| author | wenzelm | 
| Tue, 16 Apr 2013 17:54:14 +0200 | |
| changeset 51709 | 19b47bfac6ef | 
| parent 46963 | 67da5904300a | 
| child 58871 | c399ae4b836f | 
| permissions | -rw-r--r-- | 
| 13505 | 1 | (* Title: ZF/Constructible/Normal.thy | 
| 2 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | |
| 3 | *) | |
| 4 | ||
| 13223 | 5 | header {*Closed Unbounded Classes and Normal Functions*}
 | 
| 6 | ||
| 16417 | 7 | theory Normal imports Main begin | 
| 13223 | 8 | |
| 9 | text{*
 | |
| 10 | One source is the book | |
| 11 | ||
| 12 | Frank R. Drake. | |
| 13 | \emph{Set Theory: An Introduction to Large Cardinals}.
 | |
| 14 | North-Holland, 1974. | |
| 15 | *} | |
| 16 | ||
| 17 | ||
| 18 | subsection {*Closed and Unbounded (c.u.) Classes of Ordinals*}
 | |
| 19 | ||
| 21233 | 20 | definition | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21233diff
changeset | 21 | Closed :: "(i=>o) => o" where | 
| 46823 | 22 | "Closed(P) == \<forall>I. I \<noteq> 0 \<longrightarrow> (\<forall>i\<in>I. Ord(i) \<and> P(i)) \<longrightarrow> P(\<Union>(I))" | 
| 13223 | 23 | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21233diff
changeset | 24 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21233diff
changeset | 25 | Unbounded :: "(i=>o) => o" where | 
| 46823 | 26 | "Unbounded(P) == \<forall>i. Ord(i) \<longrightarrow> (\<exists>j. i<j \<and> P(j))" | 
| 13223 | 27 | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21233diff
changeset | 28 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21233diff
changeset | 29 | Closed_Unbounded :: "(i=>o) => o" where | 
| 13223 | 30 | "Closed_Unbounded(P) == Closed(P) \<and> Unbounded(P)" | 
| 31 | ||
| 32 | ||
| 33 | subsubsection{*Simple facts about c.u. classes*}
 | |
| 34 | ||
| 35 | lemma ClosedI: | |
| 36 | "[| !!I. [| I \<noteq> 0; \<forall>i\<in>I. Ord(i) \<and> P(i) |] ==> P(\<Union>(I)) |] | |
| 37 | ==> Closed(P)" | |
| 38 | by (simp add: Closed_def) | |
| 39 | ||
| 40 | lemma ClosedD: | |
| 41 | "[| Closed(P); I \<noteq> 0; !!i. i\<in>I ==> Ord(i); !!i. i\<in>I ==> P(i) |] | |
| 42 | ==> P(\<Union>(I))" | |
| 43 | by (simp add: Closed_def) | |
| 44 | ||
| 45 | lemma UnboundedD: | |
| 46 | "[| Unbounded(P); Ord(i) |] ==> \<exists>j. i<j \<and> P(j)" | |
| 47 | by (simp add: Unbounded_def) | |
| 48 | ||
| 49 | lemma Closed_Unbounded_imp_Unbounded: "Closed_Unbounded(C) ==> Unbounded(C)" | |
| 50 | by (simp add: Closed_Unbounded_def) | |
| 51 | ||
| 52 | ||
| 53 | text{*The universal class, V, is closed and unbounded.
