| author | wenzelm | 
| Tue, 16 May 2006 13:01:31 +0200 | |
| changeset 19648 | 702843484da6 | 
| parent 16417 | 9bc16273c2d4 | 
| child 22271 | 51a80e238b29 | 
| permissions | -rw-r--r-- | 
| 12516 | 1  | 
(* Title: HOL/MicroJava/BV/Semilat.thy  | 
| 10496 | 2  | 
ID: $Id$  | 
3  | 
Author: Tobias Nipkow  | 
|
4  | 
Copyright 2000 TUM  | 
|
5  | 
||
6  | 
Semilattices  | 
|
7  | 
*)  | 
|
8  | 
||
| 12911 | 9  | 
header {* 
 | 
10  | 
  \chapter{Bytecode Verifier}\label{cha:bv}
 | 
|
11  | 
  \isaheader{Semilattices} 
 | 
|
12  | 
*}  | 
|
| 10496 | 13  | 
|
| 16417 | 14  | 
theory Semilat imports While_Combinator begin  | 
| 10496 | 15  | 
|
| 13006 | 16  | 
types 'a ord = "'a \<Rightarrow> 'a \<Rightarrow> bool"  | 
17  | 
'a binop = "'a \<Rightarrow> 'a \<Rightarrow> 'a"  | 
|
| 10496 | 18  | 
'a sl = "'a set * 'a ord * 'a binop"  | 
19  | 
||
20  | 
consts  | 
|
| 13006 | 21  | 
 "@lesub"   :: "'a \<Rightarrow> 'a ord \<Rightarrow> 'a \<Rightarrow> bool" ("(_ /<='__ _)" [50, 1000, 51] 50)
 | 
22  | 
 "@lesssub" :: "'a \<Rightarrow> 'a ord \<Rightarrow> 'a \<Rightarrow> bool" ("(_ /<'__ _)" [50, 1000, 51] 50)
 | 
|
| 10496 | 23  | 
defs  | 
24  | 
lesub_def: "x <=_r y == r x y"  | 
|
25  | 
lesssub_def: "x <_r y == x <=_r y & x ~= y"  | 
|
26  | 
||
| 13649 | 27  | 
syntax (xsymbols)  | 
28  | 
 "@lesub" :: "'a \<Rightarrow> 'a ord \<Rightarrow> 'a \<Rightarrow> bool" ("(_ /\<le>\<^sub>_ _)" [50, 1000, 51] 50)
 | 
|
29  | 
||
| 10496 | 30  | 
consts  | 
| 13006 | 31  | 
 "@plussub" :: "'a \<Rightarrow> ('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'b \<Rightarrow> 'c" ("(_ /+'__ _)" [65, 1000, 66] 65)
 | 
| 10496 | 32  | 
defs  | 
33  | 
plussub_def: "x +_f y == f x y"  | 
|
34  | 
||
| 13649 | 35  | 
syntax (xsymbols)  | 
36  | 
 "@plussub" :: "'a \<Rightarrow> ('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'b \<Rightarrow> 'c" ("(_ /+\<^sub>_ _)" [65, 1000, 66] 65)
 | 
|
37  | 
||
38  | 
syntax (xsymbols)  | 
|
39  | 
 "@plussub" :: "'a \<Rightarrow> ('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'b \<Rightarrow> 'c" ("(_ /\<squnion>\<^sub>_ _)" [65, 1000, 66] 65)
 | 
|
40  | 
||
| 10496 | 41  | 
|
42  | 
constdefs  | 
|
| 13006 | 43  | 
 ord :: "('a*'a)set \<Rightarrow> 'a ord"
 | 
| 10496 | 44  | 
"ord r == %x y. (x,y):r"  | 
45  | 
||
| 13006 | 46  | 
order :: "'a ord \<Rightarrow> bool"  | 
| 10496 | 47  | 
"order r == (!x. x <=_r x) &  | 
| 13006 | 48  | 
(!x y. x <=_r y & y <=_r x \<longrightarrow> x=y) &  | 
49  | 
(!x y z. x <=_r y & y <=_r z \<longrightarrow> x <=_r z)"  | 
|
| 10496 | 50  | 
|
| 13006 | 51  | 
