| 2665 |      1 | \begin{theindex}
 | 
|  |      2 | 
 | 
| 3213 |      3 |   \item {\tt !} symbol, 60, 62, 69, 70
 | 
|  |      4 |   \item {\tt[]} symbol, 81
 | 
|  |      5 |   \item {\tt\#} symbol, 81
 | 
| 3315 |      6 |   \item {\tt\#*} symbol, 47, 124
 | 
|  |      7 |   \item {\tt\#+} symbol, 47, 124
 | 
| 3213 |      8 |   \item {\tt\#-} symbol, 47
 | 
| 3315 |      9 |   \item {\tt\&} symbol, 7, 60, 101
 | 
|  |     10 |   \item {\tt *} symbol, 26, 61, 78, 115
 | 
| 3213 |     11 |   \item {\tt *} type, 76
 | 
| 3315 |     12 |   \item {\tt +} symbol, 43, 61, 78, 115
 | 
| 3213 |     13 |   \item {\tt +} type, 76
 | 
| 3315 |     14 |   \item {\tt -} symbol, 25, 61, 78, 124
 | 
|  |     15 |   \item {\tt -->} symbol, 7, 60, 101, 115
 | 
| 3213 |     16 |   \item {\tt ->} symbol, 26
 | 
|  |     17 |   \item {\tt -``} symbol, 25
 | 
|  |     18 |   \item {\tt :} symbol, 25, 68
 | 
|  |     19 |   \item {\tt <} constant, 79
 | 
|  |     20 |   \item {\tt <} symbol, 78
 | 
| 3315 |     21 |   \item {\tt <->} symbol, 7, 101
 | 
| 3213 |     22 |   \item {\tt <=} constant, 79
 | 
|  |     23 |   \item {\tt <=} symbol, 25, 68
 | 
| 3315 |     24 |   \item {\tt =} symbol, 7, 60, 101, 115
 | 
| 3213 |     25 |   \item {\tt ?} symbol, 60, 62, 69, 70
 | 
|  |     26 |   \item {\tt ?!} symbol, 60
 | 
|  |     27 |   \item {\tt\at} symbol, 60, 81
 | 
| 3315 |     28 |   \item {\tt `} symbol, 25, 115
 | 
| 3213 |     29 |   \item {\tt ``} symbol, 25, 68
 | 
|  |     30 |   \item \verb'{}' symbol, 68
 | 
| 3315 |     31 |   \item {\tt |} symbol, 7, 60, 101
 | 
|  |     32 |   \item {\tt |-|} symbol, 124
 | 
| 2665 |     33 | 
 | 
|  |     34 |   \indexspace
 | 
|  |     35 | 
 | 
| 3315 |     36 |   \item {\tt 0} constant, 25, 78, 113
 | 
| 2665 |     37 | 
 | 
|  |     38 |   \indexspace
 | 
|  |     39 | 
 | 
| 3315 |     40 |   \item {\tt absdiff_def} theorem, 124
 | 
|  |     41 |   \item {\tt add_assoc} theorem, 124
 | 
|  |     42 |   \item {\tt add_commute} theorem, 124
 | 
|  |     43 |   \item {\tt add_def} theorem, 47, 124
 | 
|  |     44 |   \item {\tt add_inverse_diff} theorem, 124
 | 
|  |     45 |   \item {\tt add_mp_tac}, \bold{122}
 | 
|  |     46 |   \item {\tt add_mult_dist} theorem, 47, 124
 | 
|  |     47 |   \item {\tt add_safes}, \bold{107}
 | 
|  |     48 |   \item {\tt add_typing} theorem, 124
 | 
|  |     49 |   \item {\tt add_unsafes}, \bold{107}
 | 
|  |     50 |   \item {\tt addC0} theorem, 124
 | 
|  |     51 |   \item {\tt addC_succ} theorem, 124
 | 
|  |     52 |   \item {\tt ALL} symbol, 7, 26, 60, 62, 69, 70, 101
 | 
|  |     53 |   \item {\tt All} constant, 7, 60, 101
 | 
| 3213 |     54 |   \item {\tt All_def} theorem, 64
 | 
|  |     55 |   \item {\tt all_dupE} theorem, 5, 9, 66
 | 
|  |     56 |   \item {\tt all_impE} theorem, 9
 | 
|  |     57 |   \item {\tt allE} theorem, 5, 9, 66
 | 
|  |     58 |   \item {\tt allI} theorem, 8, 66
 | 
| 3315 |     59 |   \item {\tt allL} theorem, 103, 106
 | 
|  |     60 |   \item {\tt allL_thin} theorem, 104
 | 
|  |     61 |   \item {\tt allR} theorem, 103
 | 
| 3213 |     62 |   \item {\tt and_def} theorem, 42, 64
 | 
|  |     63 |   \item {\tt app_def} theorem, 49
 | 
|  |     64 |   \item {\tt apply_def} theorem, 31
 | 
|  |     65 |   \item {\tt apply_equality} theorem, 39, 40, 57
 | 
|  |     66 |   \item {\tt apply_equality2} theorem, 39
 | 
|  |     67 |   \item {\tt apply_iff} theorem, 39
 | 
|  |     68 |   \item {\tt apply_Pair} theorem, 39, 57
 | 
|  |     69 |   \item {\tt apply_type} theorem, 39
 | 
|  |     70 |   \item {\tt arg_cong} theorem, 65
 | 
| 3315 |     71 |   \item {\tt Arith} theory, 46, 79, 123
 | 
| 2665 |     72 |   \item assumptions
 | 
| 3213 |     73 |     \subitem contradictory, 16
 | 
| 3315 |     74 |     \subitem in {\CTT}, 112, 122
 | 
| 2665 |     75 | 
 | 
|  |     76 |   \indexspace
 | 
|  |     77 | 
 | 
| 3213 |     78 |   \item {\tt Ball} constant, 25, 29, 68, 70
 | 
|  |     79 |   \item {\tt ball_cong} theorem, 32, 33
 | 
|  |     80 |   \item {\tt Ball_def} theorem, 30, 71
 | 
|  |     81 |   \item {\tt ballE} theorem, 32, 33, 72
 | 
|  |     82 |   \item {\tt ballI} theorem, 33, 72
 | 
| 3315 |     83 |   \item {\tt basic} theorem, 103
 | 
|  |     84 |   \item {\tt basic_defs}, \bold{120}
 | 
|  |     85 |   \item {\tt best_tac}, \bold{108}
 | 
| 3213 |     86 |   \item {\tt beta} theorem, 39, 40
 | 
|  |     87 |   \item {\tt Bex} constant, 25, 29, 68, 70
 | 
|  |     88 |   \item {\tt bex_cong} theorem, 32, 33
 | 
|  |     89 |   \item {\tt Bex_def} theorem, 30, 71
 | 
|  |     90 |   \item {\tt bexCI} theorem, 33, 70, 72
 | 
|  |     91 |   \item {\tt bexE} theorem, 33, 72
 | 
|  |     92 |   \item {\tt bexI} theorem, 33, 70, 72
 | 
|  |     93 |   \item {\tt bij} constant, 45
 | 
|  |     94 |   \item {\tt bij_converse_bij} theorem, 45
 | 
|  |     95 |   \item {\tt bij_def} theorem, 45
 | 
|  |     96 |   \item {\tt bij_disjoint_Un} theorem, 45
 | 
|  |     97 |   \item {\tt Blast_tac}, 54--56
 | 
|  |     98 |   \item {\tt blast_tac}, 18, 20, 21
 | 
|  |     99 |   \item {\tt bnd_mono_def} theorem, 44
 | 
|  |    100 |   \item {\tt Bool} theory, 40
 | 
|  |    101 |   \item {\tt bool} type, 61
 | 
|  |    102 |   \item {\tt bool_0I} theorem, 42
 | 
|  |    103 |   \item {\tt bool_1I} theorem, 42
 | 
|  |    104 |   \item {\tt bool_def} theorem, 42
 | 
|  |    105 |   \item {\tt boolE} theorem, 42
 | 
|  |    106 |   \item {\tt box_equals} theorem, 65, 67
 | 
|  |    107 |   \item {\tt bspec} theorem, 33, 72
 | 
| 2665 |    108 | 
 | 
|  |    109 |   \indexspace
 | 
|  |    110 | 
 | 
| 3213 |    111 |   \item {\tt case} constant, 43
 | 
|  |    112 |   \item {\tt case} symbol, 63, 79, 80, 86
 | 
|  |    113 |   \item {\tt case_def} theorem, 43
 | 
|  |    114 |   \item {\tt case_Inl} theorem, 43
 | 
|  |    115 |   \item {\tt case_Inr} theorem, 43
 | 
|  |    116 |   \item {\tt case_tac}, \bold{67}
 | 
| 3096 |    117 |   \item {\tt CCL} theory, 1
 | 
| 3213 |    118 |   \item {\tt ccontr} theorem, 66
 | 
|  |    119 |   \item {\tt classical} theorem, 66
 | 
|  |    120 |   \item {\tt coinduct} theorem, 44
 | 
| 3288 |    121 |   \item {\tt coinductive}, 92--95
 | 
| 3213 |    122 |   \item {\tt Collect} constant, 25, 26, 29, 68, 70
