| author | wenzelm | 
| Fri, 07 May 2010 22:38:13 +0200 | |
| changeset 36737 | 17fe629da595 | 
| parent 35416 | d8d7d1b785af | 
| permissions | -rw-r--r-- | 
| 24333 | 1  | 
(* Author: Gerwin Klein, Jeremy Dawson  | 
2  | 
||
3  | 
Miscellaneous additional library definitions and lemmas for  | 
|
4  | 
the word type. Instantiation to boolean algebras, definition  | 
|
5  | 
of recursion and induction patterns for words.  | 
|
6  | 
*)  | 
|
7  | 
||
| 24350 | 8  | 
header {* Miscellaneous Library for Words *}
 | 
9  | 
||
| 26558 | 10  | 
theory WordGenLib  | 
11  | 
imports WordShift Boolean_Algebra  | 
|
| 24333 | 12  | 
begin  | 
13  | 
||
14  | 
declare of_nat_2p [simp]  | 
|
15  | 
||
16  | 
lemma word_int_cases:  | 
|
| 24465 | 17  | 
  "\<lbrakk>\<And>n. \<lbrakk>(x ::'a::len0 word) = word_of_int n; 0 \<le> n; n < 2^len_of TYPE('a)\<rbrakk> \<Longrightarrow> P\<rbrakk>
 | 
| 24333 | 18  | 
\<Longrightarrow> P"  | 
19  | 
by (cases x rule: word_uint.Abs_cases) (simp add: uints_num)  | 
|
20  | 
||
21  | 
lemma word_nat_cases [cases type: word]:  | 
|
| 24465 | 22  | 
  "\<lbrakk>\<And>n. \<lbrakk>(x ::'a::len word) = of_nat n; n < 2^len_of TYPE('a)\<rbrakk> \<Longrightarrow> P\<rbrakk>
 | 
| 24333 | 23  | 
\<Longrightarrow> P"  | 
24  | 
by (cases x rule: word_unat.Abs_cases) (simp add: unats_def)  | 
|
25  | 
||
26  | 
lemma max_word_eq:  | 
|
| 24465 | 27  | 
  "(max_word::'a::len word) = 2^len_of TYPE('a) - 1"
 | 
| 24333 | 28  | 
by (simp add: max_word_def word_of_int_hom_syms word_of_int_2p)  | 
29  | 
||
30  | 
lemma max_word_max [simp,intro!]:  | 
|
31  | 
"n \<le> max_word"  | 
|
32  | 
by (cases n rule: word_int_cases)  | 
|
33  | 
(simp add: max_word_def word_le_def int_word_uint int_mod_eq')  | 
|
34  | 
||
35  | 
lemma word_of_int_2p_len:  | 
|
| 24465 | 36  | 
  "word_of_int (2 ^ len_of TYPE('a)) = (0::'a::len0 word)"
 | 
| 24333 | 37  | 
by (subst word_uint.Abs_norm [symmetric])  | 
38  | 
(simp add: word_of_int_hom_syms)  | 
|
39  | 
||
40  | 
lemma word_pow_0:  | 
|
| 24465 | 41  | 
  "(2::'a::len word) ^ len_of TYPE('a) = 0"
 | 
| 24333 | 42  | 
proof -  | 
| 24465 | 43  | 
  have "word_of_int (2 ^ len_of TYPE('a)) = (0::'a word)"
 | 
| 24333 | 44  | 
by (rule word_of_int_2p_len)  | 
45  | 
thus ?thesis by (simp add: word_of_int_2p)  | 
|
46  | 
qed  | 
|
47  | 
||
48  | 
lemma max_word_wrap: "x + 1 = 0 \<Longrightarrow> x = max_word"  | 
|
49  | 
apply (simp add: max_word_eq)  | 
|
50  | 
apply uint_arith  | 
|
51  | 
apply auto  | 
|
52  | 
apply (simp add: word_pow_0)  | 
|
53  | 
done  | 
|
54  | 
||
55  | 
lemma max_word_minus:  | 
|