acc :: "'a ord \<Rightarrow> bool"  | 
| 10496 | 52  | 
"acc r == wf{(y,x) . x <_r y}"
 | 
53  | 
||
| 13006 | 54  | 
top :: "'a ord \<Rightarrow> 'a \<Rightarrow> bool"  | 
| 10496 | 55  | 
"top r T == !x. x <=_r T"  | 
56  | 
||
| 13006 | 57  | 
closed :: "'a set \<Rightarrow> 'a binop \<Rightarrow> bool"  | 
| 10496 | 58  | 
"closed A f == !x:A. !y:A. x +_f y : A"  | 
59  | 
||
| 13006 | 60  | 
semilat :: "'a sl \<Rightarrow> bool"  | 
| 10496 | 61  | 
"semilat == %(A,r,f). order r & closed A f &  | 
62  | 
(!x:A. !y:A. x <=_r x +_f y) &  | 
|
63  | 
(!x:A. !y:A. y <=_r x +_f y) &  | 
|
| 13006 | 64  | 
(!x:A. !y:A. !z:A. x <=_r z & y <=_r z \<longrightarrow> x +_f y <=_r z)"  | 
| 10496 | 65  | 
|
| 13006 | 66  | 
 is_ub :: "('a*'a)set \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool"
 | 
| 10496 | 67  | 
"is_ub r x y u == (x,u):r & (y,u):r"  | 
68  | 
||
| 13006 | 69  | 
 is_lub :: "('a*'a)set \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool"
 | 
70  | 
"is_lub r x y u == is_ub r x y u & (!z. is_ub r x y z \<longrightarrow> (u,z):r)"  | 
|
| 10496 | 71  | 
|
| 13006 | 72  | 
 some_lub :: "('a*'a)set \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'a"
 | 
| 13074 | 73  | 
"some_lub r x y == SOME z. is_lub r x y z";  | 
| 10496 | 74  | 
|
| 13365 | 75  | 
locale (open) semilat =  | 
| 13074 | 76  | 
fixes A :: "'a set"  | 
77  | 
and r :: "'a ord"  | 
|
78  | 
and f :: "'a binop"  | 
|
79  | 
assumes semilat: "semilat(A,r,f)"  | 
|
| 10496 | 80  | 
|
81  | 
lemma order_refl [simp, intro]:  | 
|
| 13006 | 82  | 
"order r \<Longrightarrow> x <=_r x";  | 
| 10496 | 83  | 
by (simp add: order_def)  | 
84  | 
||
85  | 
lemma order_antisym:  | 
|
| 13006 | 86  | 
"\<lbrakk> order r; x <=_r y; y <=_r x \<rbrakk> \<Longrightarrow> x = y"  | 
| 10496 | 87  | 
apply (unfold order_def)  | 
| 13074 | 88  | 
apply (simp (no_asm_simp))  | 
| 10496 | 89  | 
done  | 
90  | 
||
91  | 
lemma order_trans:  | 
|
| 13006 | 92  | 
"\<lbrakk> order r; x <=_r y; y <=_r z \<rbrakk> \<Longrightarrow> x <=_r z"  | 
| 10496 | 93  | 
apply (unfold order_def)  | 
94  | 
apply blast  | 
|
95  | 
done  | 
|
96  | 
||
97  | 
lemma order_less_irrefl [intro, simp]:  | 
|
| 13006 | 98  | 
"order r \<Longrightarrow> ~ x <_r x"  | 
| 10496 | 99  | 
apply (unfold order_def lesssub_def)  | 
100  | 
apply blast  | 
|
101  | 
done  | 
|
102  | 
||
103  | 
lemma order_less_trans:  | 
|
| 13006 | 104  | 
"\<lbrakk> order r; x <_r y; y <_r z \<rbrakk> \<Longrightarrow> x <_r z"  | 
| 10496 | 105  | 
apply (unfold order_def lesssub_def)  | 
106  | 
apply blast  | 
|
107  | 
done  | 
|
108  | 
||
