43  | 
||
44  | 
Indeed, type classes not only allow for simple overloading  | 
|
45  | 
but form a generic calculus, an instance of order-sorted  | 
|
| 31691 | 46  | 
  algebra \cite{nipkow-sorts93,Nipkow-Prehofer:1993,Wenzel:1997:TPHOL}.
 | 
| 20946 | 47  | 
|
| 31691 | 48  | 
From a software engineering point of view, type classes  | 
| 28540 | 49  | 
roughly correspond to interfaces in object-oriented languages like Java;  | 
| 22317 | 50  | 
so, it is naturally desirable that type classes do not only  | 
| 24991 | 51  | 
provide functions (class parameters) but also state specifications  | 
| 22317 | 52  | 
  implementations must obey.  For example, the @{text "class eq"}
 | 
| 22550 | 53  | 
above could be given the following specification, demanding that  | 
54  | 
  @{text "class eq"} is an equivalence relation obeying reflexivity,
 | 
|
55  | 
symmetry and transitivity:  | 
|
| 22317 | 56  | 
|
| 28565 | 57  | 
  \begin{quote}
 | 
| 22317 | 58  | 
|
| 28565 | 59  | 
  \noindent@{text "class eq where"} \\
 | 
60  | 
  \hspace*{2ex}@{text "eq \<Colon> \<alpha> \<Rightarrow> \<alpha> \<Rightarrow> bool"} \\
 | 
|
61  | 
  @{text "satisfying"} \\
 | 
|
62  | 
  \hspace*{2ex}@{text "refl: eq x x"} \\
 | 
|
63  | 
  \hspace*{2ex}@{text "sym: eq x y \<longleftrightarrow> eq x y"} \\
 | 
|
64  | 
  \hspace*{2ex}@{text "trans: eq x y \<and> eq y z \<longrightarrow> eq x z"}
 | 
|
65  | 
||
66  | 
  \end{quote}
 | 
|
67  | 
||
| 31691 | 68  | 
\noindent From a theoretical point of view, type classes are lightweight  | 
| 22347 | 69  | 
modules; Haskell type classes may be emulated by  | 
| 22317 | 70  | 
  SML functors \cite{classes_modules}. 
 | 
71  | 
Isabelle/Isar offers a discipline of type classes which brings  | 
|
72  | 
all those aspects together:  | 
|
73  | 
||
74  | 
  \begin{enumerate}
 | 
|
| 24991 | 75  | 
\item specifying abstract parameters together with  | 
| 22317 | 76  | 
corresponding specifications,  | 
| 28540 | 77  | 
\item instantiating those abstract parameters by a particular  | 
| 22317 | 78  | 
type  | 
79  | 
\item in connection with a ``less ad-hoc'' approach to overloading,  | 
|
| 31691 | 80  | 
\item with a direct link to the Isabelle module system:  | 
81  | 
      locales \cite{kammueller-locales}.
 | 
|
| 22317 | 82  | 
  \end{enumerate}
 | 
83  | 
||
| 22550 | 84  | 
\noindent Isar type classes also directly support code generation  | 
| 31691 | 85  | 
in a Haskell like fashion. Internally, they are mapped to more primitive  | 
86  | 
  Isabelle concepts \cite{Haftmann-Wenzel:2006:classes}.
 | 
|
| 22317 | 87  | 
|
88  | 
This tutorial demonstrates common elements of structured specifications  | 
|
89  | 
and abstract reasoning with type classes by the algebraic hierarchy of  | 
|
| 20946 | 90  | 
semigroups, monoids and groups. Our background theory is that of  | 
| 23956 | 91  | 
  Isabelle/HOL \cite{isa-tutorial}, for which some
 | 
| 22317 | 92  | 
familiarity is assumed.  | 
| 20946 | 93  | 
*}  | 
94  | 
||
| 22317 | 95  | 
section {* A simple algebra example \label{sec:example} *}
 | 
| 20946 | 96  | 
|
97  | 
subsection {* Class definition *}
 | 
|
98  | 
||
99  | 
text {*
 | 
|
100  | 
  Depending on an arbitrary type @{text "\<alpha>"}, class @{text
 | 
|
| 28565 | 101  | 
  "semigroup"} introduces a binary operator @{text "(\<otimes>)"} that is
 | 
| 20946 | 102  | 
assumed to be associative:  | 
103  | 
*}  | 
|
104  | 
||
| 29705 | 105  | 
class %quote semigroup =  | 
| 28565 | 106  | 
fixes mult :: "\<alpha> \<Rightarrow> \<alpha> \<Rightarrow> \<alpha>" (infixl "\<otimes>" 70)  | 
107  | 
assumes assoc: "(x \<otimes> y) \<otimes> z = x \<otimes> (y \<otimes> z)"  | 
|
| 20946 | 108  | 
|
109  | 
text {*
 | 
|
| 28565 | 110  | 
  \noindent This @{command class} specification consists of two
 | 
111  | 
  parts: the \qn{operational} part names the class parameter
 | 
|
112  | 