 | |
| 54 | A bit odd, since C. U. concerns only ordinals, but it's used below!*} | |
| 55 | theorem Closed_Unbounded_V [simp]: "Closed_Unbounded(\<lambda>x. True)" | |
| 56 | by (unfold Closed_Unbounded_def Closed_def Unbounded_def, blast) | |
| 57 | ||
| 58 | text{*The class of ordinals, @{term Ord}, is closed and unbounded.*}
 | |
| 59 | theorem Closed_Unbounded_Ord [simp]: "Closed_Unbounded(Ord)" | |
| 60 | by (unfold Closed_Unbounded_def Closed_def Unbounded_def, blast) | |
| 61 | ||
| 62 | text{*The class of limit ordinals, @{term Limit}, is closed and unbounded.*}
 | |
| 63 | theorem Closed_Unbounded_Limit [simp]: "Closed_Unbounded(Limit)" | |
| 64 | apply (simp add: Closed_Unbounded_def Closed_def Unbounded_def Limit_Union, | |
| 65 | clarify) | |
| 66 | apply (rule_tac x="i++nat" in exI) | |
| 67 | apply (blast intro: oadd_lt_self oadd_LimitI Limit_nat Limit_has_0) | |
| 68 | done | |
| 69 | ||
| 70 | text{*The class of cardinals, @{term Card}, is closed and unbounded.*}
 | |
| 71 | theorem Closed_Unbounded_Card [simp]: "Closed_Unbounded(Card)" | |
| 72 | apply (simp add: Closed_Unbounded_def Closed_def Unbounded_def Card_Union) | |
| 73 | apply (blast intro: lt_csucc Card_csucc) | |
| 74 | done | |
| 75 | ||
| 76 | ||
| 77 | subsubsection{*The intersection of any set-indexed family of c.u. classes is
 | |
| 78 | c.u.*} | |
| 79 | ||
| 80 | text{*The constructions below come from Kunen, \emph{Set Theory}, page 78.*}
 | |
| 13428 | 81 | locale cub_family = | 
| 13223 | 82 | fixes P and A | 
| 83 |   fixes next_greater -- "the next ordinal satisfying class @{term A}"
 | |
| 84 |   fixes sup_greater  -- "sup of those ordinals over all @{term A}"
 | |
| 85 | assumes closed: "a\<in>A ==> Closed(P(a))" | |
| 86 | and unbounded: "a\<in>A ==> Unbounded(P(a))" | |
| 87 | and A_non0: "A\<noteq>0" | |
| 14171 
0cab06e3bbd0
Extended the notion of letter and digit, such that now one may use greek,
 skalberg parents: 
13634diff
changeset | 88 | defines "next_greater(a,x) == \<mu> y. x<y \<and> P(a,y)" | 
| 13223 | 89 | and "sup_greater(x) == \<Union>a\<in>A. next_greater(a,x)" | 
| 90 | ||
| 91 | ||
| 92 | text{*Trivial that the intersection is closed.*}
 | |
| 93 | lemma (in cub_family) Closed_INT: "Closed(\<lambda>x. \<forall>i\<in>A. P(i,x))" | |
| 94 | by (blast intro: ClosedI ClosedD [OF closed]) | |
| 95 | ||
| 96 | text{*All remaining effort goes to show that the intersection is unbounded.*}
 | |
| 97 | ||
| 98 | lemma (in cub_family) Ord_sup_greater: | |
| 99 | "Ord(sup_greater(x))" | |
| 100 | by (simp add: sup_greater_def next_greater_def) | |
| 101 | ||
| 102 | lemma (in cub_family) Ord_next_greater: | |
| 103 | "Ord(next_greater(a,x))" | |
| 104 | by (simp add: next_greater_def Ord_Least) | |
| 105 | ||
| 106 | text{*@{term next_greater} works as expected: it returns a larger value
 | |
| 107 | and one that belongs to class @{term "P(a)"}. *}
 | |
| 108 | lemma (in cub_family) next_greater_lemma: | |