 | 
|  |    123 |   \item {\tt Collect_def} theorem, 30
 | 
|  |    124 |   \item {\tt Collect_mem_eq} theorem, 70, 71
 | 
|  |    125 |   \item {\tt Collect_subset} theorem, 36
 | 
| 3315 |    126 |   \item {\tt CollectD} theorem, 72, 98
 | 
| 3213 |    127 |   \item {\tt CollectD1} theorem, 32, 34
 | 
|  |    128 |   \item {\tt CollectD2} theorem, 32, 34
 | 
|  |    129 |   \item {\tt CollectE} theorem, 32, 34, 72
 | 
|  |    130 |   \item {\tt CollectI} theorem, 34, 72, 98
 | 
|  |    131 |   \item {\tt comp_assoc} theorem, 45
 | 
|  |    132 |   \item {\tt comp_bij} theorem, 45
 | 
|  |    133 |   \item {\tt comp_def} theorem, 45
 | 
|  |    134 |   \item {\tt comp_func} theorem, 45
 | 
|  |    135 |   \item {\tt comp_func_apply} theorem, 45
 | 
|  |    136 |   \item {\tt comp_inj} theorem, 45
 | 
| 3315 |    137 |   \item {\tt comp_rls}, \bold{120}
 | 
| 3213 |    138 |   \item {\tt comp_surj} theorem, 45
 | 
|  |    139 |   \item {\tt comp_type} theorem, 45
 | 
|  |    140 |   \item {\tt Compl} constant, 68
 | 
|  |    141 |   \item {\tt Compl_def} theorem, 71
 | 
|  |    142 |   \item {\tt Compl_disjoint} theorem, 74
 | 
|  |    143 |   \item {\tt Compl_Int} theorem, 74
 | 
|  |    144 |   \item {\tt Compl_partition} theorem, 74
 | 
|  |    145 |   \item {\tt Compl_Un} theorem, 74
 | 
|  |    146 |   \item {\tt ComplD} theorem, 73
 | 
|  |    147 |   \item {\tt ComplI} theorem, 73
 | 
|  |    148 |   \item {\tt concat} constant, 81
 | 
|  |    149 |   \item {\tt cond_0} theorem, 42
 | 
|  |    150 |   \item {\tt cond_1} theorem, 42
 | 
|  |    151 |   \item {\tt cond_def} theorem, 42
 | 
|  |    152 |   \item {\tt cong} theorem, 65
 | 
|  |    153 |   \item congruence rules, 32
 | 
|  |    154 |   \item {\tt conj_cong}, 6, 75
 | 
|  |    155 |   \item {\tt conj_impE} theorem, 9, 10
 | 
|  |    156 |   \item {\tt conjE} theorem, 9, 65
 | 
|  |    157 |   \item {\tt conjI} theorem, 8, 65
 | 
| 3315 |    158 |   \item {\tt conjL} theorem, 103
 | 
|  |    159 |   \item {\tt conjR} theorem, 103
 | 
| 3213 |    160 |   \item {\tt conjunct1} theorem, 8, 65
 | 
|  |    161 |   \item {\tt conjunct2} theorem, 8, 65
 | 
| 3315 |    162 |   \item {\tt conL} theorem, 104
 | 
|  |    163 |   \item {\tt conR} theorem, 104
 | 
| 3213 |    164 |   \item {\tt cons} constant, 25, 26
 | 
|  |    165 |   \item {\tt cons_def} theorem, 31
 | 
|  |    166 |   \item {\tt Cons_iff} theorem, 49
 | 
|  |    167 |   \item {\tt consCI} theorem, 35
 | 
|  |    168 |   \item {\tt consE} theorem, 35
 | 
|  |    169 |   \item {\tt ConsI} theorem, 49
 | 
|  |    170 |   \item {\tt consI1} theorem, 35
 | 
|  |    171 |   \item {\tt consI2} theorem, 35
 | 
| 3315 |    172 |   \item Constructive Type Theory, 112--134
 | 
|  |    173 |   \item {\tt contr} constant, 113
 | 
| 3213 |    174 |   \item {\tt converse} constant, 25, 39
 | 
|  |    175 |   \item {\tt converse_def} theorem, 31
 | 
| 3315 |    176 |   \item {\tt could_res}, \bold{105}
 | 
|  |    177 |   \item {\tt could_resolve_seq}, \bold{106}
 | 
|  |    178 |   \item {\tt CTT} theory, 1, 112
 | 
| 3096 |    179 |   \item {\tt Cube} theory, 1
 | 
| 3315 |    180 |   \item {\tt cut} theorem, 103
 | 
| 3213 |    181 |   \item {\tt cut_facts_tac}, 18, 19, 56
 | 
| 3315 |    182 |   \item {\tt cutL_tac}, \bold{105}
 | 
|  |    183 |   \item {\tt cutR_tac}, \bold{105}
 | 
| 2665 |    184 | 
 | 
|  |    185 |   \indexspace
 | 
|  |    186 | 
 | 
| 3288 |    187 |   \item {\tt datatype}, 85--92
 | 
| 3213 |    188 |   \item {\tt deepen_tac}, 16
 | 
| 3315 |    189 |   \item {\tt diff_0_eq_0} theorem, 124
 | 
| 3213 |    190 |   \item {\tt Diff_cancel} theorem, 41
 | 
|  |    191 |   \item {\tt Diff_contains} theorem, 36
 | 
|  |    192 |   \item {\tt Diff_def} theorem, 30
 | 
| 3315 |    193 |   \item {\tt diff_def} theorem, 47, 124
 | 
| 3213 |    194 |   \item {\tt Diff_disjoint} theorem, 41
 | 
|  |    195 |   \item {\tt Diff_Int} theorem, 41
 | 
|  |    196 |   \item {\tt Diff_partition} theorem, 41
 | 
| 3315 |    197 |   \item {\tt diff_self_eq_0} theorem, 124
 | 
| 3213 |    198 |   \item {\tt Diff_subset} theorem, 36
 | 
| 3315 |    199 |   \item {\tt diff_succ_succ} theorem, 124
 | 
|  |    200 |   \item {\tt diff_typing} theorem, 124
 | 
| 3213 |    201 |   \item {\tt Diff_Un} theorem, 41
 | 
| 3315 |    202 |   \item {\tt diffC0} theorem, 124
 | 
| 3213 |    203 |   \item {\tt DiffD1} theorem, 35
 | 
|  |    204 |   \item {\tt DiffD2} theorem, 35
 | 
|  |    205 |   \item {\tt DiffE} theorem, 35
 | 
|  |    206 |   \item {\tt DiffI} theorem, 35
 | 
|  |    207 |   \item {\tt disj_impE} theorem, 9, 10, 14
 | 
|  |    208 |   \item {\tt disjCI} theorem, 11, 66
 | 
|  |    209 |   \item {\tt disjE} theorem, 8, 65
 | 
|  |    210 |   \item {\tt disjI1} theorem, 8, 65
 | 
|  |    211 |   \item {\tt disjI2} theorem, 8, 65
 | 
| 3315 |    212 |   \item {\tt disjL} theorem, 103
 | 
|  |    213 |   \item {\tt disjR} theorem, 103
 | 
|  |    214 |   \item {\tt div} symbol, 47, 78, 124
 | 
|  |    215 |   \item {\tt div_def} theorem, 47, 124
 | 
| 3213 |    216 |   \item {\tt div_geq} theorem, 79
 | 
|  |    217 |   \item {\tt div_less} theorem, 79
 | 
|  |    218 |   \item {\tt domain} constant, 25, 39
 | 
|  |    219 |   \item {\tt domain_def} theorem, 31
 | 
|  |    220 |   \item {\tt domain_of_fun} theorem, 39
 | 
|  |    221 |   \item {\tt domain_subset} theorem, 38
 | 
|  |    222 |   \item {\tt domain_type} theorem, 39
 | 
|  |    223 |   \item {\tt domainE} theorem, 38, 39
 | 
|  |    224 |   \item {\tt domainI} theorem, 38, 39
 | 
|  |    225 |   \item {\tt double_complement} theorem, 41, 74
 | 
|  |    226 |   \item {\tt dresolve_tac}, 53
 | 
|  |    227 |   \item {\tt drop} constant, 81
 | 
|  |    228 |   \item {\tt dropWhile} constant, 81
 | 
| 2665 |    229 | 
 | 
|  |    230 |   \indexspace
 | 
|  |    231 | 
 | 
| 3315 |    232 |   \item {\tt Elem} constant, 113
 | 
|  |    233 |   \item {\tt elim_rls}, \bold{120}
 | 
|  |    234 |   \item {\tt elimL_rls}, \bold{120}
 | 
| 3213 |    235 |   \item {\tt empty_def} theorem, 71
 | 
| 3315 |    236 |   \item {\tt empty_pack}, \bold{106}
 | 
| 3213 |    237 |   \item {\tt empty_subsetI} theorem, 33
 | 
|  |    238 |   \item {\tt emptyE} theorem, 33, 73