  (@{element "fixes"}), the \qn{logical} part specifies properties on them
 | 
|
113  | 
  (@{element "assumes"}).  The local @{element "fixes"} and
 | 
|
114  | 
  @{element "assumes"} are lifted to the theory toplevel,
 | 
|
115  | 
yielding the global  | 
|
| 24991 | 116  | 
  parameter @{term [source] "mult \<Colon> \<alpha>\<Colon>semigroup \<Rightarrow> \<alpha> \<Rightarrow> \<alpha>"} and the
 | 
| 28565 | 117  | 
  global theorem @{fact "semigroup.assoc:"}~@{prop [source] "\<And>x y
 | 
| 22479 | 118  | 
z \<Colon> \<alpha>\<Colon>semigroup. (x \<otimes> y) \<otimes> z = x \<otimes> (y \<otimes> z)"}.  | 
| 20946 | 119  | 
*}  | 
120  | 
||
121  | 
||
122  | 
subsection {* Class instantiation \label{sec:class_inst} *}
 | 
|
123  | 
||
124  | 
text {*
 | 
|
| 28565 | 125  | 
  The concrete type @{typ int} is made a @{class semigroup}
 | 
| 24991 | 126  | 
instance by providing a suitable definition for the class parameter  | 
| 28565 | 127  | 
  @{text "(\<otimes>)"} and a proof for the specification of @{fact assoc}.
 | 
128  | 
  This is accomplished by the @{command instantiation} target:
 | 
|
| 20946 | 129  | 
*}  | 
130  | 
||
| 28565 | 131  | 
instantiation %quote int :: semigroup  | 
132  | 
begin  | 
|
| 25533 | 133  | 
|
| 28565 | 134  | 
definition %quote  | 
135  | 
mult_int_def: "i \<otimes> j = i + (j\<Colon>int)"  | 
|
| 25533 | 136  | 
|
| 28565 | 137  | 
instance %quote proof  | 
138  | 
fix i j k :: int have "(i + j) + k = i + (j + k)" by simp  | 
|
139  | 
then show "(i \<otimes> j) \<otimes> k = i \<otimes> (j \<otimes> k)"  | 
|
| 28566 | 140  | 
unfolding mult_int_def .  | 
| 28565 | 141  | 
qed  | 
| 20946 | 142  | 
|
| 28565 | 143  | 
end %quote  | 
| 25533 | 144  | 
|
| 20946 | 145  | 
text {*
 | 
| 31691 | 146  | 
  \noindent @{command instantiation} defines class parameters
 | 
| 25533 | 147  | 
at a particular instance using common specification tools (here,  | 
| 28565 | 148  | 
  @{command definition}).  The concluding @{command instance}
 | 
| 25533 | 149  | 
opens a proof that the given parameters actually conform  | 
150  | 
to the class specification. Note that the first proof step  | 
|
| 28565 | 151  | 
  is the @{method default} method,
 | 
152  | 
  which for such instance proofs maps to the @{method intro_classes} method.
 | 
|
| 31691 | 153  | 
This reduces an instance judgement to the relevant primitive  | 
154  | 
proof goals; typically it is the first method applied  | 
|
| 22317 | 155  | 
in an instantiation proof.  | 
156  | 
||
| 28565 | 157  | 
  From now on, the type-checker will consider @{typ int}
 | 
158  | 
  as a @{class semigroup} automatically, i.e.\ any general results
 | 
|
| 25533 | 159  | 
are immediately available on concrete instances.  | 
| 28565 | 160  | 
|
| 31691 | 161  | 
  \medskip Another instance of @{class semigroup} yields the natural numbers:
 | 
| 20946 | 162  | 
*}  | 
163  | 
||
| 28565 | 164  | 
instantiation %quote nat :: semigroup  | 
165  | 
begin  | 
|
| 25533 | 166  | 
|
| 28565 | 167  | 
primrec %quote mult_nat where  | 
168  | 
"(0\<Colon>nat) \<otimes> n = n"  | 
|
169  | 
| "Suc m \<otimes> n = Suc (m \<otimes> n)"  | 
|
| 25533 | 170  | 
|
| 28565 | 171  | 
instance %quote proof  | 
172  | 
fix m n q :: nat  | 
|
173  | 
show "m \<otimes> n \<otimes> q = m \<otimes> (n \<otimes> q)"  | 
|
174  | 
by (induct m) auto  | 
|
175  | 
qed  | 
|
| 20946 | 176  | 
|
| 28565 | 177  | 
end %quote  | 
| 20946 | 178  | 
|
| 25871 | 179  | 
text {*
 | 
180  | 
  \noindent Note the occurence of the name @{text mult_nat}
 | 
|
181  | 
in the primrec declaration; by default, the local name of  | 
|
| 31675 | 182  | 
  a class operation @{text f} to be instantiated on type constructor
 | 
183  | 
  @{text \<kappa>} is mangled as @{text f_\<kappa>}.  In case of uncertainty,
 | 
|
| 28565 | 184  | 
  these names may be inspected using the @{command "print_context"} command
 | 
| 25871 | 185  | 