| 109 | "[| Ord(x); a\<in>A |] ==> P(a, next_greater(a,x)) \<and> x < next_greater(a,x)" | |
| 110 | apply (simp add: next_greater_def) | |
| 111 | apply (rule exE [OF UnboundedD [OF unbounded]]) | |
| 112 | apply assumption+ | |
| 113 | apply (blast intro: LeastI2 lt_Ord2) | |
| 114 | done | |
| 115 | ||
| 116 | lemma (in cub_family) next_greater_in_P: | |
| 117 | "[| Ord(x); a\<in>A |] ==> P(a, next_greater(a,x))" | |
| 118 | by (blast dest: next_greater_lemma) | |
| 119 | ||
| 120 | lemma (in cub_family) next_greater_gt: | |
| 121 | "[| Ord(x); a\<in>A |] ==> x < next_greater(a,x)" | |
| 122 | by (blast dest: next_greater_lemma) | |
| 123 | ||
| 124 | lemma (in cub_family) sup_greater_gt: | |
| 125 | "Ord(x) ==> x < sup_greater(x)" | |
| 126 | apply (simp add: sup_greater_def) | |
| 127 | apply (insert A_non0) | |
| 128 | apply (blast intro: UN_upper_lt next_greater_gt Ord_next_greater) | |
| 129 | done | |
| 130 | ||
| 131 | lemma (in cub_family) next_greater_le_sup_greater: | |
| 132 | "a\<in>A ==> next_greater(a,x) \<le> sup_greater(x)" | |
| 133 | apply (simp add: sup_greater_def) | |
| 134 | apply (blast intro: UN_upper_le Ord_next_greater) | |
| 135 | done | |
| 136 | ||
| 137 | lemma (in cub_family) omega_sup_greater_eq_UN: | |
| 138 | "[| Ord(x); a\<in>A |] | |
| 139 | ==> sup_greater^\<omega> (x) = | |
| 140 | (\<Union>n\<in>nat. next_greater(a, sup_greater^n (x)))" | |
| 141 | apply (simp add: iterates_omega_def) | |
| 142 | apply (rule le_anti_sym) | |
| 143 | apply (rule le_implies_UN_le_UN) | |
| 144 | apply (blast intro: leI next_greater_gt Ord_iterates Ord_sup_greater) | |
| 145 | txt{*Opposite bound:
 | |
| 146 | @{subgoals[display,indent=0,margin=65]}
 | |
| 147 | *} | |
| 148 | apply (rule UN_least_le) | |
| 149 | apply (blast intro: Ord_UN Ord_iterates Ord_sup_greater) | |
| 150 | apply (rule_tac a="succ(n)" in UN_upper_le) | |
| 151 | apply (simp_all add: next_greater_le_sup_greater) | |
| 152 | apply (blast intro: Ord_UN Ord_iterates Ord_sup_greater) | |
| 153 | done | |
| 154 | ||
| 155 | lemma (in cub_family) P_omega_sup_greater: | |
| 156 | "[| Ord(x); a\<in>A |] ==> P(a, sup_greater^\<omega> (x))" | |
| 157 | apply (simp add: omega_sup_greater_eq_UN) | |
| 158 | apply (rule ClosedD [OF closed]) | |
| 159 | apply (blast intro: ltD, auto) | |
| 160 | apply (blast intro: Ord_iterates Ord_next_greater Ord_sup_greater) | |
| 161 | apply (blast intro: next_greater_in_P Ord_iterates Ord_sup_greater) | |
| 162 | done | |
| 163 | ||
| 164 | lemma (in cub_family) omega_sup_greater_gt: | |
| 165 | "Ord(x) ==> x < sup_greater^\<omega> (x)" | |
| 166 | apply (simp add: iterates_omega_def) | |
| 167 | apply (rule UN_upper_lt [of 1], simp_all) | |
| 168 | apply (blast intro: sup_greater_gt) | |
| 169 | apply (blast intro: Ord_UN Ord_iterates Ord_sup_greater) | |
| 170 | done | |
| 171 | ||
| 172 | lemma (in cub_family) Unbounded_INT: "Unbounded(\<lambda>x. \<forall>a\<in>A. P(a,x))" | |
| 173 | apply (unfold Unbounded_def) | |
| 174 | apply (blast intro!: omega_sup_greater_gt P_omega_sup_greater) | |