 | 
|  |    239 |   \item {\tt Eps} constant, 60, 62
 | 
| 3315 |    240 |   \item {\tt Eq} constant, 113
 | 
|  |    241 |   \item {\tt eq} constant, 113, 118
 | 
| 3213 |    242 |   \item {\tt eq_mp_tac}, \bold{10}
 | 
| 3315 |    243 |   \item {\tt EqC} theorem, 119
 | 
|  |    244 |   \item {\tt EqE} theorem, 119
 | 
|  |    245 |   \item {\tt Eqelem} constant, 113
 | 
|  |    246 |   \item {\tt EqF} theorem, 119
 | 
|  |    247 |   \item {\tt EqFL} theorem, 119
 | 
|  |    248 |   \item {\tt EqI} theorem, 119
 | 
|  |    249 |   \item {\tt Eqtype} constant, 113
 | 
|  |    250 |   \item {\tt equal_tac}, \bold{121}
 | 
|  |    251 |   \item {\tt equal_types} theorem, 116
 | 
|  |    252 |   \item {\tt equal_typesL} theorem, 116
 | 
|  |    253 |   \item {\tt equalityCE} theorem, 70, 72, 98
 | 
| 3213 |    254 |   \item {\tt equalityD1} theorem, 33, 72
 | 
|  |    255 |   \item {\tt equalityD2} theorem, 33, 72
 | 
|  |    256 |   \item {\tt equalityE} theorem, 33, 72
 | 
|  |    257 |   \item {\tt equalityI} theorem, 33, 52, 72
 | 
|  |    258 |   \item {\tt equals0D} theorem, 33
 | 
|  |    259 |   \item {\tt equals0I} theorem, 33
 | 
|  |    260 |   \item {\tt eresolve_tac}, 16
 | 
|  |    261 |   \item {\tt eta} theorem, 39, 40
 | 
| 3315 |    262 |   \item {\tt EX} symbol, 7, 26, 60, 62, 69, 70, 101
 | 
|  |    263 |   \item {\tt Ex} constant, 7, 60, 101
 | 
| 3213 |    264 |   \item {\tt EX!} symbol, 7, 60
 | 
|  |    265 |   \item {\tt Ex1} constant, 7, 60
 | 
|  |    266 |   \item {\tt Ex1_def} theorem, 64
 | 
|  |    267 |   \item {\tt ex1_def} theorem, 8
 | 
|  |    268 |   \item {\tt ex1E} theorem, 9, 66
 | 
|  |    269 |   \item {\tt ex1I} theorem, 9, 66
 | 
|  |    270 |   \item {\tt Ex_def} theorem, 64
 | 
|  |    271 |   \item {\tt ex_impE} theorem, 9
 | 
|  |    272 |   \item {\tt exCI} theorem, 11, 15, 66
 | 
|  |    273 |   \item {\tt excluded_middle} theorem, 11, 66
 | 
|  |    274 |   \item {\tt exE} theorem, 8, 66
 | 
| 3288 |    275 |   \item {\tt exhaust_tac}, \bold{88}
 | 
| 3213 |    276 |   \item {\tt exI} theorem, 8, 66
 | 
| 3315 |    277 |   \item {\tt exL} theorem, 103
 | 
| 3213 |    278 |   \item {\tt Exp} theory, 96
 | 
|  |    279 |   \item {\tt expand_if} theorem, 66
 | 
|  |    280 |   \item {\tt expand_split} theorem, 76
 | 
|  |    281 |   \item {\tt expand_sum_case} theorem, 78
 | 
| 3315 |    282 |   \item {\tt exR} theorem, 103, 106, 108
 | 
|  |    283 |   \item {\tt exR_thin} theorem, 104, 108, 109
 | 
| 3213 |    284 |   \item {\tt ext} theorem, 63, 64
 | 
|  |    285 |   \item {\tt extension} theorem, 30
 | 
| 2665 |    286 | 
 | 
|  |    287 |   \indexspace
 | 
|  |    288 | 
 | 
| 3315 |    289 |   \item {\tt F} constant, 113
 | 
|  |    290 |   \item {\tt False} constant, 7, 60, 101
 | 
| 3213 |    291 |   \item {\tt False_def} theorem, 64
 | 
|  |    292 |   \item {\tt FalseE} theorem, 8, 65
 | 
| 3315 |    293 |   \item {\tt FalseL} theorem, 103
 | 
|  |    294 |   \item {\tt fast_tac}, \bold{108}
 | 
|  |    295 |   \item {\tt FE} theorem, 119, 123
 | 
|  |    296 |   \item {\tt FEL} theorem, 119
 | 
|  |    297 |   \item {\tt FF} theorem, 119
 | 
| 3213 |    298 |   \item {\tt field} constant, 25
 | 
|  |    299 |   \item {\tt field_def} theorem, 31
 | 
|  |    300 |   \item {\tt field_subset} theorem, 38
 | 
|  |    301 |   \item {\tt fieldCI} theorem, 38
 | 
|  |    302 |   \item {\tt fieldE} theorem, 38
 | 
|  |    303 |   \item {\tt fieldI1} theorem, 38
 | 
|  |    304 |   \item {\tt fieldI2} theorem, 38
 | 
| 3315 |    305 |   \item {\tt filseq_resolve_tac}, \bold{106}
 | 
|  |    306 |   \item {\tt filt_resolve_tac}, 106, 121
 | 
| 3213 |    307 |   \item {\tt filter} constant, 81
 | 
|  |    308 |   \item {\tt Fin.consI} theorem, 48
 | 
|  |    309 |   \item {\tt Fin.emptyI} theorem, 48
 | 
|  |    310 |   \item {\tt Fin_induct} theorem, 48
 | 
|  |    311 |   \item {\tt Fin_mono} theorem, 48
 | 
|  |    312 |   \item {\tt Fin_subset} theorem, 48
 | 
|  |    313 |   \item {\tt Fin_UnI} theorem, 48
 | 
|  |    314 |   \item {\tt Fin_UnionI} theorem, 48
 | 
|  |    315 |   \item first-order logic, 5--22
 | 
|  |    316 |   \item {\tt Fixedpt} theory, 42
 | 
|  |    317 |   \item {\tt flat} constant, 49
 | 
|  |    318 |   \item {\tt flat_def} theorem, 49
 | 
| 3315 |    319 |   \item flex-flex constraints, 100
 | 
|  |    320 |   \item {\tt FOL} theory, 1, 5, 11, 122
 | 
| 3213 |    321 |   \item {\tt FOL_cs}, \bold{11}
 | 
|  |    322 |   \item {\tt FOL_ss}, \bold{6}
 | 
|  |    323 |   \item {\tt foldl} constant, 81
 | 
| 3315 |    324 |   \item {\tt form_rls}, \bold{120}
 | 
|  |    325 |   \item {\tt formL_rls}, \bold{120}
 | 
|  |    326 |   \item {\tt forms_of_seq}, \bold{105}
 | 
| 3213 |    327 |   \item {\tt foundation} theorem, 30
 | 
| 3315 |    328 |   \item {\tt fst} constant, 25, 29, 76, 113, 118
 | 
| 3213 |    329 |   \item {\tt fst_conv} theorem, 37, 76
 | 
| 3315 |    330 |   \item {\tt fst_def} theorem, 31, 118
 | 
| 3213 |    331 |   \item {\tt Fun} theory, 75
 | 
|  |    332 |   \item {\tt fun} type, 61
 | 
|  |    333 |   \item {\tt fun_cong} theorem, 65
 | 
|  |    334 |   \item {\tt fun_disjoint_apply1} theorem, 40, 56
 | 
|  |    335 |   \item {\tt fun_disjoint_apply2} theorem, 40
 | 
|  |    336 |   \item {\tt fun_disjoint_Un} theorem, 40, 58
 | 
|  |    337 |   \item {\tt fun_empty} theorem, 40
 | 
|  |    338 |   \item {\tt fun_extension} theorem, 39, 40
 | 
|  |    339 |   \item {\tt fun_is_rel} theorem, 39
 | 
|  |    340 |   \item {\tt fun_single} theorem, 40
 | 
| 2665 |    341 |   \item function applications
 | 
| 3315 |    342 |     \subitem in \CTT, 115
 | 
| 3213 |    343 |     \subitem in \ZF, 25
 | 
| 2665 |    344 | 
 | 
|  |    345 |   \indexspace
 | 
|  |    346 | 
 | 
| 3213 |    347 |   \item {\tt gfp_def} theorem, 44
 | 
|  |    348 |   \item {\tt gfp_least} theorem, 44
 | 
|  |    349 |   \item {\tt gfp_mono} theorem, 44
 | 
|  |    350 |   \item {\tt gfp_subset} theorem, 44
 | 
|  |    351 |   \item {\tt gfp_Tarski} theorem, 44
 | 
|  |    352 |   \item {\tt gfp_upperbound} theorem, 44
 | 
|  |    353 |   \item {\tt goalw}, 18
 | 
| 2665 |    354 | 
 | 
|  |    355 |   \indexspace
 | 
|  |    356 | 
 | 