or the corresponding ProofGeneral button.  | 
186  | 
*}  | 
|
187  | 
||
| 25247 | 188  | 
subsection {* Lifting and parametric types *}
 | 
189  | 
||
190  | 
text {*
 | 
|
| 31691 | 191  | 
Overloaded definitions given at a class instantiation  | 
| 25247 | 192  | 
may include recursion over the syntactic structure of types.  | 
193  | 
As a canonical example, we model product semigroups  | 
|
194  | 
using our simple algebra:  | 
|
195  | 
*}  | 
|
196  | 
||
| 37706 | 197  | 
instantiation %quote prod :: (semigroup, semigroup) semigroup  | 
| 28565 | 198  | 
begin  | 
| 25533 | 199  | 
|
| 28565 | 200  | 
definition %quote  | 
| 31931 | 201  | 
mult_prod_def: "p\<^isub>1 \<otimes> p\<^isub>2 = (fst p\<^isub>1 \<otimes> fst p\<^isub>2, snd p\<^isub>1 \<otimes> snd p\<^isub>2)"  | 
| 25533 | 202  | 
|
| 28565 | 203  | 
instance %quote proof  | 
| 31931 | 204  | 
fix p\<^isub>1 p\<^isub>2 p\<^isub>3 :: "\<alpha>\<Colon>semigroup \<times> \<beta>\<Colon>semigroup"  | 
205  | 
show "p\<^isub>1 \<otimes> p\<^isub>2 \<otimes> p\<^isub>3 = p\<^isub>1 \<otimes> (p\<^isub>2 \<otimes> p\<^isub>3)"  | 
|
| 28566 | 206  | 
unfolding mult_prod_def by (simp add: assoc)  | 
| 28565 | 207  | 
qed  | 
| 25247 | 208  | 
|
| 28565 | 209  | 
end %quote  | 
| 25533 | 210  | 
|
| 25247 | 211  | 
text {*
 | 
| 31675 | 212  | 
\noindent Associativity of product semigroups is established using  | 
| 28565 | 213  | 
  the definition of @{text "(\<otimes>)"} on products and the hypothetical
 | 
| 27505 | 214  | 
associativity of the type components; these hypotheses  | 
| 31691 | 215  | 
  are legitimate due to the @{class semigroup} constraints imposed
 | 
| 28565 | 216  | 
  on the type components by the @{command instance} proposition.
 | 
| 25247 | 217  | 
Indeed, this pattern often occurs with parametric types  | 
218  | 
and type classes.  | 
|
219  | 
*}  | 
|
220  | 
||
221  | 
||
222  | 
subsection {* Subclassing *}
 | 
|
| 20946 | 223  | 
|
224  | 
text {*
 | 
|
| 28565 | 225  | 
  We define a subclass @{text monoidl} (a semigroup with a left-hand neutral)
 | 
226  | 
  by extending @{class semigroup}
 | 
|
227  | 
  with one additional parameter @{text neutral} together
 | 
|
| 31691 | 228  | 
with its characteristic property:  | 
| 20946 | 229  | 
*}  | 
230  | 
||
| 28565 | 231  | 
class %quote monoidl = semigroup +  | 
232  | 
  fixes neutral :: "\<alpha>" ("\<one>")
 | 
|
233  | 
assumes neutl: "\<one> \<otimes> x = x"  | 
|
| 20946 | 234  | 
|
235  | 
text {*
 | 
|
| 25247 | 236  | 
\noindent Again, we prove some instances, by  | 
| 24991 | 237  | 
providing suitable parameter definitions and proofs for the  | 
| 27505 | 238  | 
additional specifications. Observe that instantiations  | 
| 25533 | 239  | 
for types with the same arity may be simultaneous:  | 
| 20946 | 240  | 
*}  | 
241  | 
||
| 28566 | 242  | 
instantiation %quote nat and int :: monoidl  | 
243  | 
begin  | 
|
| 25533 | 244  | 
|
| 28566 | 245  | 
definition %quote  | 
246  | 
neutral_nat_def: "\<one> = (0\<Colon>nat)"  | 
|
| 25533 | 247  | 
|
| 28566 | 248  | 
definition %quote  | 
249  | 
neutral_int_def: "\<one> = (0\<Colon>int)"  | 
|
| 25533 | 250  | 
|
| 28566 | 251  | 
instance %quote proof  | 
252  | 
fix n :: nat  | 
|
253  | 
show "\<one> \<otimes> n = n"  | 
|
254  | 
unfolding neutral_nat_def by simp  | 
|
255  | 
next  | 
|
256  | 
fix k :: int  | 
|
257  | 
show "\<one> \<otimes> k = k"  | 
|
258  | 
unfolding neutral_int_def mult_int_def by simp  | 
|
259  | 
qed  | 
|
| 20946 | 260  | 
|
| 28566 | 261  | 
end %quote  | 
| 25533 | 262  | 
|
| 37706 | 263  | 
instantiation %quote prod :: (monoidl, monoidl) monoidl  | 
| 28566 | 264  | 
begin  | 
| 25533 | 265  | 
|
| 28566 | 266  | 
definition %quote  | 
267  | 
neutral_prod_def: "\<one> = (\<one>, \<one>)"  | 
|
| 25533 | 268  | 
|
| 28566 | 269  | 
instance %quote proof  | 
270  | 
fix p :: "\<alpha>\<Colon>monoidl \<times> \<beta>\<Colon>monoidl"  | 