109  | 
lemma topD [simp, intro]:  | 
|
| 13006 | 110  | 
"top r T \<Longrightarrow> x <=_r T"  | 
| 10496 | 111  | 
by (simp add: top_def)  | 
112  | 
||
113  | 
lemma top_le_conv [simp]:  | 
|
| 13006 | 114  | 
"\<lbrakk> order r; top r T \<rbrakk> \<Longrightarrow> (T <=_r x) = (x = T)"  | 
| 10496 | 115  | 
by (blast intro: order_antisym)  | 
116  | 
||
117  | 
lemma semilat_Def:  | 
|
118  | 
"semilat(A,r,f) == order r & closed A f &  | 
|
119  | 
(!x:A. !y:A. x <=_r x +_f y) &  | 
|
120  | 
(!x:A. !y:A. y <=_r x +_f y) &  | 
|
| 13006 | 121  | 
(!x:A. !y:A. !z:A. x <=_r z & y <=_r z \<longrightarrow> x +_f y <=_r z)"  | 
| 10918 | 122  | 
apply (unfold semilat_def split_conv [THEN eq_reflection])  | 
| 10496 | 123  | 
apply (rule refl [THEN eq_reflection])  | 
124  | 
done  | 
|
125  | 
||
| 13074 | 126  | 
lemma (in semilat) orderI [simp, intro]:  | 
127  | 
"order r"  | 
|
128  | 
by (insert semilat) (simp add: semilat_Def)  | 
|
129  | 
||
130  | 
lemma (in semilat) closedI [simp, intro]:  | 
|
131  | 
"closed A f"  | 
|
132  | 
by (insert semilat) (simp add: semilat_Def)  | 
|
133  | 
||
| 13077 | 134  | 
lemma closedD:  | 
135  | 
"\<lbrakk> closed A f; x:A; y:A \<rbrakk> \<Longrightarrow> x +_f y : A"  | 
|
136  | 
by (unfold closed_def) blast  | 
|
137  | 
||
138  | 
lemma closed_UNIV [simp]: "closed UNIV f"  | 
|
139  | 
by (simp add: closed_def)  | 
|
140  | 
||
141  | 
||
142  | 
lemma (in semilat) closed_f [simp, intro]:  | 
|
143  | 
"\<lbrakk>x:A; y:A\<rbrakk> \<Longrightarrow> x +_f y : A"  | 
|
144  | 
by (simp add: closedD [OF closedI])  | 
|
145  | 
||
146  | 
lemma (in semilat) refl_r [intro, simp]:  | 
|
147  | 
"x <=_r x"  | 
|
148  | 
by simp  | 
|
149  | 
||
150  | 
lemma (in semilat) antisym_r [intro?]:  | 
|
151  | 
"\<lbrakk> x <=_r y; y <=_r x \<rbrakk> \<Longrightarrow> x = y"  | 
|
152  | 
by (rule order_antisym) auto  | 
|
153  | 
||
154  | 
lemma (in semilat) trans_r [trans, intro?]:  | 
|
155  | 
"\<lbrakk>x <=_r y; y <=_r z\<rbrakk> \<Longrightarrow> x <=_r z"  | 
|
156  | 
by (auto intro: order_trans)  | 
|
157  | 
||
158  | 
||
159  | 
lemma (in semilat) ub1 [simp, intro?]:  | 
|
| 13074 | 160  | 
"\<lbrakk> x:A; y:A \<rbrakk> \<Longrightarrow> x <=_r x +_f y"  | 
161  | 
by (insert semilat) (unfold semilat_Def, simp)  | 
|
162  | 
||
| 13077 | 163  | 
lemma (in semilat) ub2 [simp, intro?]:  | 
| 13074 | 164  | 
"\<lbrakk> x:A; y:A \<rbrakk> \<Longrightarrow> y <=_r x +_f y"  | 
165  | 
by (insert semilat) (unfold semilat_Def, simp)  | 
|
| 10496 | 166  | 
|
| 13077 | 167  | 
lemma (in semilat) lub [simp, intro?]:  | 
| 13074 | 168  | 