| 24465 | 56  | 
"max_word = (-1::'a::len word)"  | 
| 24333 | 57  | 
proof -  | 
58  | 
have "-1 + 1 = (0::'a word)" by simp  | 
|
59  | 
thus ?thesis by (rule max_word_wrap [symmetric])  | 
|
60  | 
qed  | 
|
61  | 
||
62  | 
lemma max_word_bl [simp]:  | 
|
| 24465 | 63  | 
  "to_bl (max_word::'a::len word) = replicate (len_of TYPE('a)) True"
 | 
| 24333 | 64  | 
by (subst max_word_minus to_bl_n1)+ simp  | 
65  | 
||
66  | 
lemma max_test_bit [simp]:  | 
|
| 24465 | 67  | 
  "(max_word::'a::len word) !! n = (n < len_of TYPE('a))"
 | 
| 24333 | 68  | 
by (auto simp add: test_bit_bl word_size)  | 
69  | 
||
70  | 
lemma word_and_max [simp]:  | 
|
71  | 
"x AND max_word = x"  | 
|
72  | 
by (rule word_eqI) (simp add: word_ops_nth_size word_size)  | 
|
73  | 
||
74  | 
lemma word_or_max [simp]:  | 
|
75  | 
"x OR max_word = max_word"  | 
|
76  | 
by (rule word_eqI) (simp add: word_ops_nth_size word_size)  | 
|
77  | 
||
78  | 
lemma word_ao_dist2:  | 
|
| 24465 | 79  | 
"x AND (y OR z) = x AND y OR x AND (z::'a::len0 word)"  | 
| 24333 | 80  | 
by (rule word_eqI) (auto simp add: word_ops_nth_size word_size)  | 
81  | 
||
82  | 
lemma word_oa_dist2:  | 
|
| 24465 | 83  | 
"x OR y AND z = (x OR y) AND (x OR (z::'a::len0 word))"  | 
| 24333 | 84  | 
by (rule word_eqI) (auto simp add: word_ops_nth_size word_size)  | 
85  | 
||
86  | 
lemma word_and_not [simp]:  | 
|
| 24465 | 87  | 
"x AND NOT x = (0::'a::len0 word)"  | 
| 24333 | 88  | 
by (rule word_eqI) (auto simp add: word_ops_nth_size word_size)  | 
89  | 
||
90  | 
lemma word_or_not [simp]:  | 
|
91  | 
"x OR NOT x = max_word"  | 
|
92  | 
by (rule word_eqI) (auto simp add: word_ops_nth_size word_size)  | 
|
93  | 
||
94  | 
lemma word_boolean:  | 
|
95  | 
"boolean (op AND) (op OR) bitNOT 0 max_word"  | 
|
96  | 
apply (rule boolean.intro)  | 
|
97  | 
apply (rule word_bw_assocs)  | 
|
98  | 
apply (rule word_bw_assocs)  | 
|
99  | 
apply (rule word_bw_comms)  | 
|
100  | 
apply (rule word_bw_comms)  | 
|
101  | 
apply (rule word_ao_dist2)  | 
|
102  | 
apply (rule word_oa_dist2)  | 
|
103  | 
apply (rule word_and_max)  | 
|
104  | 
apply (rule word_log_esimps)  | 
|
105  | 
apply (rule word_and_not)  | 
|
106  | 
apply (rule word_or_not)  | 
|
107  | 
done  | 
|
108  | 
||
| 
30729
 
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
 
wenzelm 
parents: 
30034 
diff
changeset
 | 
109  | 
interpretation word_bool_alg:  | 
| 29235 | 110  | 
boolean "op AND" "op OR" bitNOT 0 max_word  | 
| 24333 | 111  | 
by (rule word_boolean)  | 
112  | 
||
113  | 
lemma word_xor_and_or:  | 
|
| 24465 | 114  | 