| 175 | done | |
| 176 | ||
| 177 | lemma (in cub_family) Closed_Unbounded_INT: | |
| 178 | "Closed_Unbounded(\<lambda>x. \<forall>a\<in>A. P(a,x))" | |
| 179 | by (simp add: Closed_Unbounded_def Closed_INT Unbounded_INT) | |
| 180 | ||
| 181 | ||
| 182 | theorem Closed_Unbounded_INT: | |
| 183 | "(!!a. a\<in>A ==> Closed_Unbounded(P(a))) | |
| 184 | ==> Closed_Unbounded(\<lambda>x. \<forall>a\<in>A. P(a, x))" | |
| 185 | apply (case_tac "A=0", simp) | |
| 13428 | 186 | apply (rule cub_family.Closed_Unbounded_INT [OF cub_family.intro]) | 
| 13223 | 187 | apply (simp_all add: Closed_Unbounded_def) | 
| 188 | done | |
| 189 | ||
| 190 | lemma Int_iff_INT2: | |
| 46823 | 191 | "P(x) \<and> Q(x) \<longleftrightarrow> (\<forall>i\<in>2. (i=0 \<longrightarrow> P(x)) \<and> (i=1 \<longrightarrow> Q(x)))" | 
| 13223 | 192 | by auto | 
| 193 | ||
| 194 | theorem Closed_Unbounded_Int: | |
| 195 | "[| Closed_Unbounded(P); Closed_Unbounded(Q) |] | |
| 196 | ==> Closed_Unbounded(\<lambda>x. P(x) \<and> Q(x))" | |
| 197 | apply (simp only: Int_iff_INT2) | |
| 198 | apply (rule Closed_Unbounded_INT, auto) | |
| 199 | done | |
| 200 | ||
| 201 | ||
| 202 | subsection {*Normal Functions*} 
 | |
| 203 | ||
| 21233 | 204 | definition | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21233diff
changeset | 205 | mono_le_subset :: "(i=>i) => o" where | 
| 46823 | 206 | "mono_le_subset(M) == \<forall>i j. i\<le>j \<longrightarrow> M(i) \<subseteq> M(j)" | 
| 13223 | 207 | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21233diff
changeset | 208 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21233diff
changeset | 209 | mono_Ord :: "(i=>i) => o" where | 
| 46823 | 210 | "mono_Ord(F) == \<forall>i j. i<j \<longrightarrow> F(i) < F(j)" | 
| 13223 | 211 | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21233diff
changeset | 212 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21233diff
changeset | 213 | cont_Ord :: "(i=>i) => o" where | 
| 46823 | 214 | "cont_Ord(F) == \<forall>l. Limit(l) \<longrightarrow> F(l) = (\<Union>i<l. F(i))" | 
| 13223 | 215 | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21233diff
changeset | 216 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21233diff
changeset | 217 | Normal :: "(i=>i) => o" where | 
| 13223 | 218 | "Normal(F) == mono_Ord(F) \<and> cont_Ord(F)" | 
| 219 | ||
| 220 | ||
| 221 | subsubsection{*Immediate properties of the definitions*}
 | |
| 222 | ||
| 223 | lemma NormalI: | |
| 224 | "[|!!i j. i<j ==> F(i) < F(j); !!l. Limit(l) ==> F(l) = (\<Union>i<l. F(i))|] | |
| 225 | ==> Normal(F)" | |
| 226 | by (simp add: Normal_def mono_Ord_def cont_Ord_def) | |
| 227 | ||
| 228 | lemma mono_Ord_imp_Ord: "[| Ord(i); mono_Ord(F) |] ==> Ord(F(i))" | |
| 46963 | 229 | apply (auto simp add: mono_Ord_def) | 
| 13223 | 230 | apply (blast intro: lt_Ord) | 
| 231 | done | |
| 232 | ||
| 233 | lemma mono_Ord_imp_mono: "[| i<j; mono_Ord(F) |] ==> F(i) < F(j)" | |