"\<lbrakk> x <=_r z; y <=_r z; x:A; y:A; z:A \<rbrakk> \<Longrightarrow> x +_f y <=_r z";  | 
169  | 
by (insert semilat) (unfold semilat_Def, simp)  | 
|
170  | 
||
171  | 
||
172  | 
lemma (in semilat) plus_le_conv [simp]:  | 
|
173  | 
"\<lbrakk> x:A; y:A; z:A \<rbrakk> \<Longrightarrow> (x +_f y <=_r z) = (x <=_r z & y <=_r z)"  | 
|
| 13077 | 174  | 
by (blast intro: ub1 ub2 lub order_trans)  | 
| 13074 | 175  | 
|
176  | 
lemma (in semilat) le_iff_plus_unchanged:  | 
|
177  | 
"\<lbrakk> x:A; y:A \<rbrakk> \<Longrightarrow> (x <=_r y) = (x +_f y = y)"  | 
|
178  | 
apply (rule iffI)  | 
|
| 13077 | 179  | 
apply (blast intro: antisym_r refl_r lub ub2)  | 
| 13074 | 180  | 
apply (erule subst)  | 
| 10496 | 181  | 
apply simp  | 
182  | 
done  | 
|
183  | 
||
| 13074 | 184  | 
lemma (in semilat) le_iff_plus_unchanged2:  | 
185  | 
"\<lbrakk> x:A; y:A \<rbrakk> \<Longrightarrow> (x <=_r y) = (y +_f x = y)"  | 
|
| 10496 | 186  | 
apply (rule iffI)  | 
| 13074 | 187  | 
apply (blast intro: order_antisym lub order_refl ub1)  | 
| 10496 | 188  | 
apply (erule subst)  | 
189  | 
apply simp  | 
|
190  | 
done  | 
|
191  | 
||
192  | 
||
| 13074 | 193  | 
lemma (in semilat) plus_assoc [simp]:  | 
| 13068 | 194  | 
assumes a: "a \<in> A" and b: "b \<in> A" and c: "c \<in> A"  | 
195  | 
shows "a +_f (b +_f c) = a +_f b +_f c"  | 
|
196  | 
proof -  | 
|
197  | 
from a b have ab: "a +_f b \<in> A" ..  | 
|
198  | 
from this c have abc: "(a +_f b) +_f c \<in> A" ..  | 
|
199  | 
from b c have bc: "b +_f c \<in> A" ..  | 
|
200  | 
from a this have abc': "a +_f (b +_f c) \<in> A" ..  | 
|
201  | 
||
| 13077 | 202  | 
show ?thesis  | 
203  | 
proof  | 
|
| 13068 | 204  | 
show "a +_f (b +_f c) <=_r (a +_f b) +_f c"  | 
| 13074 | 205  | 
proof -  | 
| 13068 | 206  | 
from a b have "a <=_r a +_f b" ..  | 
207  | 
also from ab c have "\<dots> <=_r \<dots> +_f c" ..  | 
|
208  | 
finally have "a<": "a <=_r (a +_f b) +_f c" .  | 
|
209  | 
from a b have "b <=_r a +_f b" ..  | 
|
210  | 
also from ab c have "\<dots> <=_r \<dots> +_f c" ..  | 
|
211  | 
finally have "b<": "b <=_r (a +_f b) +_f c" .  | 
|
212  | 
from ab c have "c<": "c <=_r (a +_f b) +_f c" ..  | 
|
213  | 
from "b<" "c<" b c abc have "b +_f c <=_r (a +_f b) +_f c" ..  | 
|
214  | 
from "a<" this a bc abc show ?thesis ..  | 
|
215  | 
qed  | 
|
216  | 
show "(a +_f b) +_f c <=_r a +_f (b +_f c)"  | 
|
217  | 
proof -  | 
|
218  | 
from b c have "b <=_r b +_f c" ..  | 
|
219  | 
also from a bc have "\<dots> <=_r a +_f \<dots>" ..  | 
|
220  | 
finally have "b<": "b <=_r a +_f (b +_f c)" .  | 
|
221  | 
