| author | wenzelm | 
| Fri, 15 Sep 2000 16:53:41 +0200 | |
| changeset 9982 | 1860276fc8de | 
| parent 9907 | 473a6604da94 | 
| child 12485 | 3df60299a6d0 | 
| permissions | -rw-r--r-- | 
| 1461 | 1  | 
(* Title: ZF/epsilon.ML  | 
| 0 | 2  | 
ID: $Id$  | 
| 1461 | 3  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
| 0 | 4  | 
Copyright 1993 University of Cambridge  | 
5  | 
||
| 5809 | 6  | 
Epsilon induction and recursion  | 
| 0 | 7  | 
*)  | 
8  | 
||
9  | 
(*** Basic closure properties ***)  | 
|
10  | 
||
| 5067 | 11  | 
Goalw [eclose_def] "A <= eclose(A)";  | 
| 0 | 12  | 
by (rtac (nat_rec_0 RS equalityD2 RS subset_trans) 1);  | 
| 
14
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
6 
diff
changeset
 | 
13  | 
by (rtac (nat_0I RS UN_upper) 1);  | 
| 760 | 14  | 
qed "arg_subset_eclose";  | 
| 0 | 15  | 
|
| 9907 | 16  | 
bind_thm ("arg_into_eclose", arg_subset_eclose RS subsetD);
 | 
| 0 | 17  | 
|
| 5067 | 18  | 
Goalw [eclose_def,Transset_def] "Transset(eclose(A))";  | 
| 0 | 19  | 
by (rtac (subsetI RS ballI) 1);  | 
20  | 
by (etac UN_E 1);  | 
|
21  | 
by (rtac (nat_succI RS UN_I) 1);  | 
|
22  | 
by (assume_tac 1);  | 
|
23  | 
by (etac (nat_rec_succ RS ssubst) 1);  | 
|
24  | 
by (etac UnionI 1);  | 
|
25  | 
by (assume_tac 1);  | 
|
| 760 | 26  | 
qed "Transset_eclose";  | 
| 0 | 27  | 
|
28  | 
(* x : eclose(A) ==> x <= eclose(A) *)  | 
|
| 
782
 
200a16083201
added bind_thm for theorems defined by "standard ..."
 
clasohm 
parents: 
760 
diff
changeset
 | 
29  | 
bind_thm ("eclose_subset",
 | 
| 
 
200a16083201
added bind_thm for theorems defined by "standard ..."
 
clasohm 
parents: 
760 
diff
changeset
 | 
30  | 
rewrite_rule [Transset_def] Transset_eclose RS bspec);  | 
| 0 | 31  | 
|
32  | 
(* [| A : eclose(B); c : A |] ==> c : eclose(B) *)  | 
|
| 
782
 
200a16083201
added bind_thm for theorems defined by "standard ..."
 
clasohm 
parents: 
760 
diff
changeset
 | 
33  | 
bind_thm ("ecloseD", eclose_subset RS subsetD);
 | 
| 0 | 34  | 
|
| 9907 | 35  | 
bind_thm ("arg_in_eclose_sing", arg_subset_eclose RS singleton_subsetD);
 | 
36  | 
bind_thm ("arg_into_eclose_sing", arg_in_eclose_sing RS ecloseD);
 | 
|
| 0 | 37  | 
|
38  | 
(* This is epsilon-induction for eclose(A); see also eclose_induct_down...  | 
|
39  | 
[| a: eclose(A); !!x. [| x: eclose(A); ALL y:x. P(y) |] ==> P(x)  | 
|
40  | 
|] ==> P(a)  | 
|
41  | 
*)  | 
|
| 
782
 
200a16083201
added bind_thm for theorems defined by "standard ..."
 