| 234 | by (simp add: mono_Ord_def) | |
| 235 | ||
| 236 | lemma Normal_imp_Ord [simp]: "[| Normal(F); Ord(i) |] ==> Ord(F(i))" | |
| 237 | by (simp add: Normal_def mono_Ord_imp_Ord) | |
| 238 | ||
| 239 | lemma Normal_imp_cont: "[| Normal(F); Limit(l) |] ==> F(l) = (\<Union>i<l. F(i))" | |
| 240 | by (simp add: Normal_def cont_Ord_def) | |
| 241 | ||
| 242 | lemma Normal_imp_mono: "[| i<j; Normal(F) |] ==> F(i) < F(j)" | |
| 243 | by (simp add: Normal_def mono_Ord_def) | |
| 244 | ||
| 46963 | 245 | lemma Normal_increasing: | 
| 246 | assumes i: "Ord(i)" and F: "Normal(F)" shows"i \<le> F(i)" | |
| 247 | using i | |
| 248 | proof (induct i rule: trans_induct3) | |
| 249 | case 0 thus ?case by (simp add: subset_imp_le F) | |
| 250 | next | |
| 251 | case (succ i) | |
| 252 | hence "F(i) < F(succ(i))" using F | |
| 253 | by (simp add: Normal_def mono_Ord_def) | |
| 254 | thus ?case using succ.hyps | |
| 255 | by (blast intro: lt_trans1) | |
| 256 | next | |
| 257 | case (limit l) | |
| 258 | hence "l = (\<Union>y<l. y)" | |
| 259 | by (simp add: Limit_OUN_eq) | |
| 260 | also have "... \<le> (\<Union>y<l. F(y))" using limit | |
| 261 | by (blast intro: ltD le_implies_OUN_le_OUN) | |
| 262 | finally have "l \<le> (\<Union>y<l. F(y))" . | |
| 263 | moreover have "(\<Union>y<l. F(y)) \<le> F(l)" using limit F | |
| 264 | by (simp add: Normal_imp_cont lt_Ord) | |
| 265 | ultimately show ?case | |
| 266 | by (blast intro: le_trans) | |
| 267 | qed | |
| 13223 | 268 | |
| 269 | ||
| 270 | subsubsection{*The class of fixedpoints is closed and unbounded*}
 | |
| 271 | ||
| 272 | text{*The proof is from Drake, pages 113--114.*}
 | |
| 273 | ||
| 274 | lemma mono_Ord_imp_le_subset: "mono_Ord(F) ==> mono_le_subset(F)" | |
| 275 | apply (simp add: mono_le_subset_def, clarify) | |
| 276 | apply (subgoal_tac "F(i)\<le>F(j)", blast dest: le_imp_subset) | |
| 277 | apply (simp add: le_iff) | |
| 278 | apply (blast intro: lt_Ord2 mono_Ord_imp_Ord mono_Ord_imp_mono) | |
| 279 | done | |
| 280 | ||
| 281 | text{*The following equation is taken for granted in any set theory text.*}
 | |
| 282 | lemma cont_Ord_Union: | |
| 46823 | 283 | "[| cont_Ord(F); mono_le_subset(F); X=0 \<longrightarrow> F(0)=0; \<forall>x\<in>X. Ord(x) |] | 
| 284 | ==> F(\<Union>(X)) = (\<Union>y\<in>X. F(y))" | |
| 13223 | 285 | apply (frule Ord_set_cases) | 
| 286 | apply (erule disjE, force) | |
| 46823 | 287 | apply (thin_tac "X=0 \<longrightarrow> ?Q", auto) | 
| 13223 | 288 |  txt{*The trival case of @{term "\<Union>X \<in> X"}*}
 | 
| 289 | apply (rule equalityI, blast intro: Ord_Union_eq_succD) | |
| 290 | apply (simp add: mono_le_subset_def UN_subset_iff le_subset_iff) | |
| 291 | apply (blast elim: equalityE) | |
| 292 | txt{*The limit case, @{term "Limit(\<Union>X)"}:
 | |
| 293 | @{subgoals[display,indent=0,margin=65]}
 | |
| 294 | *} | |
| 295 | apply (simp add: OUN_Union_eq cont_Ord_def) | |
| 296 | apply (rule equalityI) | |
| 297 | txt{*First inclusion:*}
 | |
| 298 | apply (rule UN_least [OF OUN_least]) | |
