author | nipkow |
Thu, 08 Dec 2011 09:10:54 +0100 | |
changeset 45785 | 192243fd94a5 |
parent 45659 | 09539cdffcd7 |
child 58963 | 26bf09b95dda |
permissions | -rw-r--r-- |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32957
diff
changeset
|
1 |
(* Title: Provers/typedsimp.ML |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32957
diff
changeset
|
2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
0 | 3 |
Copyright 1993 University of Cambridge |
4 |
||
5 |
Functor for constructing simplifiers. Suitable for Constructive Type |
|
6 |
Theory with its typed reflexivity axiom a:A ==> a=a:A. For most logics try |
|
7 |
simp.ML. |
|
8 |
*) |
|
9 |
||
10 |
signature TSIMP_DATA = |
|
11 |
sig |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32957
diff
changeset
|
12 |
val refl: thm (*Reflexive law*) |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32957
diff
changeset
|
13 |
val sym: thm (*Symmetric law*) |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32957
diff
changeset
|
14 |
val trans: thm (*Transitive law*) |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32957
diff
changeset
|
15 |
val refl_red: thm (* reduce(a,a) *) |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32957
diff
changeset
|
16 |
val trans_red: thm (* [|a=b; reduce(b,c) |] ==> a=c *) |
0 | 17 |
val red_if_equal: thm (* a=b ==> reduce(a,b) *) |
18 |
(*Built-in rewrite rules*) |
|
19 |
val default_rls: thm list |
|
20 |
(*Type checking or similar -- solution of routine conditions*) |
|
21 |
val routine_tac: thm list -> int -> tactic |
|
22 |
end; |
|
23 |
||
24 |
signature TSIMP = |
|
25 |
sig |
|
26 |
val asm_res_tac: thm list -> int -> tactic |
|
27 |
val cond_norm_tac: ((int->tactic) * thm list * thm list) -> tactic |
|
28 |
val cond_step_tac: ((int->tactic) * thm list * thm list) -> int -> tactic |
|
29 |
val norm_tac: (thm list * thm list) -> tactic |
|
30 |
val process_rules: thm list -> thm list * thm list |
|
31 |
val rewrite_res_tac: int -> tactic |
|
32 |
val split_eqn: thm |
|
33 |
val step_tac: (thm list * thm list) -> int -> tactic |
|
34 |
val subconv_res_tac: thm list -> int -> tactic |
|
35 |
end; |
|
36 |
||
37 |
||
38 |
functor TSimpFun (TSimp_data: TSIMP_DATA) : TSIMP = |
|
39 |
struct |
|
40 |
local open TSimp_data |
|
41 |
in |
|
42 |
||
43 |
(*For simplifying both sides of an equation: |
|
44 |
[| a=c; b=c |] ==> b=a |
|
45 |
Can use resolve_tac [split_eqn] to prepare an equation for simplification. *) |
|
45659
09539cdffcd7
avoid stepping outside of context -- plain zero_var_indexes should be sufficient;
wenzelm
parents:
35021
diff
changeset
|
46 |
val split_eqn = Drule.zero_var_indexes (sym RSN (2,trans) RS sym); |
0 | 47 |
|
48 |
||
49 |
(* [| a=b; b=c |] ==> reduce(a,c) *) |
|
45659
09539cdffcd7
avoid stepping outside of context -- plain zero_var_indexes should be sufficient;
wenzelm
parents:
35021
diff
changeset
|
50 |
val red_trans = Drule.zero_var_indexes (trans RS red_if_equal); |
0 | 51 |
|
52 |
(*For REWRITE rule: Make a reduction rule for simplification, e.g. |
|
53 |
[| a: C(0); ... ; a=c: C(0) |] ==> rec(0,a,b) = c: C(0) *) |
|
54 |
fun simp_rule rl = rl RS trans; |
|
55 |
||
56 |
(*For REWRITE rule: Make rule for resimplifying if possible, e.g. |
|
57 |