from b c have "c <=_r b +_f c" ..  | 
|
222  | 
also from a bc have "\<dots> <=_r a +_f \<dots>" ..  | 
|
223  | 
finally have "c<": "c <=_r a +_f (b +_f c)" .  | 
|
224  | 
from a bc have "a<": "a <=_r a +_f (b +_f c)" ..  | 
|
225  | 
from "a<" "b<" a b abc' have "a +_f b <=_r a +_f (b +_f c)" ..  | 
|
226  | 
from this "c<" ab c abc' show ?thesis ..  | 
|
227  | 
qed  | 
|
228  | 
qed  | 
|
229  | 
qed  | 
|
230  | 
||
| 13074 | 231  | 
lemma (in semilat) plus_com_lemma:  | 
232  | 
"\<lbrakk>a \<in> A; b \<in> A\<rbrakk> \<Longrightarrow> a +_f b <=_r b +_f a"  | 
|
| 13068 | 233  | 
proof -  | 
| 13074 | 234  | 
assume a: "a \<in> A" and b: "b \<in> A"  | 
| 13077 | 235  | 
from b a have "a <=_r b +_f a" ..  | 
236  | 
moreover from b a have "b <=_r b +_f a" ..  | 
|
237  | 
moreover note a b  | 
|
238  | 
moreover from b a have "b +_f a \<in> A" ..  | 
|
239  | 
ultimately show ?thesis ..  | 
|
| 13068 | 240  | 
qed  | 
241  | 
||
| 13074 | 242  | 
lemma (in semilat) plus_commutative:  | 
243  | 
"\<lbrakk>a \<in> A; b \<in> A\<rbrakk> \<Longrightarrow> a +_f b = b +_f a"  | 
|
244  | 
by(blast intro: order_antisym plus_com_lemma)  | 
|
| 13068 | 245  | 
|
| 10496 | 246  | 
lemma is_lubD:  | 
| 13006 | 247  | 
"is_lub r x y u \<Longrightarrow> is_ub r x y u & (!z. is_ub r x y z \<longrightarrow> (u,z):r)"  | 
| 10496 | 248  | 
by (simp add: is_lub_def)  | 
249  | 
||
250  | 
lemma is_ubI:  | 
|
| 13006 | 251  | 
"\<lbrakk> (x,u) : r; (y,u) : r \<rbrakk> \<Longrightarrow> is_ub r x y u"  | 
| 10496 | 252  | 
by (simp add: is_ub_def)  | 
253  | 
||
254  | 
lemma is_ubD:  | 
|
| 13006 | 255  | 
"is_ub r x y u \<Longrightarrow> (x,u) : r & (y,u) : r"  | 
| 10496 | 256  | 
by (simp add: is_ub_def)  | 
257  | 
||
258  | 
||
259  | 
lemma is_lub_bigger1 [iff]:  | 
|
260  | 
"is_lub (r^* ) x y y = ((x,y):r^* )"  | 
|
261  | 
apply (unfold is_lub_def is_ub_def)  | 
|
262  | 
apply blast  | 
|
263  | 
done  | 
|
264  | 
||
265  | 
lemma is_lub_bigger2 [iff]:  | 
|
266  | 
"is_lub (r^* ) x y x = ((y,x):r^* )"  | 
|
267  | 
apply (unfold is_lub_def is_ub_def)  | 
|
268  | 
apply blast  | 
|
| 12542 | 269  | 
done  | 
| 10496 | 270  | 
|
271  | 
lemma extend_lub:  | 
|
| 13006 | 272  | 
"\<lbrakk> single_valued r; is_lub (r^* ) x y u; (x',x) : r \<rbrakk>  | 
273  | 
\<Longrightarrow> EX v. is_lub (r^* ) x' y v"  | 
|
| 10496 | 274  | 
apply (unfold is_lub_def is_ub_def)  | 
275  | 
apply (case_tac "(y,x) : r^*")  | 
|
276  | 
apply (case_tac "(y,x') : r^*")  | 
|
277  | 
apply blast  | 
|
| 
11175
 
56ab6a5ba351
recoded function iter with the help of the while-combinator.