"x XOR y = x AND NOT y OR NOT x AND (y::'a::len0 word)"  | 
| 24333 | 115  | 
by (rule word_eqI) (auto simp add: word_ops_nth_size word_size)  | 
116  | 
||
| 
30729
 
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
 
wenzelm 
parents: 
30034 
diff
changeset
 | 
117  | 
interpretation word_bool_alg:  | 
| 29235 | 118  | 
boolean_xor "op AND" "op OR" bitNOT 0 max_word "op XOR"  | 
| 24333 | 119  | 
apply (rule boolean_xor.intro)  | 
120  | 
apply (rule word_boolean)  | 
|
121  | 
apply (rule boolean_xor_axioms.intro)  | 
|
122  | 
apply (rule word_xor_and_or)  | 
|
123  | 
done  | 
|
124  | 
||
125  | 
lemma shiftr_0 [iff]:  | 
|
| 24465 | 126  | 
"(x::'a::len0 word) >> 0 = x"  | 
| 24333 | 127  | 
by (simp add: shiftr_bl)  | 
128  | 
||
129  | 
lemma shiftl_0 [simp]:  | 
|
| 24465 | 130  | 
"(x :: 'a :: len word) << 0 = x"  | 
| 24333 | 131  | 
by (simp add: shiftl_t2n)  | 
132  | 
||
133  | 
lemma shiftl_1 [simp]:  | 
|
| 24465 | 134  | 
"(1::'a::len word) << n = 2^n"  | 
| 24333 | 135  | 
by (simp add: shiftl_t2n)  | 
136  | 
||
137  | 
lemma uint_lt_0 [simp]:  | 
|
138  | 
"uint x < 0 = False"  | 
|
139  | 
by (simp add: linorder_not_less)  | 
|
140  | 
||
141  | 
lemma shiftr1_1 [simp]:  | 
|
| 24465 | 142  | 
"shiftr1 (1::'a::len word) = 0"  | 
| 24333 | 143  | 
by (simp add: shiftr1_def word_0_alt)  | 
144  | 
||
145  | 
lemma shiftr_1[simp]:  | 
|
| 24465 | 146  | 
"(1::'a::len word) >> n = (if n = 0 then 1 else 0)"  | 
| 24333 | 147  | 
by (induct n) (auto simp: shiftr_def)  | 
148  | 
||
149  | 
lemma word_less_1 [simp]:  | 
|
| 24465 | 150  | 
"((x::'a::len word) < 1) = (x = 0)"  | 
| 24333 | 151  | 
by (simp add: word_less_nat_alt unat_0_iff)  | 
152  | 
||
153  | 
lemma to_bl_mask:  | 
|
| 24465 | 154  | 
"to_bl (mask n :: 'a::len word) =  | 
155  | 
  replicate (len_of TYPE('a) - n) False @ 
 | 
|
156  | 
    replicate (min (len_of TYPE('a)) n) True"
 | 
|
| 24333 | 157  | 
by (simp add: mask_bl word_rep_drop min_def)  | 
158  | 
||
159  | 
lemma map_replicate_True:  | 
|
160  | 
"n = length xs ==>  | 
|
161  | 
map (\<lambda>(x,y). x & y) (zip xs (replicate n True)) = xs"  | 
|
162  | 
by (induct xs arbitrary: n) auto  | 
|
163  | 
||
164  | 
lemma map_replicate_False:  | 
|
165  | 
"n = length xs ==> map (\<lambda>(x,y). x & y)  | 
|
166  | 
(zip xs (replicate n False)) = replicate n False"  | 
|
167  | 
by (induct xs arbitrary: n) auto  | 
|
168  | 
||
169  | 
lemma bl_and_mask:  | 
|
| 24465 | 170  | 
fixes w :: "'a::len word"  | 
| 24333 | 171  | 
fixes n  | 
| 24465 | 172  | 
  defines "n' \<equiv> len_of TYPE('a) - n"
 | 
| 24333 | 173  | 