clasohm 
parents: 
760 
diff
changeset
 | 
42  | 
bind_thm ("eclose_induct", Transset_eclose RSN (2, Transset_induct));
 | 
| 0 | 43  | 
|
44  | 
(*Epsilon induction*)  | 
|
| 9211 | 45  | 
val prems = Goal  | 
| 0 | 46  | 
"[| !!x. ALL y:x. P(y) ==> P(x) |] ==> P(a)";  | 
47  | 
by (rtac (arg_in_eclose_sing RS eclose_induct) 1);  | 
|
48  | 
by (eresolve_tac prems 1);  | 
|
| 760 | 49  | 
qed "eps_induct";  | 
| 0 | 50  | 
|
51  | 
(*Perform epsilon-induction on i. *)  | 
|
52  | 
fun eps_ind_tac a =  | 
|
53  | 
    EVERY' [res_inst_tac [("a",a)] eps_induct,
 | 
|
| 1461 | 54  | 
rename_last_tac a ["1"]];  | 
| 0 | 55  | 
|
56  | 
||
57  | 
(*** Leastness of eclose ***)  | 
|
58  | 
||
59  | 
(** eclose(A) is the least transitive set including A as a subset. **)  | 
|
60  | 
||
| 5067 | 61  | 
Goalw [Transset_def]  | 
| 
5147
 
825877190618
More tidying and removal of "\!\!... from Goal commands
 
paulson 
parents: 
5137 
diff
changeset
 | 
62  | 
"[| Transset(X); A<=X; n: nat |] ==> \  | 
| 0 | 63  | 
\ nat_rec(n, A, %m r. Union(r)) <= X";  | 
64  | 
by (etac nat_induct 1);  | 
|
| 4091 | 65  | 
by (asm_simp_tac (simpset() addsimps [nat_rec_0]) 1);  | 
66  | 
by (asm_simp_tac (simpset() addsimps [nat_rec_succ]) 1);  | 
|
| 3016 | 67  | 
by (Blast_tac 1);  | 
| 760 | 68  | 
qed "eclose_least_lemma";  | 
| 0 | 69  | 
|
| 5067 | 70  | 
Goalw [eclose_def]  | 
| 
5147
 