| 3213 |    357 |   \item {\tt hd} constant, 81
 | 
| 3315 |    358 |   \item higher-order logic, 59--99
 | 
| 3213 |    359 |   \item {\tt HOL} theory, 1, 59
 | 
|  |    360 |   \item {\sc hol} system, 59, 62
 | 
|  |    361 |   \item {\tt HOL_basic_ss}, \bold{75}
 | 
|  |    362 |   \item {\tt HOL_cs}, \bold{76}
 | 
|  |    363 |   \item {\tt HOL_quantifiers}, \bold{62}, 70
 | 
|  |    364 |   \item {\tt HOL_ss}, \bold{75}
 | 
| 3096 |    365 |   \item {\tt HOLCF} theory, 1
 | 
| 3315 |    366 |   \item {\tt hyp_rew_tac}, \bold{122}
 | 
| 3213 |    367 |   \item {\tt hyp_subst_tac}, 6, 75
 | 
| 2665 |    368 | 
 | 
|  |    369 |   \indexspace
 | 
|  |    370 | 
 | 
| 3315 |    371 |   \item {\tt i} type, 24, 112
 | 
| 3213 |    372 |   \item {\tt id} constant, 45
 | 
|  |    373 |   \item {\tt id_def} theorem, 45
 | 
|  |    374 |   \item {\tt If} constant, 60
 | 
|  |    375 |   \item {\tt if} constant, 25
 | 
|  |    376 |   \item {\tt if_def} theorem, 17, 30, 64
 | 
|  |    377 |   \item {\tt if_not_P} theorem, 35, 66
 | 
|  |    378 |   \item {\tt if_P} theorem, 35, 66
 | 
|  |    379 |   \item {\tt ifE} theorem, 19
 | 
|  |    380 |   \item {\tt iff} theorem, 63, 64
 | 
| 3315 |    381 |   \item {\tt iff_def} theorem, 8, 103
 | 
| 3213 |    382 |   \item {\tt iff_impE} theorem, 9
 | 
|  |    383 |   \item {\tt iffCE} theorem, 11, 66, 70
 | 
|  |    384 |   \item {\tt iffD1} theorem, 9, 65
 | 
|  |    385 |   \item {\tt iffD2} theorem, 9, 65
 | 
|  |    386 |   \item {\tt iffE} theorem, 9, 65
 | 
|  |    387 |   \item {\tt iffI} theorem, 9, 19, 65
 | 
| 3315 |    388 |   \item {\tt iffL} theorem, 104, 110
 | 
|  |    389 |   \item {\tt iffR} theorem, 104
 | 
| 3213 |    390 |   \item {\tt ifI} theorem, 19
 | 
|  |    391 |   \item {\tt IFOL} theory, 5
 | 
|  |    392 |   \item {\tt IFOL_ss}, \bold{6}
 | 
|  |    393 |   \item {\tt image_def} theorem, 31, 71
 | 
|  |    394 |   \item {\tt imageE} theorem, 38, 73
 | 
|  |    395 |   \item {\tt imageI} theorem, 38, 73
 | 
|  |    396 |   \item {\tt imp_impE} theorem, 9, 14
 | 
|  |    397 |   \item {\tt impCE} theorem, 11, 66
 | 
|  |    398 |   \item {\tt impE} theorem, 9, 10, 65
 | 
|  |    399 |   \item {\tt impI} theorem, 8, 63
 | 
| 3315 |    400 |   \item {\tt impL} theorem, 103
 | 
|  |    401 |   \item {\tt impR} theorem, 103
 | 
| 3213 |    402 |   \item {\tt in} symbol, 27, 61
 | 
|  |    403 |   \item {\tt ind} type, 79
 | 
|  |    404 |   \item {\tt induct} theorem, 44
 | 
| 3315 |    405 |   \item {\tt induct_tac}, 80, \bold{88}
 | 
| 3288 |    406 |   \item {\tt inductive}, 92--95
 | 
| 3213 |    407 |   \item {\tt Inf} constant, 25, 29
 | 
|  |    408 |   \item {\tt infinity} theorem, 31
 | 
|  |    409 |   \item {\tt inj} constant, 45, 75
 | 
|  |    410 |   \item {\tt inj_converse_inj} theorem, 45
 | 
|  |    411 |   \item {\tt inj_def} theorem, 45, 75
 | 
|  |    412 |   \item {\tt inj_Inl} theorem, 78
 | 
|  |    413 |   \item {\tt inj_Inr} theorem, 78
 | 
|  |    414 |   \item {\tt inj_onto} constant, 75
 | 
|  |    415 |   \item {\tt inj_onto_def} theorem, 75
 | 
|  |    416 |   \item {\tt inj_Suc} theorem, 78
 | 
|  |    417 |   \item {\tt Inl} constant, 43, 78
 | 
| 3315 |    418 |   \item {\tt inl} constant, 113, 118, 128
 | 
| 3213 |    419 |   \item {\tt Inl_def} theorem, 43
 | 
|  |    420 |   \item {\tt Inl_inject} theorem, 43
 | 
|  |    421 |   \item {\tt Inl_neq_Inr} theorem, 43
 | 
|  |    422 |   \item {\tt Inl_not_Inr} theorem, 78
 | 
|  |    423 |   \item {\tt Inr} constant, 43, 78
 | 
| 3315 |    424 |   \item {\tt inr} constant, 113, 118
 | 
| 3213 |    425 |   \item {\tt Inr_def} theorem, 43
 | 
|  |    426 |   \item {\tt Inr_inject} theorem, 43
 | 
|  |    427 |   \item {\tt insert} constant, 68
 | 
|  |    428 |   \item {\tt insert_def} theorem, 71
 | 
|  |    429 |   \item {\tt insertE} theorem, 73
 | 
|  |    430 |   \item {\tt insertI1} theorem, 73
 | 
|  |    431 |   \item {\tt insertI2} theorem, 73
 | 
|  |    432 |   \item {\tt INT} symbol, 26, 28, 68--70
 | 
|  |    433 |   \item {\tt Int} symbol, 25, 68
 | 
|  |    434 |   \item {\tt Int_absorb} theorem, 41, 74
 | 
|  |    435 |   \item {\tt Int_assoc} theorem, 41, 74
 | 
|  |    436 |   \item {\tt Int_commute} theorem, 41, 74
 | 
|  |    437 |   \item {\tt INT_D} theorem, 73
 | 
|  |    438 |   \item {\tt Int_def} theorem, 30, 71
 | 
|  |    439 |   \item {\tt INT_E} theorem, 34, 73
 | 
|  |    440 |   \item {\tt Int_greatest} theorem, 36, 52, 54, 74
 | 
|  |    441 |   \item {\tt INT_I} theorem, 34, 73
 | 
|  |    442 |   \item {\tt Int_Inter_image} theorem, 74
 | 
|  |    443 |   \item {\tt Int_lower1} theorem, 36, 53, 74
 | 
|  |    444 |   \item {\tt Int_lower2} theorem, 36, 53, 74
 | 
|  |    445 |   \item {\tt Int_Un_distrib} theorem, 41, 74
 | 
|  |    446 |   \item {\tt Int_Union} theorem, 74
 | 
|  |    447 |   \item {\tt Int_Union_RepFun} theorem, 41
 | 
|  |    448 |   \item {\tt IntD1} theorem, 35, 73
 | 
|  |    449 |   \item {\tt IntD2} theorem, 35, 73
 | 
|  |    450 |   \item {\tt IntE} theorem, 35, 53, 73
 | 
|  |    451 |   \item {\tt INTER} constant, 68
 | 
|  |    452 |   \item {\tt Inter} constant, 25, 68
 | 
|  |    453 |   \item {\tt INTER1} constant, 68
 | 
|  |    454 |   \item {\tt INTER1_def} theorem, 71
 | 
|  |    455 |   \item {\tt INTER_def} theorem, 71
 | 
|  |    456 |   \item {\tt Inter_def} theorem, 30, 71
 | 
|  |    457 |   \item {\tt Inter_greatest} theorem, 36, 74
 | 
|  |    458 |   \item {\tt Inter_lower} theorem, 36, 74
 | 
|  |    459 |   \item {\tt Inter_Un_distrib} theorem, 41, 74
 | 
|  |    460 |   \item {\tt InterD} theorem, 34, 73
 | 
|  |    461 |   \item {\tt InterE} theorem, 34, 73
 | 
|  |    462 |   \item {\tt InterI} theorem, 32, 34, 73
 | 
|  |    463 |   \item {\tt IntI} theorem, 35, 73
 | 
|  |    464 |   \item {\tt IntPr.best_tac}, \bold{11}
 | 
|  |    465 |   \item {\tt IntPr.fast_tac}, \bold{10}, 13
 | 
|  |    466 |   \item {\tt IntPr.inst_step_tac}, \bold{10}
 | 
|  |    467 |   \item {\tt IntPr.safe_step_tac}, \bold{10}
 | 
|  |    468 |   \item {\tt IntPr.safe_tac}, \bold{10}
 | 
|  |    469 |   \item {\tt IntPr.step_tac}, \bold{10}
 | 
| 3315 |    470 |   \item {\tt intr_rls}, \bold{120}
 | 
|  |    471 |   \item {\tt intr_tac}, \bold{121}, 130, 131