shows "to_bl (w AND mask n) = replicate n' False @ drop n' (to_bl w)"  | 
174  | 
proof -  | 
|
175  | 
note [simp] = map_replicate_True map_replicate_False  | 
|
176  | 
have "to_bl (w AND mask n) =  | 
|
| 26558 | 177  | 
map2 op & (to_bl w) (to_bl (mask n::'a::len word))"  | 
| 24333 | 178  | 
by (simp add: bl_word_and)  | 
179  | 
also  | 
|
180  | 
have "to_bl w = take n' (to_bl w) @ drop n' (to_bl w)" by simp  | 
|
181  | 
also  | 
|
| 26558 | 182  | 
have "map2 op & \<dots> (to_bl (mask n::'a::len word)) =  | 
| 24333 | 183  | 
replicate n' False @ drop n' (to_bl w)"  | 
| 26558 | 184  | 
unfolding to_bl_mask n'_def map2_def  | 
| 24333 | 185  | 
by (subst zip_append) auto  | 
186  | 
finally  | 
|
187  | 
show ?thesis .  | 
|
188  | 
qed  | 
|
189  | 
||
190  | 
lemma drop_rev_takefill:  | 
|
191  | 
"length xs \<le> n ==>  | 
|
192  | 
drop (n - length xs) (rev (takefill False n (rev xs))) = xs"  | 
|
193  | 
by (simp add: takefill_alt rev_take)  | 
|
194  | 
||
195  | 
lemma map_nth_0 [simp]:  | 
|
| 24465 | 196  | 
"map (op !! (0::'a::len0 word)) xs = replicate (length xs) False"  | 
| 24333 | 197  | 
by (induct xs) auto  | 
198  | 
||
199  | 
lemma uint_plus_if_size:  | 
|
200  | 
"uint (x + y) =  | 
|
201  | 
(if uint x + uint y < 2^size x then  | 
|
202  | 
uint x + uint y  | 
|
203  | 
else  | 
|
204  | 
uint x + uint y - 2^size x)"  | 
|
205  | 
by (simp add: word_arith_alts int_word_uint mod_add_if_z  | 
|
206  | 
word_size)  | 
|
207  | 
||
208  | 
lemma unat_plus_if_size:  | 
|
| 24465 | 209  | 
"unat (x + (y::'a::len word)) =  | 
| 24333 | 210  | 
(if unat x + unat y < 2^size x then  | 
211  | 
unat x + unat y  | 
|
212  | 
else  | 
|
213  | 
unat x + unat y - 2^size x)"  | 
|
214  | 
apply (subst word_arith_nat_defs)  | 
|
215  | 
apply (subst unat_of_nat)  | 
|
216  | 
apply (simp add: mod_nat_add word_size)  | 
|
217  | 
done  | 
|
218  | 
||
219  | 
lemma word_neq_0_conv [simp]:  | 
|
| 24465 | 220  | 
fixes w :: "'a :: len word"  | 
| 24333 | 221  | 
shows "(w \<noteq> 0) = (0 < w)"  | 
222  | 
proof -  | 
|
223  | 
have "0 \<le> w" by (rule word_zero_le)  | 
|
224  | 
thus ?thesis by (auto simp add: word_less_def)  | 
|
225  | 
qed  | 
|
226  | 
||
227  | 
lemma max_lt:  | 
|
| 24465 | 228  | 
"unat (max a b div c) = unat (max a b) div unat (c:: 'a :: len word)"  | 
| 24333 | 229  | 
apply (subst word_arith_nat_defs)  | 
230  | 
apply (subst word_unat.eq_norm)  | 
|
231  | 
apply (subst mod_if)  | 
|
232  | 
apply clarsimp  | 
|
233  | 
apply (erule notE)  | 
|
234  | 
apply (insert div_le_dividend [of "unat (max a b)" "unat c"])  | 
|
235  | 