|
271  | 
show "\<one> \<otimes> p = p"  | 
|
272  | 
unfolding neutral_prod_def mult_prod_def by (simp add: neutl)  | 
|
273  | 
qed  | 
|
| 20946 | 274  | 
|
| 28566 | 275  | 
end %quote  | 
| 25533 | 276  | 
|
| 20946 | 277  | 
text {*
 | 
| 31691 | 278  | 
\noindent Fully-fledged monoids are modelled by another subclass,  | 
| 24991 | 279  | 
which does not add new parameters but tightens the specification:  | 
| 20946 | 280  | 
*}  | 
281  | 
||
| 28566 | 282  | 
class %quote monoid = monoidl +  | 
283  | 
assumes neutr: "x \<otimes> \<one> = x"  | 
|
| 20946 | 284  | 
|
| 28566 | 285  | 
instantiation %quote nat and int :: monoid  | 
286  | 
begin  | 
|
| 25533 | 287  | 
|
| 28566 | 288  | 
instance %quote proof  | 
289  | 
fix n :: nat  | 
|
290  | 
show "n \<otimes> \<one> = n"  | 
|
291  | 
unfolding neutral_nat_def by (induct n) simp_all  | 
|
292  | 
next  | 
|
293  | 
fix k :: int  | 
|
294  | 
show "k \<otimes> \<one> = k"  | 
|
295  | 
unfolding neutral_int_def mult_int_def by simp  | 
|
296  | 
qed  | 
|
| 25247 | 297  | 
|
| 28566 | 298  | 
end %quote  | 
| 25533 | 299  | 
|
| 37706 | 300  | 
instantiation %quote prod :: (monoid, monoid) monoid  | 
| 28566 | 301  | 
begin  | 
| 25533 | 302  | 
|
| 28566 | 303  | 
instance %quote proof  | 
304  | 
fix p :: "\<alpha>\<Colon>monoid \<times> \<beta>\<Colon>monoid"  | 
|
305  | 
show "p \<otimes> \<one> = p"  | 
|
306  | 
unfolding neutral_prod_def mult_prod_def by (simp add: neutr)  | 
|
307  | 
qed  | 
|
| 22317 | 308  | 
|
| 28566 | 309  | 
end %quote  | 
| 25533 | 310  | 
|
| 22317 | 311  | 
text {*
 | 
| 28565 | 312  | 
  \noindent To finish our small algebra example, we add a @{text group} class
 | 
| 22317 | 313  | 
with a corresponding instance:  | 
314  | 
*}  | 
|
| 20946 | 315  | 
|
| 28566 | 316  | 
class %quote group = monoidl +  | 
317  | 
  fixes inverse :: "\<alpha> \<Rightarrow> \<alpha>"    ("(_\<div>)" [1000] 999)
 | 
|
318  | 
assumes invl: "x\<div> \<otimes> x = \<one>"  | 
|
| 20946 | 319  | 
|
| 28566 | 320  | 
instantiation %quote int :: group  | 
321  | 
begin  | 
|
322  | 
||
323  | 
definition %quote  | 
|
324  | 
inverse_int_def: "i\<div> = - (i\<Colon>int)"  | 
|
| 25533 | 325  | 
|
| 28566 | 326  | 
instance %quote proof  | 
327  | 
fix i :: int  | 
|
328  | 
have "-i + i = 0" by simp  | 
|
329  | 
then show "i\<div> \<otimes> i = \<one>"  | 
|
330  | 
unfolding mult_int_def neutral_int_def inverse_int_def .  | 
|
331  | 
qed  | 
|
| 25533 | 332  | 
|
| 28566 | 333  | 
end %quote  | 
| 20946 | 334  | 
|
| 25533 | 335  | 
|
| 22317 | 336  | 
section {* Type classes as locales *}
 | 
337  | 
||
| 31691 | 338  | 
subsection {* A look behind the scenes *}
 | 
| 22317 | 339  | 
|
| 22347 | 340  | 
text {*
 | 
341  | 
The example above gives an impression how Isar type classes work  | 
|
342  | 
in practice. As stated in the introduction, classes also provide  | 
|
343  | 
a link to Isar's locale system. Indeed, the logical core of a class  | 
|
| 31691 | 344  | 
is nothing other than a locale:  | 
| 22347 | 345  | 
*}  | 
346  | 
||
| 29705 | 347  | 
class %quote idem =  | 
| 22347 | 348  | 
fixes f :: "\<alpha> \<Rightarrow> \<alpha>"  | 
349  | 
assumes idem: "f (f x) = f x"  | 
|
| 22317 | 350  | 
|
351  | 
text {*
 | 
|
| 22347 | 352  | 
\noindent essentially introduces the locale  | 
| 30227 | 353  | 
*} (*<*)setup %invisible {* Sign.add_path "foo" *}
 | 
354  | 
(*>*)  | 
|
| 28566 | 355  | 
locale %quote idem =  | 
| 22347 | 356  | 
fixes f :: "\<alpha> \<Rightarrow> \<alpha>"  | 
357  | 
assumes idem: "f (f x) = f x"  | 
|
358  | 
||
| 22550 | 359  | 
text {* \noindent together with corresponding constant(s): *}
 | 
| 22347 | 360  | 
|
| 28566 | 361  | 
consts %quote f :: "\<alpha> \<Rightarrow> \<alpha>"  | 
| 22347 | 362  | 
|
| 22550 | 363  | 
text {*
 | 
364  | 
\noindent The connection to the type system is done by means  | 
|
| 
35282
 