 | 
|  |    472 |   \item {\tt intrL_rls}, \bold{120}
 | 
| 3213 |    473 |   \item {\tt inv} constant, 75
 | 
|  |    474 |   \item {\tt inv_def} theorem, 75
 | 
| 2665 |    475 | 
 | 
|  |    476 |   \indexspace
 | 
|  |    477 | 
 | 
| 3315 |    478 |   \item {\tt lam} symbol, 26, 28, 115
 | 
| 3213 |    479 |   \item {\tt lam_def} theorem, 31
 | 
|  |    480 |   \item {\tt lam_type} theorem, 39
 | 
|  |    481 |   \item {\tt Lambda} constant, 25, 28
 | 
| 3315 |    482 |   \item {\tt lambda} constant, 113, 115
 | 
| 2665 |    483 |   \item $\lambda$-abstractions
 | 
| 3315 |    484 |     \subitem in \CTT, 115
 | 
| 3213 |    485 |     \subitem in \ZF, 26
 | 
|  |    486 |   \item {\tt lamE} theorem, 39, 40
 | 
|  |    487 |   \item {\tt lamI} theorem, 39, 40
 | 
| 3096 |    488 |   \item {\tt LCF} theory, 1
 | 
| 3213 |    489 |   \item {\tt le_cs}, \bold{23}
 | 
|  |    490 |   \item {\tt LEAST} constant, 61, 62, 79
 | 
|  |    491 |   \item {\tt Least} constant, 60
 | 
|  |    492 |   \item {\tt Least_def} theorem, 64
 | 
|  |    493 |   \item {\tt left_comp_id} theorem, 45
 | 
|  |    494 |   \item {\tt left_comp_inverse} theorem, 45
 | 
|  |    495 |   \item {\tt left_inverse} theorem, 45
 | 
|  |    496 |   \item {\tt length} constant, 49, 81
 | 
|  |    497 |   \item {\tt length_def} theorem, 49
 | 
|  |    498 |   \item {\tt less_induct} theorem, 80
 | 
|  |    499 |   \item {\tt Let} constant, 24, 25, 60, 63
 | 
|  |    500 |   \item {\tt let} symbol, 27, 61, 63
 | 
|  |    501 |   \item {\tt Let_def} theorem, 24, 30, 63, 64
 | 
|  |    502 |   \item {\tt LFilter} theory, 96
 | 
|  |    503 |   \item {\tt lfp_def} theorem, 44
 | 
|  |    504 |   \item {\tt lfp_greatest} theorem, 44
 | 
|  |    505 |   \item {\tt lfp_lowerbound} theorem, 44
 | 
|  |    506 |   \item {\tt lfp_mono} theorem, 44
 | 
|  |    507 |   \item {\tt lfp_subset} theorem, 44
 | 
|  |    508 |   \item {\tt lfp_Tarski} theorem, 44
 | 
|  |    509 |   \item {\tt List} theory, 80, 81
 | 
|  |    510 |   \item {\tt list} constant, 49
 | 
| 3288 |    511 |   \item {\tt list} type, 80, 96
 | 
| 3213 |    512 |   \item {\tt List.induct} theorem, 49
 | 
|  |    513 |   \item {\tt list_case} constant, 49
 | 
|  |    514 |   \item {\tt list_mono} theorem, 49
 | 
|  |    515 |   \item {\tt list_rec} constant, 49
 | 
|  |    516 |   \item {\tt list_rec_Cons} theorem, 49
 | 
|  |    517 |   \item {\tt list_rec_def} theorem, 49
 | 
|  |    518 |   \item {\tt list_rec_Nil} theorem, 49
 | 
| 3315 |    519 |   \item {\tt LK} theory, 1, 100, 104
 | 
|  |    520 |   \item {\tt LK_dup_pack}, \bold{106}, 108
 | 
|  |    521 |   \item {\tt LK_pack}, \bold{106}
 | 
| 3213 |    522 |   \item {\tt LList} theory, 96
 | 
|  |    523 |   \item {\tt logic} class, 5
 | 
| 2665 |    524 | 
 | 
|  |    525 |   \indexspace
 | 
|  |    526 | 
 | 
| 3213 |    527 |   \item {\tt map} constant, 49, 81
 | 
|  |    528 |   \item {\tt map_app_distrib} theorem, 49
 | 
|  |    529 |   \item {\tt map_compose} theorem, 49
 | 
|  |    530 |   \item {\tt map_def} theorem, 49
 | 
|  |    531 |   \item {\tt map_flat} theorem, 49
 | 
|  |    532 |   \item {\tt map_ident} theorem, 49
 | 
|  |    533 |   \item {\tt map_type} theorem, 49
 | 
|  |    534 |   \item {\tt max} constant, 61, 79
 | 
|  |    535 |   \item {\tt mem} symbol, 81
 | 
|  |    536 |   \item {\tt mem_asym} theorem, 35, 36
 | 
|  |    537 |   \item {\tt mem_Collect_eq} theorem, 70, 71
 | 
|  |    538 |   \item {\tt mem_irrefl} theorem, 35
 | 
|  |    539 |   \item {\tt min} constant, 61, 79
 | 
|  |    540 |   \item {\tt minus} class, 61
 | 
| 3315 |    541 |   \item {\tt mod} symbol, 47, 78, 124
 | 
|  |    542 |   \item {\tt mod_def} theorem, 47, 124
 | 
| 3213 |    543 |   \item {\tt mod_geq} theorem, 79
 | 
|  |    544 |   \item {\tt mod_less} theorem, 79
 | 
|  |    545 |   \item {\tt mod_quo_equality} theorem, 47
 | 
| 3096 |    546 |   \item {\tt Modal} theory, 1
 | 
| 3213 |    547 |   \item {\tt mono} constant, 61
 | 
|  |    548 |   \item {\tt mp} theorem, 8, 63
 | 
| 3315 |    549 |   \item {\tt mp_tac}, \bold{10}, \bold{122}
 | 
| 3213 |    550 |   \item {\tt mult_0} theorem, 47
 | 
| 3315 |    551 |   \item {\tt mult_assoc} theorem, 47, 124
 | 
|  |    552 |   \item {\tt mult_commute} theorem, 47, 124
 | 
|  |    553 |   \item {\tt mult_def} theorem, 47, 124
 | 
| 3213 |    554 |   \item {\tt mult_succ} theorem, 47
 | 
|  |    555 |   \item {\tt mult_type} theorem, 47
 | 
| 3315 |    556 |   \item {\tt mult_typing} theorem, 124
 | 
|  |    557 |   \item {\tt multC0} theorem, 124
 | 
|  |    558 |   \item {\tt multC_succ} theorem, 124
 | 
| 2665 |    559 | 
 | 
|  |    560 |   \indexspace
 | 
|  |    561 | 
 | 
| 3315 |    562 |   \item {\tt N} constant, 113
 | 
| 3213 |    563 |   \item {\tt n_not_Suc_n} theorem, 78
 | 
|  |    564 |   \item {\tt Nat} theory, 46, 79
 | 
|  |    565 |   \item {\tt nat} constant, 47
 | 
|  |    566 |   \item {\tt nat} type, 79
 | 
|  |    567 |   \item {\tt nat_0I} theorem, 47
 | 
|  |    568 |   \item {\tt nat_case} constant, 47
 | 
|  |    569 |   \item {\tt nat_case_0} theorem, 47
 | 
|  |    570 |   \item {\tt nat_case_def} theorem, 47
 | 
|  |    571 |   \item {\tt nat_case_succ} theorem, 47
 | 
|  |    572 |   \item {\tt nat_def} theorem, 47
 | 
|  |    573 |   \item {\tt nat_induct} theorem, 47, 78
 | 
|  |    574 |   \item {\tt nat_rec} constant, 80
 | 
|  |    575 |   \item {\tt nat_succI} theorem, 47
 | 
|  |    576 |   \item {\tt NatDef} theory, 79
 | 
| 3315 |    577 |   \item {\tt NC0} theorem, 117
 | 
|  |    578 |   \item {\tt NC_succ} theorem, 117
 | 
|  |    579 |   \item {\tt NE} theorem, 116, 117, 125
 | 
|  |    580 |   \item {\tt NEL} theorem, 117
 | 
|  |    581 |   \item {\tt NF} theorem, 117, 126
 | 
|  |    582 |   \item {\tt NI0} theorem, 117
 | 
|  |    583 |   \item {\tt NI_succ} theorem, 117
 | 
|  |    584 |   \item {\tt NI_succL} theorem, 117
 | 
| 3213 |    585 |   \item {\tt Nil_Cons_iff} theorem, 49
 | 
|  |    586 |   \item {\tt NilI} theorem, 49
 | 
| 3315 |    587 |   \item {\tt NIO} theorem, 125
 | 
|  |    588 |   \item {\tt Not} constant, 7, 60, 101
 | 
| 3213 |    589 |   \item {\tt not_def} theorem, 8, 42, 64
 | 
|  |    590 |   \item {\tt not_impE} theorem, 9