825877190618
More tidying and removal of "\!\!... from Goal commands
 
paulson 
parents: 
5137 
diff
changeset
 | 
71  | 
"[| Transset(X); A<=X |] ==> eclose(A) <= X";  | 
| 
14
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
6 
diff
changeset
 | 
72  | 
by (rtac (eclose_least_lemma RS UN_least) 1);  | 
| 0 | 73  | 
by (REPEAT (assume_tac 1));  | 
| 760 | 74  | 
qed "eclose_least";  | 
| 0 | 75  | 
|
76  | 
(*COMPLETELY DIFFERENT induction principle from eclose_induct!!*)  | 
|
| 9211 | 77  | 
val [major,base,step] = Goal  | 
| 1461 | 78  | 
"[| a: eclose(b); \  | 
79  | 
\ !!y. [| y: b |] ==> P(y); \  | 
|
80  | 
\ !!y z. [| y: eclose(b); P(y); z: y |] ==> P(z) \  | 
|
| 0 | 81  | 
\ |] ==> P(a)";  | 
82  | 
by (rtac (major RSN (3, eclose_least RS subsetD RS CollectD2)) 1);  | 
|
83  | 
by (rtac (CollectI RS subsetI) 2);  | 
|
84  | 
by (etac (arg_subset_eclose RS subsetD) 2);  | 
|
85  | 
by (etac base 2);  | 
|
86  | 
by (rewtac Transset_def);  | 
|
| 4091 | 87  | 
by (blast_tac (claset() addIs [step,ecloseD]) 1);  | 
| 760 | 88  | 
qed "eclose_induct_down";  | 
| 0 | 89  | 
|
| 5137 | 90  | 
Goal "Transset(X) ==> eclose(X) = X";  | 
| 
14
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
6 
diff
changeset
 | 
91  | 
by (etac ([eclose_least, arg_subset_eclose] MRS equalityI) 1);  | 
| 
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
6 
diff
changeset
 | 
92  | 
by (rtac subset_refl 1);  | 
| 760 | 93  | 
qed "Transset_eclose_eq_arg";  | 
| 0 | 94  | 
|
95  | 
||
96  | 
(*** Epsilon recursion ***)  | 
|
97  | 
||
98  | 
(*Unused...*)  | 
|
| 5137 | 99  | 
Goal "[| A: eclose(B); B: eclose(C) |] ==> A: eclose(C)";  | 
| 0 | 100  | 
by (rtac ([Transset_eclose, eclose_subset] MRS eclose_least RS subsetD) 1);  | 
101  | 
by (REPEAT (assume_tac 1));  | 
|
| 760 | 102  | 
qed "mem_eclose_trans";  | 
| 0 | 103  | 
|
104  | 
(*Variant of the previous lemma in a useable form for the sequel*)  | 
|
| 5268 | 105  | 
Goal "[| A: eclose({B});  B: eclose({C}) |] ==> A: eclose({C})";
 | 
| 0 | 106  | 
by (rtac ([Transset_eclose, singleton_subsetI] MRS eclose_least RS subsetD) 1);  | 
107  | 
by (REPEAT (assume_tac 1));  | 
|
| 760 | 108  | 
qed "mem_eclose_sing_trans";  | 
| 0 | 109  | 
|
| 8201 | 110  | 
Goalw [Transset_def] "[| Transset(i);  j:i |] ==> Memrel(i)-``{j} = j";
 | 
111  | 
by (Blast_tac 1);  | 
|
| 760 | 112  | 
qed "under_Memrel";  | 
| 0 | 113  | 
|
114  | 
(* j : eclose(A) ==> Memrel(eclose(A)) -`` j = j *)  | 
|
| 9907 | 115  | 
bind_thm ("under_Memrel_eclose", Transset_eclose RS under_Memrel);
 | 
| 0 | 116  | 
|
| 9907 | 117  | 
bind_thm ("wfrec_ssubst", standard (wf_Memrel RS wfrec RS ssubst));
 | 
| 0 | 118  | 
|
| 9907 | 119  | 
val [kmemj,jmemi] = goal (the_context ())  | 
| 0 | 120  | 
    "[| k:eclose({j});  j:eclose({i}) |] ==> \
 | 
121  | 
\    wfrec(Memrel(eclose({i})), k, H) = wfrec(Memrel(eclose({j})), k, H)";
 | 
|
122  | 
by (rtac (kmemj RS eclose_induct) 1);  | 
|
123  | 
by (rtac wfrec_ssubst 1);  | 
|
124  | 
by (rtac wfrec_ssubst 1);  | 
|
| 4091 | 125  | 
by (asm_simp_tac (simpset() addsimps [under_Memrel_eclose,  | 
| 1461 | 126  | 
jmemi RSN (2,mem_eclose_sing_trans)]) 1);  | 
| 760 | 127  | 
qed "wfrec_eclose_eq";  | 
| 0 | 128  | 
|
| 9211 | 129  | 
Goal  | 
| 0 | 130  | 
    "k: i ==> wfrec(Memrel(eclose({i})),k,H) = wfrec(Memrel(eclose({k})),k,H)";
 | 
131  | 
by (rtac (arg_in_eclose_sing RS wfrec_eclose_eq) 1);  | 