 
nipkow 
parents: 
11085 
diff
changeset
 | 
278  | 
apply (blast elim: converse_rtranclE dest: single_valuedD)  | 
| 10496 | 279  | 
apply (rule exI)  | 
280  | 
apply (rule conjI)  | 
|
| 
12566
 
fe20540bcf93
renamed rtrancl_into_rtrancl2 to converse_rtrancl_into_rtrancl
 
nipkow 
parents: 
12542 
diff
changeset
 | 
281  | 
apply (blast intro: converse_rtrancl_into_rtrancl dest: single_valuedD)  | 
| 
 
fe20540bcf93
renamed rtrancl_into_rtrancl2 to converse_rtrancl_into_rtrancl
 
nipkow 
parents: 
12542 
diff
changeset
 | 
282  | 
apply (blast intro: rtrancl_into_rtrancl converse_rtrancl_into_rtrancl  | 
| 10797 | 283  | 
elim: converse_rtranclE dest: single_valuedD)  | 
| 12542 | 284  | 
done  | 
| 10496 | 285  | 
|
| 10797 | 286  | 
lemma single_valued_has_lubs [rule_format]:  | 
| 13006 | 287  | 
"\<lbrakk> single_valued r; (x,u) : r^* \<rbrakk> \<Longrightarrow> (!y. (y,u) : r^* \<longrightarrow>  | 
| 10496 | 288  | 
(EX z. is_lub (r^* ) x y z))"  | 
289  | 
apply (erule converse_rtrancl_induct)  | 
|
290  | 
apply clarify  | 
|
291  | 
apply (erule converse_rtrancl_induct)  | 
|
292  | 
apply blast  | 
|
| 
12566
 
fe20540bcf93
renamed rtrancl_into_rtrancl2 to converse_rtrancl_into_rtrancl
 
nipkow 
parents: 
12542 
diff
changeset
 | 
293  | 
apply (blast intro: converse_rtrancl_into_rtrancl)  | 
| 10496 | 294  | 
apply (blast intro: extend_lub)  | 
295  | 
done  | 
|
296  | 
||
297  | 
lemma some_lub_conv:  | 
|
| 13006 | 298  | 
"\<lbrakk> acyclic r; is_lub (r^* ) x y u \<rbrakk> \<Longrightarrow> some_lub (r^* ) x y = u"  | 
| 10496 | 299  | 
apply (unfold some_lub_def is_lub_def)  | 
300  | 
apply (rule someI2)  | 
|
301  | 
apply assumption  | 
|
302  | 
apply (blast intro: antisymD dest!: acyclic_impl_antisym_rtrancl)  | 
|
| 12542 | 303  | 
done  | 
| 10496 | 304  | 
|
305  | 
lemma is_lub_some_lub:  | 
|
| 13006 | 306  | 
"\<lbrakk> single_valued r; acyclic r; (x,u):r^*; (y,u):r^* \<rbrakk>  | 
307  | 
\<Longrightarrow> is_lub (r^* ) x y (some_lub (r^* ) x y)";  | 
|
| 10797 | 308  | 
by (fastsimp dest: single_valued_has_lubs simp add: some_lub_conv)  | 
| 10496 | 309  | 
|
| 12542 | 310  | 
subsection{*An executable lub-finder*}
 | 
311  | 
||
312  | 
constdefs  | 
|
313  | 
 exec_lub :: "('a * 'a) set \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> 'a binop"
 | 
|
314  | 
"exec_lub r f x y == while (\<lambda>z. (x,z) \<notin> r\<^sup>*) f y"  | 
|
315  | 
||
316  | 
||
317  | 
lemma acyclic_single_valued_finite:  | 
|
318  | 
"\<lbrakk>acyclic r; single_valued r; (x,y) \<in> r\<^sup>*\<rbrakk>  | 
|
319  | 
  \<Longrightarrow> finite (r \<inter> {a. (x, a) \<in> r\<^sup>*} \<times> {b. (b, y) \<in> r\<^sup>*})"
 | 
|
320  | 
apply(erule converse_rtrancl_induct)  | 
|
321  | 
 apply(rule_tac B = "{}" in finite_subset)
 | 
|
322  | 