 | 
|  |    591 |   \item {\tt not_sym} theorem, 65
 | 
|  |    592 |   \item {\tt notE} theorem, 9, 10, 65
 | 
|  |    593 |   \item {\tt notI} theorem, 9, 65
 | 
| 3315 |    594 |   \item {\tt notL} theorem, 103
 | 
| 3213 |    595 |   \item {\tt notnotD} theorem, 11, 66
 | 
| 3315 |    596 |   \item {\tt notR} theorem, 103
 | 
| 3213 |    597 |   \item {\tt nth} constant, 81
 | 
|  |    598 |   \item {\tt null} constant, 81
 | 
| 2665 |    599 | 
 | 
|  |    600 |   \indexspace
 | 
|  |    601 | 
 | 
| 3213 |    602 |   \item {\tt O} symbol, 45
 | 
|  |    603 |   \item {\tt o} symbol, 60, 71
 | 
| 3315 |    604 |   \item {\tt o} type, 5, 100
 | 
| 3213 |    605 |   \item {\tt o_def} theorem, 64
 | 
|  |    606 |   \item {\tt of} symbol, 63
 | 
|  |    607 |   \item {\tt or_def} theorem, 42, 64
 | 
|  |    608 |   \item {\tt Ord} theory, 61
 | 
|  |    609 |   \item {\tt ord} class, 61, 62, 79
 | 
|  |    610 |   \item {\tt order} class, 61
 | 
| 2665 |    611 | 
 | 
|  |    612 |   \indexspace
 | 
|  |    613 | 
 | 
| 3315 |    614 |   \item {\tt pack} ML type, 106
 | 
| 3213 |    615 |   \item {\tt Pair} constant, 25, 26, 76
 | 
| 3315 |    616 |   \item {\tt pair} constant, 113
 | 
| 3213 |    617 |   \item {\tt Pair_def} theorem, 31
 | 
|  |    618 |   \item {\tt Pair_eq} theorem, 76
 | 
|  |    619 |   \item {\tt Pair_inject} theorem, 37, 76
 | 
|  |    620 |   \item {\tt Pair_inject1} theorem, 37
 | 
|  |    621 |   \item {\tt Pair_inject2} theorem, 37
 | 
|  |    622 |   \item {\tt Pair_neq_0} theorem, 37
 | 
|  |    623 |   \item {\tt PairE} theorem, 76
 | 
|  |    624 |   \item {\tt pairing} theorem, 34
 | 
| 3315 |    625 |   \item {\tt pc_tac}, \bold{107}, \bold{123}, 129, 130
 | 
| 3213 |    626 |   \item {\tt Perm} theory, 42
 | 
|  |    627 |   \item {\tt Pi} constant, 25, 28, 40
 | 
|  |    628 |   \item {\tt Pi_def} theorem, 31
 | 
|  |    629 |   \item {\tt Pi_type} theorem, 39, 40
 | 
|  |    630 |   \item {\tt plus} class, 61
 | 
| 3315 |    631 |   \item {\tt PlusC_inl} theorem, 119
 | 
|  |    632 |   \item {\tt PlusC_inr} theorem, 119
 | 
|  |    633 |   \item {\tt PlusE} theorem, 119, 123, 127
 | 
|  |    634 |   \item {\tt PlusEL} theorem, 119
 | 
|  |    635 |   \item {\tt PlusF} theorem, 119
 | 
|  |    636 |   \item {\tt PlusFL} theorem, 119
 | 
|  |    637 |   \item {\tt PlusI_inl} theorem, 119, 128
 | 
|  |    638 |   \item {\tt PlusI_inlL} theorem, 119
 | 
|  |    639 |   \item {\tt PlusI_inr} theorem, 119
 | 
|  |    640 |   \item {\tt PlusI_inrL} theorem, 119
 | 
| 3213 |    641 |   \item {\tt Pow} constant, 25, 68
 | 
|  |    642 |   \item {\tt Pow_def} theorem, 71
 | 
|  |    643 |   \item {\tt Pow_iff} theorem, 30
 | 
|  |    644 |   \item {\tt Pow_mono} theorem, 52
 | 
|  |    645 |   \item {\tt PowD} theorem, 33, 53, 73
 | 
|  |    646 |   \item {\tt PowI} theorem, 33, 53, 73
 | 
| 3288 |    647 |   \item primitive recursion, 90--92
 | 
|  |    648 |   \item {\tt primrec}, 90--92
 | 
| 3213 |    649 |   \item {\tt primrec} symbol, 79
 | 
|  |    650 |   \item {\tt PrimReplace} constant, 25, 29
 | 
| 2665 |    651 |   \item priorities, 2
 | 
| 3315 |    652 |   \item {\tt PROD} symbol, 26, 28, 114, 115
 | 
|  |    653 |   \item {\tt Prod} constant, 113
 | 
| 3213 |    654 |   \item {\tt Prod} theory, 76
 | 
| 3315 |    655 |   \item {\tt ProdC} theorem, 117, 133
 | 
|  |    656 |   \item {\tt ProdC2} theorem, 117
 | 
|  |    657 |   \item {\tt ProdE} theorem, 117, 130, 132, 134
 | 
|  |    658 |   \item {\tt ProdEL} theorem, 117
 | 
|  |    659 |   \item {\tt ProdF} theorem, 117
 | 
|  |    660 |   \item {\tt ProdFL} theorem, 117
 | 
|  |    661 |   \item {\tt ProdI} theorem, 117, 123, 125
 | 
|  |    662 |   \item {\tt ProdIL} theorem, 117
 | 
| 3213 |    663 |   \item {\tt prop_cs}, \bold{11}, \bold{76}
 | 
| 3315 |    664 |   \item {\tt prop_pack}, \bold{106}
 | 
| 2665 |    665 | 
 | 
|  |    666 |   \indexspace
 | 
|  |    667 | 
 | 
| 3213 |    668 |   \item {\tt qcase_def} theorem, 43
 | 
|  |    669 |   \item {\tt qconverse} constant, 42
 | 
|  |    670 |   \item {\tt qconverse_def} theorem, 43
 | 
| 3315 |    671 |   \item {\tt qed_spec_mp}, 89
 | 
| 3213 |    672 |   \item {\tt qfsplit_def} theorem, 43
 | 
|  |    673 |   \item {\tt QInl_def} theorem, 43
 | 
|  |    674 |   \item {\tt QInr_def} theorem, 43
 | 
|  |    675 |   \item {\tt QPair} theory, 42
 | 
|  |    676 |   \item {\tt QPair_def} theorem, 43
 | 
|  |    677 |   \item {\tt QSigma} constant, 42
 | 
|  |    678 |   \item {\tt QSigma_def} theorem, 43
 | 
|  |    679 |   \item {\tt qsplit} constant, 42
 | 
|  |    680 |   \item {\tt qsplit_def} theorem, 43
 | 
|  |    681 |   \item {\tt qsum_def} theorem, 43
 | 
|  |    682 |   \item {\tt QUniv} theory, 46
 | 
| 2665 |    683 | 
 | 
|  |    684 |   \indexspace
 | 
|  |    685 | 
 | 
| 3213 |    686 |   \item {\tt range} constant, 25, 68, 97
 | 
|  |    687 |   \item {\tt range_def} theorem, 31, 71
 | 
|  |    688 |   \item {\tt range_of_fun} theorem, 39, 40
 | 
|  |    689 |   \item {\tt range_subset} theorem, 38
 | 
|  |    690 |   \item {\tt range_type} theorem, 39
 | 
|  |    691 |   \item {\tt rangeE} theorem, 38, 73, 97
 | 
|  |    692 |   \item {\tt rangeI} theorem, 38, 73
 | 
|  |    693 |   \item {\tt rank} constant, 48
 | 
|  |    694 |   \item {\tt rank_ss}, \bold{23}
 | 
| 3315 |    695 |   \item {\tt rec} constant, 47, 113, 116
 | 
| 3213 |    696 |   \item {\tt rec_0} theorem, 47
 | 
|  |    697 |   \item {\tt rec_def} theorem, 47
 | 
|  |    698 |   \item {\tt rec_succ} theorem, 47
 | 
| 3315 |    699 |   \item {\tt red_if_equal} theorem, 116
 | 
|  |    700 |   \item {\tt Reduce} constant, 113, 116, 122
 | 
|  |    701 |   \item {\tt refl} theorem, 8, 63, 103
 | 
|  |    702 |   \item {\tt refl_elem} theorem, 116, 120
 | 
|  |    703 |   \item {\tt refl_red} theorem, 116
 | 
|  |    704 |   \item {\tt refl_type} theorem, 116, 120
 | 
|  |    705 |   \item {\tt REPEAT_FIRST}, 121
 | 
|  |    706 |   \item {\tt repeat_goal_tac}, \bold{107}
 | 
| 3213 |    707 |   \item {\tt RepFun} constant, 25, 28, 29, 32
 | 
|  |    708 |   \item {\tt RepFun_def} theorem, 30
 | 
|  |    709 |   \item {\tt RepFunE} theorem, 34
 | 
|  |    710 |   \item {\tt RepFunI} theorem, 34