|
| 9211 | 132  | 
by (etac arg_into_eclose_sing 1);  | 
| 760 | 133  | 
qed "wfrec_eclose_eq2";  | 
| 0 | 134  | 
|
| 5067 | 135  | 
Goalw [transrec_def]  | 
| 0 | 136  | 
"transrec(a,H) = H(a, lam x:a. transrec(x,H))";  | 
137  | 
by (rtac wfrec_ssubst 1);  | 
|
| 4091 | 138  | 
by (simp_tac (simpset() addsimps [wfrec_eclose_eq2, arg_in_eclose_sing,  | 
| 1461 | 139  | 
under_Memrel_eclose]) 1);  | 
| 760 | 140  | 
qed "transrec";  | 
| 0 | 141  | 
|
142  | 
(*Avoids explosions in proofs; resolve it with a meta-level definition.*)  | 
|
| 9211 | 143  | 
val rew::prems = Goal  | 
| 0 | 144  | 
"[| !!x. f(x)==transrec(x,H) |] ==> f(a) = H(a, lam x:a. f(x))";  | 
145  | 
by (rewtac rew);  | 
|
146  | 
by (REPEAT (resolve_tac (prems@[transrec]) 1));  | 
|
| 760 | 147  | 
qed "def_transrec";  | 
| 0 | 148  | 
|
| 9211 | 149  | 
val prems = Goal  | 
| 0 | 150  | 
    "[| !!x u. [| x:eclose({a});  u: Pi(x,B) |] ==> H(x,u) : B(x)   \
 | 
151  | 
\ |] ==> transrec(a,H) : B(a)";  | 
|
152  | 
by (res_inst_tac [("i", "a")] (arg_in_eclose_sing RS eclose_induct) 1);
 | 
|
| 2033 | 153  | 
by (stac transrec 1);  | 
| 0 | 154  | 
by (REPEAT (ares_tac (prems @ [lam_type]) 1 ORELSE etac bspec 1));  | 
| 760 | 155  | 
qed "transrec_type";  | 
| 0 | 156  | 
|
| 5137 | 157  | 
Goal "Ord(i) ==> eclose({i}) <= succ(i)";
 | 
| 0 | 158  | 
by (etac (Ord_is_Transset RS Transset_succ RS eclose_least) 1);  | 
159  | 
by (rtac (succI1 RS singleton_subsetI) 1);  | 
|
| 760 | 160  | 
qed "eclose_sing_Ord";  | 
| 0 | 161  | 
|
| 9211 | 162  | 
val prems = Goal  | 
| 0 | 163  | 
"[| j: i; Ord(i); \  | 
164  | 
\ !!x u. [| x: i; u: Pi(x,B) |] ==> H(x,u) : B(x) \  | 
|
165  | 
\ |] ==> transrec(j,H) : B(j)";  | 
|
166  | 
by (rtac transrec_type 1);  | 
|
167  | 
by (resolve_tac prems 1);  | 
|
168  | 
by (rtac (Ord_in_Ord RS eclose_sing_Ord RS subsetD RS succE) 1);  | 
|
169  | 
by (DEPTH_SOLVE (ares_tac prems 1 ORELSE eresolve_tac [ssubst,Ord_trans] 1));  | 
|
| 760 | 170  | 
qed "Ord_transrec_type";  | 
| 0 | 171  | 
|
172  | 
(*** Rank ***)  | 
|
173  | 
||
174  | 
(*NOT SUITABLE FOR REWRITING -- RECURSIVE!*)  | 
|
| 5067 | 175  | 
Goal "rank(a) = (UN y:a. succ(rank(y)))";  | 
| 2033 | 176  | 
by (stac (rank_def RS def_transrec) 1);  | 
| 2469 | 177  | 
by (Simp_tac 1);  | 
| 760 | 178  | 
qed "rank";  | 
| 0 | 179  | 
|
| 5067 | 180  | 
Goal "Ord(rank(a))";  | 
| 0 | 181  | 
by (eps_ind_tac "a" 1);  | 
| 2033 | 182  | 
by (stac rank 1);  | 
| 0 | 183  | 
by (rtac (Ord_succ RS Ord_UN) 1);  | 
184  | 
by (etac bspec 1);  | 
|
185  | 
by (assume_tac 1);  | 
|
| 760 | 186  | 
qed "Ord_rank";  | 
| 6071 | 187  | 
Addsimps [Ord_rank];  | 
| 0 | 188  | 
|
| 9211 | 189  | 
Goal "Ord(i) ==> rank(i) = i";  | 
190  | 
by (etac trans_induct 1);  | 
|
| 2033 | 191  | 
by (stac rank 1);  | 
| 4091 | 192  | 
by (asm_simp_tac (simpset() addsimps [Ord_equality]) 1);  | 
| 760 | 193  | 
qed "rank_of_Ord";  | 
| 0 | 194  | 
|
| 5137 | 195  | 
Goal "a:b ==> rank(a) < rank(b)";  | 
| 0 | 196  | 
by (res_inst_tac [("a1","b")] (rank RS ssubst) 1);
 | 
| 129 | 197  | 
by (etac (UN_I RS ltI) 1);  | 
| 6071 | 198  | 
by (rtac Ord_UN 2);  | 
199  | 
by Auto_tac;  | 
|
| 760 | 200  | 
qed "rank_lt";  | 
| 0 | 201  | 
|
| 9211 | 202  | 
Goal "a: eclose(b) ==> rank(a) < rank(b)";  | 
203  | 
by (etac eclose_induct_down 1);  | 
|
| 0 | 204  | 
by (etac rank_lt 1);  | 
| 
25
 