apply (erule order_le_less_trans)  | 
|
236  | 
apply (insert unat_lt2p [of "max a b"])  | 
|
237  | 
apply simp  | 
|
238  | 
done  | 
|
239  | 
||
240  | 
lemma uint_sub_if_size:  | 
|
241  | 
"uint (x - y) =  | 
|
242  | 
(if uint y \<le> uint x then  | 
|
243  | 
uint x - uint y  | 
|
244  | 
else  | 
|
245  | 
uint x - uint y + 2^size x)"  | 
|
246  | 
by (simp add: word_arith_alts int_word_uint mod_sub_if_z  | 
|
247  | 
word_size)  | 
|
248  | 
||
249  | 
lemma unat_sub_simple:  | 
|
250  | 
"x \<le> y ==> unat (y - x) = unat y - unat x"  | 
|
251  | 
by (simp add: unat_def uint_sub_if_size word_le_def nat_diff_distrib)  | 
|
252  | 
||
253  | 
lemmas unat_sub = unat_sub_simple  | 
|
254  | 
||
255  | 
lemma word_less_sub1:  | 
|
| 24465 | 256  | 
fixes x :: "'a :: len word"  | 
| 24333 | 257  | 
shows "x \<noteq> 0 ==> 1 < x = (0 < x - 1)"  | 
258  | 
by (simp add: unat_sub_if_size word_less_nat_alt)  | 
|
259  | 
||
260  | 
lemma word_le_sub1:  | 
|
| 24465 | 261  | 
fixes x :: "'a :: len word"  | 
| 24333 | 262  | 
shows "x \<noteq> 0 ==> 1 \<le> x = (0 \<le> x - 1)"  | 
263  | 
by (simp add: unat_sub_if_size order_le_less word_less_nat_alt)  | 
|
264  | 
||
265  | 
lemmas word_less_sub1_numberof [simp] =  | 
|
| 
25349
 
0d46bea01741
eliminated illegal schematic variables in where/of;
 
wenzelm 
parents: 
24465 
diff
changeset
 | 
266  | 
word_less_sub1 [of "number_of w", standard]  | 
| 24333 | 267  | 
lemmas word_le_sub1_numberof [simp] =  | 
| 
25349
 
0d46bea01741
eliminated illegal schematic variables in where/of;
 
wenzelm 
parents: 
24465 
diff
changeset
 | 
268  | 
word_le_sub1 [of "number_of w", standard]  | 
| 24333 | 269  | 
|
270  | 
lemma word_of_int_minus:  | 
|
| 24465 | 271  | 
  "word_of_int (2^len_of TYPE('a) - i) = (word_of_int (-i)::'a::len word)"
 | 
| 24333 | 272  | 
proof -  | 
| 24465 | 273  | 
  have x: "2^len_of TYPE('a) - i = -i + 2^len_of TYPE('a)" by simp
 | 
| 24333 | 274  | 
show ?thesis  | 
275  | 
apply (subst x)  | 
|
| 30034 | 276  | 
apply (subst word_uint.Abs_norm [symmetric], subst mod_add_self2)  | 
| 24333 | 277  | 
apply simp  | 
278  | 
done  | 
|
279  | 
qed  | 
|
280  | 
||
281  | 
lemmas word_of_int_inj =  | 
|
282  | 
word_uint.Abs_inject [unfolded uints_num, simplified]  | 
|
283  | 
||
284  | 
lemma word_le_less_eq:  | 
|
| 24465 | 285  | 
"(x ::'z::len word) \<le> y = (x = y \<or> x < y)"  | 
| 24333 | 286  | 
by (auto simp add: word_less_def)  | 
287  | 
||
288  | 
lemma mod_plus_cong:  | 
|
289  | 
assumes 1: "(b::int) = b'"  | 
|
290  | 
and 2: "x mod b' = x' mod b'"  | 
|
291  | 
and 3: "y mod b' = y' mod b'"  | 