8fd9d555d04d
dropped references to old axclass from documentation
 
haftmann 
parents: 
31931 
diff
changeset
 | 
365  | 
of a primitive type class  | 
| 30227 | 366  | 
*} (*<*)setup %invisible {* Sign.add_path "foo" *}
 | 
367  | 
(*>*)  | 
|
| 
35282
 
8fd9d555d04d
dropped references to old axclass from documentation
 
haftmann 
parents: 
31931 
diff
changeset
 | 
368  | 
classes %quote idem < type  | 
| 
 
8fd9d555d04d
dropped references to old axclass from documentation
 
haftmann 
parents: 
31931 
diff
changeset
 | 
369  | 
(*<*)axiomatization where idem: "f (f (x::\<alpha>\<Colon>idem)) = f x"  | 
| 
 
8fd9d555d04d
dropped references to old axclass from documentation
 
haftmann 
parents: 
31931 
diff
changeset
 | 
370  | 
setup %invisible {* Sign.parent_path *}(*>*)
 | 
| 22347 | 371  | 
|
| 22550 | 372  | 
text {* \noindent together with a corresponding interpretation: *}
 | 
| 22347 | 373  | 
|
| 29513 | 374  | 
interpretation %quote idem_class:  | 
| 
29294
 
6cd3ac4708d2
crude adaption to intermediate class/locale version;
 
wenzelm 
parents: 
28948 
diff
changeset
 | 
375  | 
idem "f \<Colon> (\<alpha>\<Colon>idem) \<Rightarrow> \<alpha>"  | 
| 
35282
 
8fd9d555d04d
dropped references to old axclass from documentation
 
haftmann 
parents: 
31931 
diff
changeset
 | 
376  | 
(*<*)proof qed (rule idem)(*>*)  | 
| 28565 | 377  | 
|
| 22347 | 378  | 
text {*
 | 
| 31691 | 379  | 
\noindent This gives you the full power of the Isabelle module system;  | 
| 22347 | 380  | 
  conclusions in locale @{text idem} are implicitly propagated
 | 
| 22479 | 381  | 
  to class @{text idem}.
 | 
| 30227 | 382  | 
*} (*<*)setup %invisible {* Sign.parent_path *}
 | 
383  | 
(*>*)  | 
|
| 20946 | 384  | 
subsection {* Abstract reasoning *}
 | 
385  | 
||
386  | 
text {*
 | 
|
| 22347 | 387  | 
Isabelle locales enable reasoning at a general level, while results  | 
| 20946 | 388  | 
are implicitly transferred to all instances. For example, we can  | 
389  | 
  now establish the @{text "left_cancel"} lemma for groups, which
 | 
|
| 25247 | 390  | 
  states that the function @{text "(x \<otimes>)"} is injective:
 | 
| 20946 | 391  | 
*}  | 
392  | 
||
| 28566 | 393  | 
lemma %quote (in group) left_cancel: "x \<otimes> y = x \<otimes> z \<longleftrightarrow> y = z"  | 
394  | 
proof  | 
|
395  | 
assume "x \<otimes> y = x \<otimes> z"  | 
|
396  | 
then have "x\<div> \<otimes> (x \<otimes> y) = x\<div> \<otimes> (x \<otimes> z)" by simp  | 
|
397  | 
then have "(x\<div> \<otimes> x) \<otimes> y = (x\<div> \<otimes> x) \<otimes> z" using assoc by simp  | 
|
398  | 
then show "y = z" using neutl and invl by simp  | 
|
399  | 
next  | 
|
400  | 
assume "y = z"  | 
|
401  | 
then show "x \<otimes> y = x \<otimes> z" by simp  | 
|
402  | 
qed  | 
|
| 20946 | 403  | 
|
404  | 
text {*
 | 
|
| 28565 | 405  | 
  \noindent Here the \qt{@{keyword "in"} @{class group}} target specification
 | 
| 20946 | 406  | 
indicates that the result is recorded within that context for later  | 
| 28565 | 407  | 
  use.  This local theorem is also lifted to the global one @{fact
 | 
| 22479 | 408  | 
  "group.left_cancel:"} @{prop [source] "\<And>x y z \<Colon> \<alpha>\<Colon>group. x \<otimes> y = x \<otimes>
 | 
| 20946 | 409  | 
  z \<longleftrightarrow> y = z"}.  Since type @{text "int"} has been made an instance of
 | 
410  | 
  @{text "group"} before, we may refer to that fact as well: @{prop
 | 
|
| 22479 | 411  | 
[source] "\<And>x y z \<Colon> int. x \<otimes> y = x \<otimes> z \<longleftrightarrow> y = z"}.  | 
| 20946 | 412  | 
*}  | 
413  | 
||
414  | 
||
| 23956 | 415  | 
subsection {* Derived definitions *}
 | 
416  | 
||
417  | 
text {*
 | 
|
| 
35282
 