3ac1c0c0016e
ordinal: DEFINITION of < and le to replace : and <= on ordinals!  Many
 
lcp 
parents: 
14 
diff
changeset
 | 
205  | 
by (etac (rank_lt RS lt_trans) 1);  | 
| 0 | 206  | 
by (assume_tac 1);  | 
| 760 | 207  | 
qed "eclose_rank_lt";  | 
| 0 | 208  | 
|
| 5137 | 209  | 
Goal "a<=b ==> rank(a) le rank(b)";  | 
| 
25
 
3ac1c0c0016e
ordinal: DEFINITION of < and le to replace : and <= on ordinals!  Many
 
lcp 
parents: 
14 
diff
changeset
 | 
210  | 
by (rtac subset_imp_le 1);  | 
| 2033 | 211  | 
by (stac rank 1);  | 
212  | 
by (stac rank 1);  | 
|
| 6071 | 213  | 
by Auto_tac;  | 
| 760 | 214  | 
qed "rank_mono";  | 
| 0 | 215  | 
|
| 5067 | 216  | 
Goal "rank(Pow(a)) = succ(rank(a))";  | 
| 0 | 217  | 
by (rtac (rank RS trans) 1);  | 
| 437 | 218  | 
by (rtac le_anti_sym 1);  | 
| 6163 | 219  | 
by (rtac UN_upper_le 2);  | 
220  | 
by (rtac UN_least_le 1);  | 
|
| 6071 | 221  | 
by (auto_tac (claset() addIs [rank_mono], simpset()));  | 
| 760 | 222  | 
qed "rank_Pow";  | 
| 0 | 223  | 
|
| 5067 | 224  | 
Goal "rank(0) = 0";  | 
| 0 | 225  | 
by (rtac (rank RS trans) 1);  | 
| 3016 | 226  | 
by (Blast_tac 1);  | 
| 760 | 227  | 
qed "rank_0";  | 
| 0 | 228  | 
|
| 5067 | 229  | 
Goal "rank(succ(x)) = succ(rank(x))";  | 
| 0 | 230  | 
by (rtac (rank RS trans) 1);  | 
| 
14
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
6 
diff
changeset
 | 
231  | 
by (rtac ([UN_least, succI1 RS UN_upper] MRS equalityI) 1);  | 
| 
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
6 
diff
changeset
 | 
232  | 
by (etac succE 1);  | 
| 3016 | 233  | 
by (Blast_tac 1);  | 
| 129 | 234  | 
by (etac (rank_lt RS leI RS succ_leI RS le_imp_subset) 1);  | 
| 760 | 235  | 
qed "rank_succ";  | 
| 
8127
 
68c6159440f1
new lemmas for Ntree recursor example;  more simprules;  more lemmas borrowed
 
paulson 
parents: 
6163 
diff
changeset
 | 
236  | 
Addsimps [rank_0, rank_succ];  | 
| 0 | 237  | 
|
| 5067 | 238  | 
Goal "rank(Union(A)) = (UN x:A. rank(x))";  | 
| 0 | 239  | 
by (rtac equalityI 1);  | 
| 
25
 
3ac1c0c0016e
ordinal: DEFINITION of < and le to replace : and <= on ordinals!  Many
 
lcp 
parents: 
14 
diff
changeset
 | 
240  | 
by (rtac (rank_mono RS le_imp_subset RS UN_least) 2);  | 
| 0 | 241  | 
by (etac Union_upper 2);  | 
| 2033 | 242  | 
by (stac rank 1);  | 
| 0 | 243  | 
by (rtac UN_least 1);  | 
244  | 
by (etac UnionE 1);  | 
|
245  | 
by (rtac subset_trans 1);  | 
|
246  | 
by (etac (RepFunI RS Union_upper) 2);  | 
|
| 
25
 