apply(simp only:acyclic_def)  | 
|
323  | 
apply(blast intro:rtrancl_into_trancl2 rtrancl_trancl_trancl)  | 
|
324  | 
apply simp  | 
|
325  | 
apply(rename_tac x x')  | 
|
326  | 
apply(subgoal_tac "r \<inter> {a. (x,a) \<in> r\<^sup>*} \<times> {b. (b,y) \<in> r\<^sup>*} =
 | 
|
327  | 
                   insert (x,x') (r \<inter> {a. (x', a) \<in> r\<^sup>*} \<times> {b. (b, y) \<in> r\<^sup>*})")
 | 
|
328  | 
apply simp  | 
|
| 
12566
 
fe20540bcf93
renamed rtrancl_into_rtrancl2 to converse_rtrancl_into_rtrancl
 
nipkow 
parents: 
12542 
diff
changeset
 | 
329  | 
apply(blast intro:converse_rtrancl_into_rtrancl  | 
| 12542 | 330  | 
elim:converse_rtranclE dest:single_valuedD)  | 
331  | 
done  | 
|
332  | 
||
333  | 
||
| 12773 | 334  | 
lemma exec_lub_conv:  | 
335  | 
"\<lbrakk> acyclic r; !x y. (x,y) \<in> r \<longrightarrow> f x = y; is_lub (r\<^sup>*) x y u \<rbrakk> \<Longrightarrow>  | 
|
336  | 
exec_lub r f x y = u";  | 
|
| 12542 | 337  | 
apply(unfold exec_lub_def)  | 
338  | 
apply(rule_tac P = "\<lambda>z. (y,z) \<in> r\<^sup>* \<and> (z,u) \<in> r\<^sup>*" and  | 
|
339  | 
               r = "(r \<inter> {(a,b). (y,a) \<in> r\<^sup>* \<and> (b,u) \<in> r\<^sup>*})^-1" in while_rule)
 | 
|
340  | 
apply(blast dest: is_lubD is_ubD)  | 
|
341  | 
apply(erule conjE)  | 
|
342  | 
apply(erule_tac z = u in converse_rtranclE)  | 
|
343  | 
apply(blast dest: is_lubD is_ubD)  | 
|
344  | 
apply(blast dest:rtrancl_into_rtrancl)  | 
|
345  | 
apply(rename_tac s)  | 
|
346  | 
apply(subgoal_tac "is_ub (r\<^sup>*) x y s")  | 
|
347  | 
prefer 2; apply(simp add:is_ub_def)  | 
|
348  | 
apply(subgoal_tac "(u, s) \<in> r\<^sup>*")  | 
|
349  | 
prefer 2; apply(blast dest:is_lubD)  | 
|
350  | 
apply(erule converse_rtranclE)  | 
|
351  | 
apply blast  | 
|
352  | 
apply(simp only:acyclic_def)  | 
|
353  | 
apply(blast intro:rtrancl_into_trancl2 rtrancl_trancl_trancl)  | 
|
354  | 
apply(rule finite_acyclic_wf)  | 
|
355  | 
apply simp  | 
|
356  | 
apply(erule acyclic_single_valued_finite)  | 
|
357  | 
apply(blast intro:single_valuedI)  | 
|
358  | 
apply(simp add:is_lub_def is_ub_def)  | 
|
359  | 
apply simp  | 
|
360  | 
apply(erule acyclic_subset)  | 
|
361  | 
apply blast  | 
|
362  | 
apply simp  | 
|
363  | 
apply(erule conjE)  | 
|
364  | 
apply(erule_tac z = u in converse_rtranclE)  | 
|
365  | 
apply(blast dest: is_lubD is_ubD)  | 
|
366  | 
apply(blast dest:rtrancl_into_rtrancl)  | 
|
367  | 
done  | 
|
368  | 
||
| 12773 | 369  | 
lemma is_lub_exec_lub:  | 
370  | 
"\<lbrakk> single_valued r; acyclic r; (x,u):r^*; (y,u):r^*; !x y. (x,y) \<in> r \<longrightarrow> f x = y \<rbrakk>  | 
|
371  | 
\<Longrightarrow> is_lub (r^* ) x y (exec_lub r f x y)"  | 
|
372  | 
by (fastsimp dest: single_valued_has_lubs simp add: exec_lub_conv)  | 
|
373  | 
||
| 10496 | 374  | 
end  |