8fd9d555d04d
dropped references to old axclass from documentation
 
haftmann 
parents: 
31931 
diff
changeset
 | 
418  | 
Isabelle locales are targets which support local definitions:  | 
| 23956 | 419  | 
*}  | 
420  | 
||
| 28566 | 421  | 
primrec %quote (in monoid) pow_nat :: "nat \<Rightarrow> \<alpha> \<Rightarrow> \<alpha>" where  | 
422  | 
"pow_nat 0 x = \<one>"  | 
|
423  | 
| "pow_nat (Suc n) x = x \<otimes> pow_nat n x"  | 
|
| 20946 | 424  | 
|
425  | 
text {*
 | 
|
| 23956 | 426  | 
  \noindent If the locale @{text group} is also a class, this local
 | 
427  | 
definition is propagated onto a global definition of  | 
|
428  | 
  @{term [source] "pow_nat \<Colon> nat \<Rightarrow> \<alpha>\<Colon>monoid \<Rightarrow> \<alpha>\<Colon>monoid"}
 | 
|
429  | 
with corresponding theorems  | 
|
430  | 
||
431  | 
  @{thm pow_nat.simps [no_vars]}.
 | 
|
| 20946 | 432  | 
|
| 23956 | 433  | 
\noindent As you can see from this example, for local  | 
434  | 
definitions you may use any specification tool  | 
|
| 31691 | 435  | 
which works together with locales, such as Krauss's recursive function package  | 
436  | 
  \cite{krauss2006}.
 | 
|
| 23956 | 437  | 
*}  | 
438  | 
||
439  | 
||
| 25247 | 440  | 
subsection {* A functor analogy *}
 | 
441  | 
||
442  | 
text {*
 | 
|
| 31691 | 443  | 
We introduced Isar classes by analogy to type classes in  | 
| 25247 | 444  | 
functional programming; if we reconsider this in the  | 
445  | 
context of what has been said about type classes and locales,  | 
|
446  | 
we can drive this analogy further by stating that type  | 
|
| 31691 | 447  | 
classes essentially correspond to functors that have  | 
| 25247 | 448  | 
a canonical interpretation as type classes.  | 
| 31691 | 449  | 
There is also the possibility of other interpretations.  | 
450  | 
  For example, @{text list}s also form a monoid with
 | 
|
| 28565 | 451  | 
  @{text append} and @{term "[]"} as operations, but it
 | 
| 25247 | 452  | 
seems inappropriate to apply to lists  | 
| 27505 | 453  | 
the same operations as for genuinely algebraic types.  | 
| 31691 | 454  | 
In such a case, we can simply make a particular interpretation  | 
| 25247 | 455  | 
of monoids for lists:  | 
456  | 
*}  | 
|
457  | 
||
| 
30729
 
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
 
wenzelm 
parents: 
30227 
diff
changeset
 | 
458  | 
interpretation %quote list_monoid: monoid append "[]"  | 
| 
28947
 
ac1a14b5a085
unfold_locales is default method - no need for explicit references
 
haftmann 
parents: 
28566 
diff
changeset
 | 
459  | 
proof qed auto  | 
| 25247 | 460  | 
|
461  | 
text {*
 | 
|
462  | 
\noindent This enables us to apply facts on monoids  | 
|
463  | 
  to lists, e.g. @{thm list_monoid.neutl [no_vars]}.
 | 
|
464  | 
||
465  | 
When using this interpretation pattern, it may also  | 
|
466  | 
be appropriate to map derived definitions accordingly:  | 
|
467  | 
*}  | 
|
468  | 
||
| 28566 | 469  | 
primrec %quote replicate :: "nat \<Rightarrow> \<alpha> list \<Rightarrow> \<alpha> list" where  | 
470  | 
"replicate 0 _ = []"  | 
|
471  | 
| "replicate (Suc n) xs = xs @ replicate n xs"  | 
|
| 25247 | 472  | 
|
| 
30729
 