 | 
|  |    711 |   \item {\tt Replace} constant, 25, 28, 29, 32
 | 
|  |    712 |   \item {\tt Replace_def} theorem, 30
 | 
| 3315 |    713 |   \item {\tt replace_type} theorem, 120, 132
 | 
| 3213 |    714 |   \item {\tt ReplaceE} theorem, 34
 | 
|  |    715 |   \item {\tt ReplaceI} theorem, 34
 | 
|  |    716 |   \item {\tt replacement} theorem, 30
 | 
| 3315 |    717 |   \item {\tt reresolve_tac}, \bold{107}
 | 
| 3213 |    718 |   \item {\tt res_inst_tac}, 62
 | 
|  |    719 |   \item {\tt restrict} constant, 25, 32
 | 
|  |    720 |   \item {\tt restrict} theorem, 39
 | 
|  |    721 |   \item {\tt restrict_bij} theorem, 45
 | 
|  |    722 |   \item {\tt restrict_def} theorem, 31
 | 
|  |    723 |   \item {\tt restrict_type} theorem, 39
 | 
|  |    724 |   \item {\tt rev} constant, 49, 81
 | 
|  |    725 |   \item {\tt rev_def} theorem, 49
 | 
| 3315 |    726 |   \item {\tt rew_tac}, 18, \bold{122}
 | 
| 3213 |    727 |   \item {\tt rewrite_rule}, 19
 | 
|  |    728 |   \item {\tt right_comp_id} theorem, 45
 | 
|  |    729 |   \item {\tt right_comp_inverse} theorem, 45
 | 
|  |    730 |   \item {\tt right_inverse} theorem, 45
 | 
| 3315 |    731 |   \item {\tt RL}, 127
 | 
|  |    732 |   \item {\tt RS}, 132, 134
 | 
| 2665 |    733 | 
 | 
|  |    734 |   \indexspace
 | 
|  |    735 | 
 | 
| 3315 |    736 |   \item {\tt safe_goal_tac}, \bold{108}
 | 
|  |    737 |   \item {\tt safe_tac}, \bold{123}
 | 
|  |    738 |   \item {\tt safestep_tac}, \bold{123}
 | 
| 2665 |    739 |   \item search
 | 
| 3315 |    740 |     \subitem best-first, 99
 | 
| 3213 |    741 |   \item {\tt select_equality} theorem, 64, 66
 | 
|  |    742 |   \item {\tt selectI} theorem, 63, 64
 | 
|  |    743 |   \item {\tt separation} theorem, 34
 | 
| 3315 |    744 |   \item {\tt Seqof} constant, 101
 | 
|  |    745 |   \item sequent calculus, 100--111
 | 
| 3213 |    746 |   \item {\tt Set} theory, 67, 70
 | 
|  |    747 |   \item {\tt set} type, 67
 | 
|  |    748 |   \item set theory, 23--58
 | 
| 3315 |    749 |   \item {\tt set_current_thy}, 99
 | 
| 3213 |    750 |   \item {\tt set_diff_def} theorem, 71
 | 
|  |    751 |   \item {\tt set_of_list} constant, 81
 | 
|  |    752 |   \item {\tt show_sorts}, 62
 | 
|  |    753 |   \item {\tt show_types}, 62
 | 
|  |    754 |   \item {\tt Sigma} constant, 25, 28, 29, 37, 76
 | 
|  |    755 |   \item {\tt Sigma_def} theorem, 31, 76
 | 
|  |    756 |   \item {\tt SigmaE} theorem, 37, 76
 | 
|  |    757 |   \item {\tt SigmaE2} theorem, 37
 | 
|  |    758 |   \item {\tt SigmaI} theorem, 37, 76
 | 
| 2665 |    759 |   \item simplification
 | 
| 3213 |    760 |     \subitem of conjunctions, 6, 75
 | 
|  |    761 |   \item {\tt singletonE} theorem, 35
 | 
|  |    762 |   \item {\tt singletonI} theorem, 35
 | 
| 3315 |    763 |   \item {\tt size} constant, 86
 | 
|  |    764 |   \item {\tt snd} constant, 25, 29, 76, 113, 118
 | 
| 3213 |    765 |   \item {\tt snd_conv} theorem, 37, 76
 | 
| 3315 |    766 |   \item {\tt snd_def} theorem, 31, 118
 | 
|  |    767 |   \item {\tt sobj} type, 102
 | 
| 3213 |    768 |   \item {\tt spec} theorem, 8, 66
 | 
| 3315 |    769 |   \item {\tt split} constant, 25, 29, 76, 113, 127
 | 
| 3213 |    770 |   \item {\tt split} theorem, 37, 76
 | 
|  |    771 |   \item {\tt split_all_tac}, \bold{77}
 | 
|  |    772 |   \item {\tt split_def} theorem, 31
 | 
|  |    773 |   \item {\tt ssubst} theorem, 9, 65, 67
 | 
|  |    774 |   \item {\tt stac}, \bold{75}
 | 
|  |    775 |   \item {\tt Step_tac}, 22
 | 
| 3315 |    776 |   \item {\tt step_tac}, 22, \bold{108}, \bold{123}
 | 
| 3213 |    777 |   \item {\tt strip_tac}, \bold{67}
 | 
|  |    778 |   \item {\tt subset_def} theorem, 30, 71
 | 
|  |    779 |   \item {\tt subset_refl} theorem, 33, 72
 | 
|  |    780 |   \item {\tt subset_trans} theorem, 33, 72
 | 
|  |    781 |   \item {\tt subsetCE} theorem, 33, 70, 72
 | 
|  |    782 |   \item {\tt subsetD} theorem, 33, 55, 70, 72
 | 
|  |    783 |   \item {\tt subsetI} theorem, 33, 53, 54, 72
 | 
|  |    784 |   \item {\tt subst} theorem, 8, 63
 | 
| 3315 |    785 |   \item {\tt subst_elem} theorem, 116
 | 
|  |    786 |   \item {\tt subst_elemL} theorem, 116
 | 
|  |    787 |   \item {\tt subst_eqtyparg} theorem, 120, 132
 | 
|  |    788 |   \item {\tt subst_prodE} theorem, 118, 120
 | 
|  |    789 |   \item {\tt subst_type} theorem, 116
 | 
|  |    790 |   \item {\tt subst_typeL} theorem, 116
 | 
| 3213 |    791 |   \item {\tt Suc} constant, 78
 | 
|  |    792 |   \item {\tt Suc_not_Zero} theorem, 78
 | 
| 3315 |    793 |   \item {\tt succ} constant, 25, 29, 113
 | 
| 3213 |    794 |   \item {\tt succ_def} theorem, 31
 | 
|  |    795 |   \item {\tt succ_inject} theorem, 35
 | 
|  |    796 |   \item {\tt succ_neq_0} theorem, 35
 | 
|  |    797 |   \item {\tt succCI} theorem, 35
 | 
|  |    798 |   \item {\tt succE} theorem, 35
 | 
|  |    799 |   \item {\tt succI1} theorem, 35
 | 
|  |    800 |   \item {\tt succI2} theorem, 35
 | 
| 3315 |    801 |   \item {\tt SUM} symbol, 26, 28, 114, 115
 | 
|  |    802 |   \item {\tt Sum} constant, 113
 | 
| 3213 |    803 |   \item {\tt Sum} theory, 42, 77
 | 
|  |    804 |   \item {\tt sum_case} constant, 78
 | 
|  |    805 |   \item {\tt sum_case_Inl} theorem, 78
 | 
|  |    806 |   \item {\tt sum_case_Inr} theorem, 78
 | 
|  |    807 |   \item {\tt sum_def} theorem, 43
 | 
|  |    808 |   \item {\tt sum_InlI} theorem, 43
 | 
|  |    809 |   \item {\tt sum_InrI} theorem, 43
 | 
|  |    810 |   \item {\tt SUM_Int_distrib1} theorem, 41
 | 
|  |    811 |   \item {\tt SUM_Int_distrib2} theorem, 41
 | 
|  |    812 |   \item {\tt SUM_Un_distrib1} theorem, 41
 | 
|  |    813 |   \item {\tt SUM_Un_distrib2} theorem, 41
 | 
| 3315 |    814 |   \item {\tt SumC} theorem, 118
 | 
|  |    815 |   \item {\tt SumE} theorem, 118, 123, 127
 | 
| 3213 |    816 |   \item {\tt sumE} theorem, 78
 | 
|  |    817 |   \item {\tt sumE2} theorem, 43
 | 
| 3315 |    818 |   \item {\tt SumE_fst} theorem, 118, 120, 132, 133
 | 
|  |    819 |   \item {\tt SumE_snd} theorem, 118, 120, 134
 | 
|  |    820 |   \item {\tt SumEL} theorem, 118
 | 
|  |    821 |   \item {\tt SumF} theorem, 118
 | 
|  |    822 |   \item {\tt SumFL} theorem, 118
 | 
|  |    823 |   \item {\tt SumI} theorem, 118, 128