3ac1c0c0016e
ordinal: DEFINITION of < and le to replace : and <= on ordinals!  Many
 
lcp 
parents: 
14 
diff
changeset
 | 
247  | 
by (etac (rank_lt RS succ_leI RS le_imp_subset) 1);  | 
| 760 | 248  | 
qed "rank_Union";  | 
| 0 | 249  | 
|
| 5067 | 250  | 
Goal "rank(eclose(a)) = rank(a)";  | 
| 437 | 251  | 
by (rtac le_anti_sym 1);  | 
| 0 | 252  | 
by (rtac (arg_subset_eclose RS rank_mono) 2);  | 
253  | 
by (res_inst_tac [("a1","eclose(a)")] (rank RS ssubst) 1);
 | 
|
| 
25
 
3ac1c0c0016e
ordinal: DEFINITION of < and le to replace : and <= on ordinals!  Many
 
lcp 
parents: 
14 
diff
changeset
 | 
254  | 
by (rtac (Ord_rank RS UN_least_le) 1);  | 
| 
 
3ac1c0c0016e
ordinal: DEFINITION of < and le to replace : and <= on ordinals!  Many
 
lcp 
parents: 
14 
diff
changeset
 | 
255  | 
by (etac (eclose_rank_lt RS succ_leI) 1);  | 
| 760 | 256  | 
qed "rank_eclose";  | 
| 0 | 257  | 
|
| 5067 | 258  | 
Goalw [Pair_def] "rank(a) < rank(<a,b>)";  | 
| 
25
 
3ac1c0c0016e
ordinal: DEFINITION of < and le to replace : and <= on ordinals!  Many
 
lcp 
parents: 
14 
diff
changeset
 | 
259  | 
by (rtac (consI1 RS rank_lt RS lt_trans) 1);  | 
| 0 | 260  | 
by (rtac (consI1 RS consI2 RS rank_lt) 1);  | 
| 760 | 261  | 
qed "rank_pair1";  | 
| 0 | 262  | 
|
| 5067 | 263  | 
Goalw [Pair_def] "rank(b) < rank(<a,b>)";  | 
| 
25
 
3ac1c0c0016e
ordinal: DEFINITION of < and le to replace : and <= on ordinals!  Many
 
lcp 
parents: 
14 
diff
changeset
 | 
264  | 
by (rtac (consI1 RS consI2 RS rank_lt RS lt_trans) 1);  | 
| 0 | 265  | 
by (rtac (consI1 RS consI2 RS rank_lt) 1);  | 
| 760 | 266  | 
qed "rank_pair2";  | 
| 0 | 267  | 
|
| 
8127
 
68c6159440f1
new lemmas for Ntree recursor example;  more simprules;  more lemmas borrowed
 
paulson 
parents: 
6163 
diff
changeset
 | 
268  | 
(*Not clear how to remove the P(a) condition, since the "then" part  | 
| 
 
68c6159440f1
new lemmas for Ntree recursor example;  more simprules;  more lemmas borrowed
 
paulson 
parents: 
6163 
diff
changeset
 | 
269  | 
must refer to "a"*)  | 
| 
 
68c6159440f1
new lemmas for Ntree recursor example;  more simprules;  more lemmas borrowed
 
paulson 
parents: 
6163 
diff
changeset
 | 
270  | 
Goal "P(a) ==> (THE x. P(x)) = (if (EX!x. P(x)) then a else 0)";  | 
| 
 
68c6159440f1
new lemmas for Ntree recursor example;  more simprules;  more lemmas borrowed
 
paulson 
parents: 
6163 
diff
changeset
 | 
271  | 
by (asm_simp_tac (simpset() addsimps [the_0, the_equality2]) 1);  | 
| 
 
68c6159440f1
new lemmas for Ntree recursor example;  more simprules;  more lemmas borrowed
 
paulson 
parents: 
6163 
diff
changeset
 | 
272  | 
qed "the_equality_if";  | 
| 
 
68c6159440f1
new lemmas for Ntree recursor example;  more simprules;  more lemmas borrowed
 
paulson 
parents: 
6163 
diff
changeset
 | 
273  | 
|
| 
 
68c6159440f1
new lemmas for Ntree recursor example;  more simprules;  more lemmas borrowed
 
paulson 
parents: 
6163 
diff
changeset
 | 
274  | 
(*The premise is needed not just to fix i but to ensure f~=0*)  | 
| 
 