|
292  | 
and 4: "x' + y' = z'"  | 
|
293  | 
shows "(x + y) mod b = z' mod b'"  | 
|
294  | 
proof -  | 
|
295  | 
from 1 2[symmetric] 3[symmetric] have "(x + y) mod b = (x' mod b' + y' mod b') mod b'"  | 
|
| 29948 | 296  | 
by (simp add: mod_add_eq[symmetric])  | 
| 24333 | 297  | 
also have "\<dots> = (x' + y') mod b'"  | 
| 29948 | 298  | 
by (simp add: mod_add_eq[symmetric])  | 
| 24333 | 299  | 
finally show ?thesis by (simp add: 4)  | 
300  | 
qed  | 
|
301  | 
||
302  | 
lemma mod_minus_cong:  | 
|
303  | 
assumes 1: "(b::int) = b'"  | 
|
304  | 
and 2: "x mod b' = x' mod b'"  | 
|
305  | 
and 3: "y mod b' = y' mod b'"  | 
|
306  | 
and 4: "x' - y' = z'"  | 
|
307  | 
shows "(x - y) mod b = z' mod b'"  | 
|
308  | 
using assms  | 
|
309  | 
apply (subst zmod_zsub_left_eq)  | 
|
310  | 
apply (subst zmod_zsub_right_eq)  | 
|
311  | 
apply (simp add: zmod_zsub_left_eq [symmetric] zmod_zsub_right_eq [symmetric])  | 
|
312  | 
done  | 
|
313  | 
||
314  | 
lemma word_induct_less:  | 
|
| 24465 | 315  | 
"\<lbrakk>P (0::'a::len word); \<And>n. \<lbrakk>n < m; P n\<rbrakk> \<Longrightarrow> P (1 + n)\<rbrakk> \<Longrightarrow> P m"  | 
| 24333 | 316  | 
apply (cases m)  | 
317  | 
apply atomize  | 
|
318  | 
apply (erule rev_mp)+  | 
|
319  | 
apply (rule_tac x=m in spec)  | 
|
| 27136 | 320  | 
apply (induct_tac n)  | 
| 24333 | 321  | 
apply simp  | 
322  | 
apply clarsimp  | 
|
323  | 
apply (erule impE)  | 
|
324  | 
apply clarsimp  | 
|
325  | 
apply (erule_tac x=n in allE)  | 
|
326  | 
apply (erule impE)  | 
|
327  | 
apply (simp add: unat_arith_simps)  | 
|
328  | 
apply (clarsimp simp: unat_of_nat)  | 
|
329  | 
apply simp  | 
|
330  | 
apply (erule_tac x="of_nat na" in allE)  | 
|
331  | 
apply (erule impE)  | 
|
332  | 
apply (simp add: unat_arith_simps)  | 
|
333  | 
apply (clarsimp simp: unat_of_nat)  | 
|
334  | 
apply simp  | 
|
335  | 
done  | 
|
336  | 
||
337  | 
lemma word_induct:  | 
|
| 24465 | 338  | 
"\<lbrakk>P (0::'a::len word); \<And>n. P n \<Longrightarrow> P (1 + n)\<rbrakk> \<Longrightarrow> P m"  | 
| 24333 | 339  | 
by (erule word_induct_less, simp)  | 
340  | 
||
341  | 
lemma word_induct2 [induct type]:  | 
|
| 24465 | 342  | 
"\<lbrakk>P 0; \<And>n. \<lbrakk>1 + n \<noteq> 0; P n\<rbrakk> \<Longrightarrow> P (1 + n)\<rbrakk> \<Longrightarrow> P (n::'b::len word)"  | 
| 24333 | 343  | 
apply (rule word_induct, simp)  | 
344  | 
apply (case_tac "1+n = 0", auto)  | 
|
345  | 
done  | 
|
346  | 
||
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
30729 
diff
changeset
 | 
347  | 