 | 
|  |    824 |   \item {\tt SumIL} theorem, 118
 | 
|  |    825 |   \item {\tt SumIL2} theorem, 120
 | 
| 3213 |    826 |   \item {\tt surj} constant, 45, 71, 75
 | 
|  |    827 |   \item {\tt surj_def} theorem, 45, 75
 | 
|  |    828 |   \item {\tt surjective_pairing} theorem, 76
 | 
|  |    829 |   \item {\tt surjective_sum} theorem, 78
 | 
|  |    830 |   \item {\tt swap} theorem, 11, 66
 | 
|  |    831 |   \item {\tt swap_res_tac}, 16, 98
 | 
| 3315 |    832 |   \item {\tt sym} theorem, 9, 65, 103
 | 
|  |    833 |   \item {\tt sym_elem} theorem, 116
 | 
|  |    834 |   \item {\tt sym_type} theorem, 116
 | 
|  |    835 |   \item {\tt symL} theorem, 104
 | 
| 2665 |    836 | 
 | 
|  |    837 |   \indexspace
 | 
|  |    838 | 
 | 
| 3315 |    839 |   \item {\tt T} constant, 113
 | 
|  |    840 |   \item {\tt t} type, 112
 | 
| 3213 |    841 |   \item {\tt take} constant, 81
 | 
|  |    842 |   \item {\tt takeWhile} constant, 81
 | 
| 3315 |    843 |   \item {\tt TC} theorem, 119
 | 
|  |    844 |   \item {\tt TE} theorem, 119
 | 
|  |    845 |   \item {\tt TEL} theorem, 119
 | 
|  |    846 |   \item {\tt term} class, 5, 61, 100
 | 
|  |    847 |   \item {\tt test_assume_tac}, \bold{121}
 | 
|  |    848 |   \item {\tt TF} theorem, 119
 | 
|  |    849 |   \item {\tt THE} symbol, 26, 28, 36, 101
 | 
|  |    850 |   \item {\tt The} constant, 25, 28, 29, 101
 | 
|  |    851 |   \item {\tt The} theorem, 103
 | 
| 3213 |    852 |   \item {\tt the_def} theorem, 30
 | 
|  |    853 |   \item {\tt the_equality} theorem, 35, 36
 | 
|  |    854 |   \item {\tt theI} theorem, 35, 36
 | 
| 3315 |    855 |   \item {\tt thinL} theorem, 103
 | 
|  |    856 |   \item {\tt thinR} theorem, 103
 | 
|  |    857 |   \item {\tt TI} theorem, 119
 | 
| 3213 |    858 |   \item {\tt times} class, 61
 | 
|  |    859 |   \item {\tt tl} constant, 81
 | 
| 2665 |    860 |   \item tracing
 | 
| 3213 |    861 |     \subitem of unification, 62
 | 
| 3315 |    862 |   \item {\tt trans} theorem, 9, 65, 103
 | 
|  |    863 |   \item {\tt trans_elem} theorem, 116
 | 
|  |    864 |   \item {\tt trans_red} theorem, 116
 | 
| 3213 |    865 |   \item {\tt trans_tac}, 80
 | 
| 3315 |    866 |   \item {\tt trans_type} theorem, 116
 | 
|  |    867 |   \item {\tt True} constant, 7, 60, 101
 | 
|  |    868 |   \item {\tt True_def} theorem, 8, 64, 103
 | 
| 3213 |    869 |   \item {\tt True_or_False} theorem, 63, 64
 | 
|  |    870 |   \item {\tt TrueI} theorem, 9, 65
 | 
| 3315 |    871 |   \item {\tt Trueprop} constant, 7, 60, 101
 | 
|  |    872 |   \item {\tt TrueR} theorem, 104
 | 
|  |    873 |   \item {\tt tt} constant, 113
 | 
| 3213 |    874 |   \item {\tt ttl} constant, 81
 | 
| 3315 |    875 |   \item {\tt Type} constant, 113
 | 
| 3213 |    876 |   \item type definition, \bold{83}
 | 
| 3315 |    877 |   \item {\tt typechk_tac}, \bold{121}, 126, 129, 133, 134
 | 
| 3213 |    878 |   \item {\tt typedef}, 80
 | 
| 2665 |    879 | 
 | 
|  |    880 |   \indexspace
 | 
|  |    881 | 
 | 
| 3213 |    882 |   \item {\tt UN} symbol, 26, 28, 68--70
 | 
|  |    883 |   \item {\tt Un} symbol, 25, 68
 | 
|  |    884 |   \item {\tt Un1} theorem, 70
 | 
|  |    885 |   \item {\tt Un2} theorem, 70
 | 
|  |    886 |   \item {\tt Un_absorb} theorem, 41, 74
 | 
|  |    887 |   \item {\tt Un_assoc} theorem, 41, 74
 | 
|  |    888 |   \item {\tt Un_commute} theorem, 41, 74
 | 
|  |    889 |   \item {\tt Un_def} theorem, 30, 71
 | 
|  |    890 |   \item {\tt UN_E} theorem, 34, 73
 | 
|  |    891 |   \item {\tt UN_I} theorem, 34, 73
 | 
|  |    892 |   \item {\tt Un_Int_distrib} theorem, 41, 74
 | 
|  |    893 |   \item {\tt Un_Inter} theorem, 74
 | 
|  |    894 |   \item {\tt Un_Inter_RepFun} theorem, 41
 | 
|  |    895 |   \item {\tt Un_least} theorem, 36, 74
 | 
|  |    896 |   \item {\tt Un_Union_image} theorem, 74
 | 
|  |    897 |   \item {\tt Un_upper1} theorem, 36, 74
 | 
|  |    898 |   \item {\tt Un_upper2} theorem, 36, 74
 | 
|  |    899 |   \item {\tt UnCI} theorem, 35, 36, 70, 73
 | 
|  |    900 |   \item {\tt UnE} theorem, 35, 73
 | 
|  |    901 |   \item {\tt UnI1} theorem, 35, 36, 57, 73
 | 
|  |    902 |   \item {\tt UnI2} theorem, 35, 36, 73
 | 
| 2665 |    903 |   \item unification
 | 
| 3213 |    904 |     \subitem incompleteness of, 62
 | 
|  |    905 |   \item {\tt Unify.trace_types}, 62
 | 
|  |    906 |   \item {\tt UNION} constant, 68
 | 
|  |    907 |   \item {\tt Union} constant, 25, 68
 | 
|  |    908 |   \item {\tt UNION1} constant, 68
 | 
|  |    909 |   \item {\tt UNION1_def} theorem, 71
 | 
|  |    910 |   \item {\tt UNION_def} theorem, 71
 | 
|  |    911 |   \item {\tt Union_def} theorem, 71
 | 
|  |    912 |   \item {\tt Union_iff} theorem, 30
 | 
|  |    913 |   \item {\tt Union_least} theorem, 36, 74
 | 
|  |    914 |   \item {\tt Union_Un_distrib} theorem, 41, 74
 | 
|  |    915 |   \item {\tt Union_upper} theorem, 36, 74
 | 
|  |    916 |   \item {\tt UnionE} theorem, 34, 55, 73
 | 
|  |    917 |   \item {\tt UnionI} theorem, 34, 55, 73
 | 
|  |    918 |   \item {\tt unit_eq} theorem, 77
 | 
|  |    919 |   \item {\tt Univ} theory, 46
 | 
|  |    920 |   \item {\tt Upair} constant, 24, 25, 29
 | 
|  |    921 |   \item {\tt Upair_def} theorem, 30
 | 
|  |    922 |   \item {\tt UpairE} theorem, 34
 | 
|  |    923 |   \item {\tt UpairI1} theorem, 34
 | 
|  |    924 |   \item {\tt UpairI2} theorem, 34
 | 
| 2665 |    925 | 
 | 
|  |    926 |   \indexspace
 | 
|  |    927 | 
 | 
| 3213 |    928 |   \item {\tt vimage_def} theorem, 31
 | 
|  |    929 |   \item {\tt vimageE} theorem, 38
 | 
|  |    930 |   \item {\tt vimageI} theorem, 38
 | 
| 2665 |    931 | 
 | 
|  |    932 |   \indexspace
 | 
|  |    933 | 
 | 
| 3315 |    934 |   \item {\tt when} constant, 113, 118, 127
 | 
| 2665 |    935 | 
 | 
|  |    936 |   \indexspace
 | 
|  |    937 | 
 | 
| 3213 |    938 |   \item {\tt xor_def} theorem, 42
 | 
| 2665 |    939 | 
 | 
|  |    940 |   \indexspace
 | 
|  |    941 | 
 | 
| 3315 |    942 |   \item {\tt zero_ne_succ} theorem, 116, 117
 | 
| 3213 |    943 |   \item {\tt ZF} theory, 1, 23, 59
 | 
|  |    944 |   \item {\tt ZF_cs}, \bold{23}
 | 
|  |    945 |   \item {\tt ZF_ss}, \bold{23}
 | 
| 2665 |    946 | 
 | 
|  |    947 | \end{theindex}
 |