68c6159440f1
new lemmas for Ntree recursor example;  more simprules;  more lemmas borrowed
 
paulson 
parents: 
6163 
diff
changeset
 | 
275  | 
Goalw [apply_def] "i : domain(f) ==> rank(f`i) < rank(f)";  | 
| 
 
68c6159440f1
new lemmas for Ntree recursor example;  more simprules;  more lemmas borrowed
 
paulson 
parents: 
6163 
diff
changeset
 | 
276  | 
by (Clarify_tac 1);  | 
| 
 
68c6159440f1
new lemmas for Ntree recursor example;  more simprules;  more lemmas borrowed
 
paulson 
parents: 
6163 
diff
changeset
 | 
277  | 
by (subgoal_tac "rank(y) < rank(f)" 1);  | 
| 
 
68c6159440f1
new lemmas for Ntree recursor example;  more simprules;  more lemmas borrowed
 
paulson 
parents: 
6163 
diff
changeset
 | 
278  | 
by (blast_tac (claset() addIs [lt_trans, rank_lt, rank_pair2]) 2);  | 
| 
 
68c6159440f1
new lemmas for Ntree recursor example;  more simprules;  more lemmas borrowed
 
paulson 
parents: 
6163 
diff
changeset
 | 
279  | 
by (subgoal_tac "0 < rank(f)" 1);  | 
| 
 
68c6159440f1
new lemmas for Ntree recursor example;  more simprules;  more lemmas borrowed
 
paulson 
parents: 
6163 
diff
changeset
 | 
280  | 
by (etac (Ord_rank RS Ord_0_le RS lt_trans1) 2);  | 
| 
 
68c6159440f1
new lemmas for Ntree recursor example;  more simprules;  more lemmas borrowed
 
paulson 
parents: 
6163 
diff
changeset
 | 
281  | 
by (asm_simp_tac (simpset() addsimps [the_equality_if]) 1);  | 
| 
 
68c6159440f1
new lemmas for Ntree recursor example;  more simprules;  more lemmas borrowed
 
paulson 
parents: 
6163 
diff
changeset
 | 
282  | 
qed "rank_apply";  | 
| 
 
68c6159440f1
new lemmas for Ntree recursor example;  more simprules;  more lemmas borrowed
 
paulson 
parents: 
6163 
diff
changeset
 | 
283  | 
|
| 
 
68c6159440f1
new lemmas for Ntree recursor example;  more simprules;  more lemmas borrowed
 