definition word_rec :: "'a \<Rightarrow> ('b::len word \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> 'b word \<Rightarrow> 'a" where
 | 
| 24333 | 348  | 
"word_rec forZero forSuc n \<equiv> nat_rec forZero (forSuc \<circ> of_nat) (unat n)"  | 
349  | 
||
350  | 
lemma word_rec_0: "word_rec z s 0 = z"  | 
|
351  | 
by (simp add: word_rec_def)  | 
|
352  | 
||
353  | 
lemma word_rec_Suc:  | 
|
| 24465 | 354  | 
"1 + n \<noteq> (0::'a::len word) \<Longrightarrow> word_rec z s (1 + n) = s n (word_rec z s n)"  | 
| 24333 | 355  | 
apply (simp add: word_rec_def unat_word_ariths)  | 
356  | 
apply (subst nat_mod_eq')  | 
|
357  | 
apply (cut_tac x=n in unat_lt2p)  | 
|
358  | 
apply (drule Suc_mono)  | 
|
359  | 
apply (simp add: less_Suc_eq_le)  | 
|
360  | 
apply (simp only: order_less_le, simp)  | 
|
361  | 
apply (erule contrapos_pn, simp)  | 
|
362  | 
apply (drule arg_cong[where f=of_nat])  | 
|
363  | 
apply simp  | 
|
| 29235 | 364  | 
apply (subst (asm) word_unat.Rep_inverse[of n])  | 
| 24333 | 365  | 
apply simp  | 
366  | 
apply simp  | 
|
367  | 
done  | 
|
368  | 
||
369  | 
lemma word_rec_Pred:  | 
|
370  | 
"n \<noteq> 0 \<Longrightarrow> word_rec z s n = s (n - 1) (word_rec z s (n - 1))"  | 
|
371  | 
apply (rule subst[where t="n" and s="1 + (n - 1)"])  | 
|
372  | 
apply simp  | 
|
373  | 
apply (subst word_rec_Suc)  | 
|
374  | 
apply simp  | 
|
375  | 
apply simp  | 
|
376  | 
done  | 
|
377  | 
||
378  | 
lemma word_rec_in:  | 
|
379  | 
"f (word_rec z (\<lambda>_. f) n) = word_rec (f z) (\<lambda>_. f) n"  | 
|
380  | 
by (induct n) (simp_all add: word_rec_0 word_rec_Suc)  | 
|
381  | 
||
382  | 
lemma word_rec_in2:  | 
|
383  | 
"f n (word_rec z f n) = word_rec (f 0 z) (f \<circ> op + 1) n"  | 
|
384  | 
by (induct n) (simp_all add: word_rec_0 word_rec_Suc)  | 
|
385  | 
||
386  | 
lemma word_rec_twice:  | 
|
387  | 
"m \<le> n \<Longrightarrow> word_rec z f n = word_rec (word_rec z f (n - m)) (f \<circ> op + (n - m)) m"  | 
|
388  | 
apply (erule rev_mp)  | 
|
389  | 
apply (rule_tac x=z in spec)  | 
|
390  | 
apply (rule_tac x=f in spec)  | 
|
391  | 
apply (induct n)  | 
|
392  | 
apply (simp add: word_rec_0)  | 
|
393  | 
apply clarsimp  | 
|
394  | 
apply (rule_tac t="1 + n - m" and s="1 + (n - m)" in subst)  | 
|
395  | 
apply simp  | 
|
396  | 
apply (case_tac "1 + (n - m) = 0")  | 
|
397  | 
apply (simp add: word_rec_0)  | 
|
| 
25349
 
0d46bea01741
eliminated illegal schematic variables in where/of;
 
wenzelm 
parents: 
24465 
diff
changeset
 | 
398  | 
apply (rule_tac f = "word_rec ?a ?b" in arg_cong)  | 
| 24333 | 399  | 
apply (rule_tac t="m" and s="m + (1 + (n - m))" in subst)  | 