[| a: C(0); ...; a=c: C(0) |] ==> reduce(rec(0,a,b), c) *) |
|
58 |
fun resimp_rule rl = rl RS red_trans; |
|
59 |
||
60 |
(*For CONGRUENCE rule, like a=b ==> succ(a) = succ(b) |
|
61 |
Make rule for simplifying subterms, e.g. |
|
62 |
[| a=b: N; reduce(succ(b), c) |] ==> succ(a)=c: N *) |
|
63 |
fun subconv_rule rl = rl RS trans_red; |
|
64 |
||
65 |
(*If the rule proves an equality then add both forms to simp_rls |
|
66 |
else add the rule to other_rls*) |
|
33339 | 67 |
fun add_rule rl (simp_rls, other_rls) = |
0 | 68 |
(simp_rule rl :: resimp_rule rl :: simp_rls, other_rls) |
69 |
handle THM _ => (simp_rls, rl :: other_rls); |
|
70 |
||
71 |
(*Given the list rls, return the pair (simp_rls, other_rls).*) |
|
33339 | 72 |
fun process_rules rls = fold_rev add_rule rls ([], []); |
0 | 73 |
|
74 |
(*Given list of rewrite rules, return list of both forms, reject others*) |
|
75 |
fun process_rewrites rls = |
|
76 |
case process_rules rls of |
|
77 |
(simp_rls,[]) => simp_rls |
|
78 |
| (_,others) => raise THM |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32957
diff
changeset
|
79 |
("process_rewrites: Ill-formed rewrite", 0, others); |
0 | 80 |
|
81 |
(*Process the default rewrite rules*) |
|
82 |
val simp_rls = process_rewrites default_rls; |
|
83 |
||
84 |
(*If subgoal is too flexible (e.g. ?a=?b or just ?P) then filt_resolve_tac |
|
85 |
will fail! The filter will pass all the rules, and the bound permits |
|
86 |
no ambiguity.*) |
|
87 |
||
88 |
(*Resolution with rewrite/sub rules. Builds the tree for filt_resolve_tac.*) |
|
89 |
val rewrite_res_tac = filt_resolve_tac simp_rls 2; |
|
90 |
||
91 |
(*The congruence rules for simplifying subterms. If subgoal is too flexible |
|
92 |
then only refl,refl_red will be used (if even them!). *) |
|
93 |
fun subconv_res_tac congr_rls = |
|
94 |
filt_resolve_tac (map subconv_rule congr_rls) 2 |
|
95 |
ORELSE' filt_resolve_tac [refl,refl_red] 1; |
|
96 |
||
97 |
(*Resolve with asms, whether rewrites or not*) |
|
98 |
fun asm_res_tac asms = |
|
99 |
let val (xsimp_rls,xother_rls) = process_rules asms |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32957
diff
changeset
|
100 |
in routine_tac xother_rls ORELSE' |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32957
diff
changeset
|
101 |
filt_resolve_tac xsimp_rls 2 |
0 | 102 |
end; |
103 |
||
104 |
(*Single step for simple rewriting*) |
|
105 |
fun step_tac (congr_rls,asms) = |
|
106 |
asm_res_tac asms ORELSE' rewrite_res_tac ORELSE' |
|
107 |
subconv_res_tac congr_rls; |
|
108 |
||
109 |
(*Single step for conditional rewriting: prove_cond_tac handles new subgoals.*) |
|
110 |
fun cond_step_tac (prove_cond_tac, congr_rls, asms) = |
|
111 |
asm_res_tac asms ORELSE' rewrite_res_tac ORELSE' |
|
112 |
(resolve_tac [trans, red_trans] THEN' prove_cond_tac) ORELSE' |
|
113 |
subconv_res_tac congr_rls; |
|
114 |
||
115 |
(*Unconditional normalization tactic*) |
|
116 |
fun norm_tac arg = REPEAT_FIRST (step_tac arg) THEN |
|
117 |
TRYALL (resolve_tac [red_if_equal]); |
|
118 |
||
119 |
(*Conditional normalization tactic*) |
|
120 |
fun cond_norm_tac arg = REPEAT_FIRST (cond_step_tac arg) THEN |
|
121 |
TRYALL (resolve_tac [red_if_equal]); |
|
122 |
||
123 |
end; |
|
124 |
end; |
|
125 |
||
126 |