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
 
wenzelm 
parents: 
30227 
diff
changeset
 | 
473  | 
interpretation %quote list_monoid: monoid append "[]" where  | 
| 28566 | 474  | 
"monoid.pow_nat append [] = replicate"  | 
475  | 
proof -  | 
|
| 29513 | 476  | 
interpret monoid append "[]" ..  | 
| 28566 | 477  | 
show "monoid.pow_nat append [] = replicate"  | 
478  | 
proof  | 
|
479  | 
fix n  | 
|
480  | 
show "monoid.pow_nat append [] n = replicate n"  | 
|
481  | 
by (induct n) auto  | 
|
482  | 
qed  | 
|
483  | 
qed intro_locales  | 
|
| 25247 | 484  | 
|
| 31255 | 485  | 
text {*
 | 
486  | 
\noindent This pattern is also helpful to reuse abstract  | 
|
487  | 
  specifications on the \emph{same} type.  For example, think of a
 | 
|
488  | 
  class @{text preorder}; for type @{typ nat}, there are at least two
 | 
|
489  | 
possible instances: the natural order or the order induced by the  | 
|
490  | 
divides relation. But only one of these instances can be used for  | 
|
491  | 
  @{command instantiation}; using the locale behind the class @{text
 | 
|
492  | 
preorder}, it is still possible to utilise the same abstract  | 
|
493  | 
  specification again using @{command interpretation}.
 | 
|
494  | 
*}  | 
|
| 25247 | 495  | 
|
| 24991 | 496  | 
subsection {* Additional subclass relations *}
 | 
| 22347 | 497  | 
|
498  | 
text {*
 | 
|
| 31255 | 499  | 
  Any @{text "group"} is also a @{text "monoid"}; this can be made
 | 
500  | 
explicit by claiming an additional subclass relation, together with  | 
|
501  | 
a proof of the logical difference:  | 
|
| 22347 | 502  | 
*}  | 
503  | 
||
| 28566 | 504  | 
subclass %quote (in group) monoid  | 
| 
28947
 
ac1a14b5a085
unfold_locales is default method - no need for explicit references
 
haftmann 
parents: 
28566 
diff
changeset
 | 
505  | 
proof  | 
| 28566 | 506  | 
fix x  | 
507  | 
from invl have "x\<div> \<otimes> x = \<one>" by simp  | 
|
508  | 
with assoc [symmetric] neutl invl have "x\<div> \<otimes> (x \<otimes> \<one>) = x\<div> \<otimes> x" by simp  | 
|
509  | 
with left_cancel show "x \<otimes> \<one> = x" by simp  | 
|
510  | 
qed  | 
|
| 23956 | 511  | 
|
512  | 
text {*
 | 
|
| 30227 | 513  | 
The logical proof is carried out on the locale level.  | 
| 
28947
 