paulson 
parents: 
6163 
diff
changeset
 | 
284  | 
|
| 0 | 285  | 
(*** Corollaries of leastness ***)  | 
286  | 
||
| 5137 | 287  | 
Goal "A:B ==> eclose(A)<=eclose(B)";  | 
| 0 | 288  | 
by (rtac (Transset_eclose RS eclose_least) 1);  | 
289  | 
by (etac (arg_into_eclose RS eclose_subset) 1);  | 
|
| 760 | 290  | 
qed "mem_eclose_subset";  | 
| 0 | 291  | 
|
| 5137 | 292  | 
Goal "A<=B ==> eclose(A) <= eclose(B)";  | 
| 0 | 293  | 
by (rtac (Transset_eclose RS eclose_least) 1);  | 
294  | 
by (etac subset_trans 1);  | 
|
295  | 
by (rtac arg_subset_eclose 1);  | 
|
| 760 | 296  | 
qed "eclose_mono";  | 
| 0 | 297  | 
|
298  | 
(** Idempotence of eclose **)  | 
|
299  | 
||
| 5067 | 300  | 
Goal "eclose(eclose(A)) = eclose(A)";  | 
| 0 | 301  | 
by (rtac equalityI 1);  | 
302  | 
by (rtac ([Transset_eclose, subset_refl] MRS eclose_least) 1);  | 
|
303  | 
by (rtac arg_subset_eclose 1);  | 
|
| 760 | 304  | 
qed "eclose_idem";  | 
| 2469 | 305  | 
|
| 6070 | 306  | 
(** Transfinite recursion for definitions based on the  | 
307  | 
three cases of ordinals **)  | 
|
| 2469 | 308  | 
|
| 5067 | 309  | 
Goal "transrec2(0,a,b) = a";  | 
| 2469 | 310  | 
by (rtac (transrec2_def RS def_transrec RS trans) 1);  | 
311  | 
by (Simp_tac 1);  | 
|
312  | 
qed "transrec2_0";  | 
|
313  | 
||
| 5067 | 314  | 
Goal "(THE j. i=j) = i";  | 
| 5505 | 315  | 
by (Blast_tac 1);  | 
| 2469 | 316  | 
qed "THE_eq";  | 
317  | 
||
| 5067 | 318  | 
Goal "transrec2(succ(i),a,b) = b(i, transrec2(i,a,b))";  | 
| 2469 | 319  | 
by (rtac (transrec2_def RS def_transrec RS trans) 1);  | 
| 8201 | 320  | 
by (simp_tac (simpset() addsimps [THE_eq, if_P]) 1);  | 
| 3016 | 321  | 
by (Blast_tac 1);  | 
| 2469 | 322  | 
qed "transrec2_succ";  | 
323  | 
||
| 5137 | 324  | 
Goal "Limit(i) ==> transrec2(i,a,b) = (UN j<i. transrec2(j,a,b))";  | 
| 2469 | 325  | 
by (rtac (transrec2_def RS def_transrec RS trans) 1);  | 
| 5137 | 326  | 
by (Simp_tac 1);  | 
| 4091 | 327  | 
by (blast_tac (claset() addSDs [Limit_has_0] addSEs [succ_LimitE]) 1);  | 
| 2469 | 328  | 
qed "transrec2_Limit";  | 
329  | 
||
330  | 
Addsimps [transrec2_0, transrec2_succ];  | 
|
| 3016 | 331  | 
|
| 6070 | 332  | 
|
333  | 
(** recursor -- better than nat_rec; the succ case has no type requirement! **)  | 
|
334  | 
||
335  | 
(*NOT suitable for rewriting*)  | 
|
336  | 
val lemma = recursor_def RS def_transrec RS trans;  | 
|
337  | 
||
338  | 
Goal "recursor(a,b,0) = a";  | 
|
339  | 
by (rtac (nat_case_0 RS lemma) 1);  | 
|
340  | 
qed "recursor_0";  | 
|
341  | 
||
342  | 
Goal "recursor(a,b,succ(m)) = b(m, recursor(a,b,m))";  | 
|
343  | 
by (rtac lemma 1);  | 
|
344  | 
by (Simp_tac 1);  | 
|
345  | 
qed "recursor_succ";  | 
|
346  | 
||
347  | 
||
348  | 
(** rec: old version for compatibility **)  | 
|
349  | 
||
350  | 
Goalw [rec_def] "rec(0,a,b) = a";  | 
|
351  | 
by (rtac recursor_0 1);  | 
|
352  | 
qed "rec_0";  | 
|
353  | 
||
354  | 
Goalw [rec_def] "rec(succ(m),a,b) = b(m, rec(m,a,b))";  | 
|
355  | 
by (rtac recursor_succ 1);  | 
|
356  | 
qed "rec_succ";  | 
|
357  | 
||
358  | 
Addsimps [rec_0, rec_succ];  | 
|
359  | 
||
360  | 
val major::prems = Goal  | 
|
361  | 
"[| n: nat; \  | 
|
362  | 
\ a: C(0); \  | 
|
363  | 
\ !!m z. [| m: nat; z: C(m) |] ==> b(m,z): C(succ(m)) \  | 
|
364  | 
\ |] ==> rec(n,a,b) : C(n)";  | 
|
365  | 
by (rtac (major RS nat_induct) 1);  | 
|
366  | 
by (ALLGOALS (asm_simp_tac (simpset() addsimps prems)));  | 
|
367  | 
qed "rec_type";  | 
|
368  |