400  | 
apply simp  | 
|
401  | 
apply (simp (no_asm_use))  | 
|
402  | 
apply (simp add: word_rec_Suc word_rec_in2)  | 
|
403  | 
apply (erule impE)  | 
|
404  | 
apply uint_arith  | 
|
405  | 
apply (drule_tac x="x \<circ> op + 1" in spec)  | 
|
406  | 
apply (drule_tac x="x 0 xa" in spec)  | 
|
407  | 
apply simp  | 
|
408  | 
apply (rule_tac t="\<lambda>a. x (1 + (n - m + a))" and s="\<lambda>a. x (1 + (n - m) + a)"  | 
|
409  | 
in subst)  | 
|
410  | 
apply (clarsimp simp add: expand_fun_eq)  | 
|
411  | 
apply (rule_tac t="(1 + (n - m + xb))" and s="1 + (n - m) + xb" in subst)  | 
|
412  | 
apply simp  | 
|
413  | 
apply (rule refl)  | 
|
414  | 
apply (rule refl)  | 
|
415  | 
done  | 
|
416  | 
||
417  | 
lemma word_rec_id: "word_rec z (\<lambda>_. id) n = z"  | 
|
418  | 
by (induct n) (auto simp add: word_rec_0 word_rec_Suc)  | 
|
419  | 
||
420  | 
lemma word_rec_id_eq: "\<forall>m < n. f m = id \<Longrightarrow> word_rec z f n = z"  | 
|
421  | 
apply (erule rev_mp)  | 
|
422  | 
apply (induct n)  | 
|
423  | 
apply (auto simp add: word_rec_0 word_rec_Suc)  | 
|
424  | 
apply (drule spec, erule mp)  | 
|
425  | 
apply uint_arith  | 
|
426  | 
apply (drule_tac x=n in spec, erule impE)  | 
|
427  | 
apply uint_arith  | 
|
428  | 
apply simp  | 
|
429  | 
done  | 
|
430  | 
||
431  | 
lemma word_rec_max:  | 
|
432  | 
"\<forall>m\<ge>n. m \<noteq> -1 \<longrightarrow> f m = id \<Longrightarrow> word_rec z f -1 = word_rec z f n"  | 
|
433  | 
apply (subst word_rec_twice[where n="-1" and m="-1 - n"])  | 
|
434  | 
apply simp  | 
|
435  | 
apply simp  | 
|
436  | 
apply (rule word_rec_id_eq)  | 
|
437  | 
apply clarsimp  | 
|
438  | 
apply (drule spec, rule mp, erule mp)  | 
|
439  | 
apply (rule word_plus_mono_right2[OF _ order_less_imp_le])  | 
|
440  | 
prefer 2  | 
|
441  | 
apply assumption  | 
|
442  | 
apply simp  | 
|
443  | 
apply (erule contrapos_pn)  | 
|
444  | 
apply simp  | 
|
445  | 
apply (drule arg_cong[where f="\<lambda>x. x - n"])  | 
|
446  | 
apply simp  | 
|
447  | 
done  | 
|
448  | 
||
449  | 
lemma unatSuc:  | 
|
| 24465 | 450  | 
"1 + n \<noteq> (0::'a::len word) \<Longrightarrow> unat (1 + n) = Suc (unat n)"  | 
| 24333 | 451  | 
by unat_arith  | 
452  | 
||
| 29628 | 453  | 
|
454  | 
lemmas word_no_1 [simp] = word_1_no [symmetric, unfolded BIT_simps]  | 
|
455  | 
lemmas word_no_0 [simp] = word_0_no [symmetric]  | 
|
456  | 
||
457  | 
declare word_0_bl [simp]  | 
|
458  | 
declare bin_to_bl_def [simp]  | 
|
459  | 
declare to_bl_0 [simp]  | 
|
460  | 
declare of_bl_True [simp]  | 
|
461  | 
||
| 24333 | 462  | 
end  |