ac1a14b5a085
unfold_locales is default method - no need for explicit references
 
haftmann 
parents: 
28566 
diff
changeset
 | 
514  | 
Afterwards it is propagated  | 
| 23956 | 515  | 
  to the type system, making @{text group} an instance of
 | 
| 25247 | 516  | 
  @{text monoid} by adding an additional edge
 | 
517  | 
to the graph of subclass relations  | 
|
| 31691 | 518  | 
  (\figref{fig:subclass}).
 | 
| 25247 | 519  | 
|
520  | 
  \begin{figure}[htbp]
 | 
|
521  | 
   \begin{center}
 | 
|
522  | 
\small  | 
|
523  | 
\unitlength 0.6mm  | 
|
524  | 
     \begin{picture}(40,60)(0,0)
 | 
|
525  | 
       \put(20,60){\makebox(0,0){@{text semigroup}}}
 | 
|
526  | 
       \put(20,40){\makebox(0,0){@{text monoidl}}}
 | 
|
527  | 
       \put(00,20){\makebox(0,0){@{text monoid}}}
 | 
|
528  | 
       \put(40,00){\makebox(0,0){@{text group}}}
 | 
|
529  | 
       \put(20,55){\vector(0,-1){10}}
 | 
|
530  | 
       \put(15,35){\vector(-1,-1){10}}
 | 
|
531  | 
       \put(25,35){\vector(1,-3){10}}
 | 
|
532  | 
     \end{picture}
 | 
|
533  | 
     \hspace{8em}
 | 
|
534  | 
     \begin{picture}(40,60)(0,0)
 | 
|
535  | 
       \put(20,60){\makebox(0,0){@{text semigroup}}}
 | 
|
536  | 
       \put(20,40){\makebox(0,0){@{text monoidl}}}
 | 
|
537  | 
       \put(00,20){\makebox(0,0){@{text monoid}}}
 | 
|
538  | 
       \put(40,00){\makebox(0,0){@{text group}}}
 | 
|
539  | 
       \put(20,55){\vector(0,-1){10}}
 | 
|
540  | 
       \put(15,35){\vector(-1,-1){10}}
 | 
|
541  | 
       \put(05,15){\vector(3,-1){30}}
 | 
|
542  | 
     \end{picture}
 | 
|
543  | 
     \caption{Subclass relationship of monoids and groups:
 | 
|
544  | 
before and after establishing the relationship  | 
|
| 30134 | 545  | 
        @{text "group \<subseteq> monoid"};  transitive edges are left out.}
 | 
| 25247 | 546  | 
     \label{fig:subclass}
 | 
547  | 
   \end{center}
 | 
|
548  | 
  \end{figure}
 | 
|
| 30227 | 549  | 
|
| 25247 | 550  | 
For illustration, a derived definition  | 
| 31691 | 551  | 
  in @{text group} using @{text pow_nat}
 | 
| 23956 | 552  | 
*}  | 
553  | 
||
| 28565 | 554  | 
definition %quote (in group) pow_int :: "int \<Rightarrow> \<alpha> \<Rightarrow> \<alpha>" where  | 
555  | 
"pow_int k x = (if k >= 0  | 
|
556  | 
then pow_nat (nat k) x  | 
|
557  | 
else (pow_nat (nat (- k)) x)\<div>)"  | 
|
| 23956 | 558  | 
|
559  | 
text {*
 | 
|
| 25247 | 560  | 
\noindent yields the global definition of  | 
| 23956 | 561  | 
  @{term [source] "pow_int \<Colon> int \<Rightarrow> \<alpha>\<Colon>group \<Rightarrow> \<alpha>\<Colon>group"}
 | 
562  | 
  with the corresponding theorem @{thm pow_int_def [no_vars]}.
 | 
|
| 24991 | 563  | 
*}  | 
| 23956 | 564  | 
|
| 25868 | 565  | 
subsection {* A note on syntax *}
 | 
566  | 
||
567  | 
text {*
 | 
|
| 31691 | 568  | 
As a convenience, class context syntax allows references  | 
| 27505 | 569  | 
to local class operations and their global counterparts  | 
| 25868 | 570  | 
uniformly; type inference resolves ambiguities. For example:  | 
571  | 
*}  | 
|
572  | 
||
| 28565 | 573  | 
context %quote semigroup  | 
| 25868 | 574  | 
begin  | 
575  | 
||
| 28565 | 576  | 
term %quote "x \<otimes> y" -- {* example 1 *}
 | 
577  | 
term %quote "(x\<Colon>nat) \<otimes> y" -- {* example 2 *}
 | 
|
| 25868 | 578  | 
|
| 28566 | 579  | 
end %quote  | 
| 25868 | 580  | 
|
| 28565 | 581  | 
term %quote "x \<otimes> y" -- {* example 3 *}
 | 
| 25868 | 582  | 
|
583  | 
text {*
 | 
|
584  | 
\noindent Here in example 1, the term refers to the local class operation  | 
|
585  | 
  @{text "mult [\<alpha>]"}, whereas in example 2 the type constraint
 | 
|
586  | 
  enforces the global class operation @{text "mult [nat]"}.
 | 
|
587  | 
In the global context in example 3, the reference is  | 
|
588  | 
  to the polymorphic global class operation @{text "mult [?\<alpha> \<Colon> semigroup]"}.
 | 
|
589  | 
*}  | 
|
| 22347 | 590  | 
|
| 29705 | 591  | 
section {* Further issues *}
 | 
592  | 
||
593  | 
subsection {* Type classes and code generation *}
 | 
|
| 22317 | 594  | 
|
595  | 
text {*
 | 
|
596  | 
Turning back to the first motivation for type classes,  | 
|
597  | 
namely overloading, it is obvious that overloading  | 
|
| 28565 | 598  | 
  stemming from @{command class} statements and
 | 
599  | 
  @{command instantiation}
 | 
|
| 25533 | 600  | 
targets naturally maps to Haskell type classes.  | 
| 22317 | 601  | 
  The code generator framework \cite{isabelle-codegen} 
 | 
| 31691 | 602  | 
takes this into account. If the target language (e.g.~SML)  | 
603  | 
lacks type classes, then they  | 
|
604  | 
are implemented by an explicit dictionary construction.  | 
|
| 28540 | 605  | 
As example, let's go back to the power function:  | 
| 22317 | 606  | 
*}  | 
607  | 
||
| 28565 | 608  | 
definition %quote example :: int where  | 
609  | 
"example = pow_int 10 (-2)"  | 
|
| 22317 | 610  | 
|
611  | 
text {*
 | 
|
| 31691 | 612  | 
\noindent This maps to Haskell as follows:  | 
| 22317 | 613  | 
*}  | 
614  | 
||
| 28565 | 615  | 
text %quote {*@{code_stmts example (Haskell)}*}
 | 
| 22317 | 616  | 
|
617  | 
text {*
 | 
|
| 31691 | 618  | 
\noindent The code in SML has explicit dictionary passing:  | 
| 22317 | 619  | 
*}  | 
620  | 
||
| 28565 | 621  | 
text %quote {*@{code_stmts example (SML)}*}
 | 
| 20946 | 622  | 
|
| 29705 | 623  | 
subsection {* Inspecting the type class universe *}
 | 
624  | 
||
625  | 
text {*
 | 
|
626  | 
To facilitate orientation in complex subclass structures,  | 
|
627  | 
two diagnostics commands are provided:  | 
|
628  | 
||
629  | 
  \begin{description}
 | 
|
630  | 
||
631  | 
    \item[@{command "print_classes"}] print a list of all classes
 | 
|
632  | 
together with associated operations etc.  | 
|
633  | 
||
634  | 
    \item[@{command "class_deps"}] visualizes the subclass relation
 | 
|
635  | 
between all classes as a Hasse diagram.  | 
|
636  | 
||
637  | 
  \end{description}
 | 
|
638  | 
*}  | 
|
639  | 
||
| 20946 | 640  | 
end  |