| 299 | apply (simp add: mono_le_subset_def, blast intro: leI) | |
| 300 | txt{*Second inclusion:*}
 | |
| 301 | apply (rule UN_least) | |
| 302 | apply (frule Union_upper_le, blast, blast intro: Ord_Union) | |
| 303 | apply (erule leE, drule ltD, elim UnionE) | |
| 304 | apply (simp add: OUnion_def) | |
| 305 | apply blast+ | |
| 306 | done | |
| 307 | ||
| 308 | lemma Normal_Union: | |
| 46823 | 309 | "[| X\<noteq>0; \<forall>x\<in>X. Ord(x); Normal(F) |] ==> F(\<Union>(X)) = (\<Union>y\<in>X. F(y))" | 
| 13223 | 310 | apply (simp add: Normal_def) | 
| 311 | apply (blast intro: mono_Ord_imp_le_subset cont_Ord_Union) | |
| 312 | done | |
| 313 | ||
| 314 | lemma Normal_imp_fp_Closed: "Normal(F) ==> Closed(\<lambda>i. F(i) = i)" | |
| 315 | apply (simp add: Closed_def ball_conj_distrib, clarify) | |
| 316 | apply (frule Ord_set_cases) | |
| 317 | apply (auto simp add: Normal_Union) | |
| 318 | done | |
| 319 | ||
| 320 | ||
| 321 | lemma iterates_Normal_increasing: | |
| 322 | "[| n\<in>nat; x < F(x); Normal(F) |] | |
| 323 | ==> F^n (x) < F^(succ(n)) (x)" | |
| 324 | apply (induct n rule: nat_induct) | |
| 325 | apply (simp_all add: Normal_imp_mono) | |
| 326 | done | |
| 327 | ||
| 328 | lemma Ord_iterates_Normal: | |
| 329 | "[| n\<in>nat; Normal(F); Ord(x) |] ==> Ord(F^n (x))" | |
| 330 | by (simp add: Ord_iterates) | |
| 331 | ||
| 332 | text{*THIS RESULT IS UNUSED*}
 | |
| 333 | lemma iterates_omega_Limit: | |
| 334 | "[| Normal(F); x < F(x) |] ==> Limit(F^\<omega> (x))" | |
| 335 | apply (frule lt_Ord) | |
| 336 | apply (simp add: iterates_omega_def) | |
| 337 | apply (rule increasing_LimitI) | |
| 338 |    --"this lemma is @{thm increasing_LimitI [no_vars]}"
 | |
| 339 | apply (blast intro: UN_upper_lt [of "1"] Normal_imp_Ord | |
| 340 | Ord_UN Ord_iterates lt_imp_0_lt | |
| 13268 | 341 | iterates_Normal_increasing, clarify) | 
| 13223 | 342 | apply (rule bexI) | 
| 343 | apply (blast intro: Ord_in_Ord [OF Ord_iterates_Normal]) | |
| 344 | apply (rule UN_I, erule nat_succI) | |
| 345 | apply (blast intro: iterates_Normal_increasing Ord_iterates_Normal | |
| 346 | ltD [OF lt_trans1, OF succ_leI, OF ltI]) | |
| 347 | done | |
| 348 | ||
| 349 | lemma iterates_omega_fixedpoint: | |
| 350 | "[| Normal(F); Ord(a) |] ==> F(F^\<omega> (a)) = F^\<omega> (a)" | |
| 351 | apply (frule Normal_increasing, assumption) | |
| 352 | apply (erule leE) | |
| 353 | apply (simp_all add: iterates_omega_triv [OF sym]) (*for subgoal 2*) | |
| 354 | apply (simp add: iterates_omega_def Normal_Union) | |
| 355 | apply (rule equalityI, force simp add: nat_succI) | |
| 356 | txt{*Opposite inclusion:
 | |
| 357 | @{subgoals[display,indent=0,margin=65]}
 | |
| 358 | *} | |
| 359 | apply clarify | |
| 360 | apply (rule UN_I, assumption) | |
| 361 | apply (frule iterates_Normal_increasing, assumption, assumption, simp) | |
| 362 | apply (blast intro: Ord_trans ltD Ord_iterates_Normal Normal_imp_Ord [of F]) | |
| 363 | done | |
| 364 | ||
| 365 | lemma iterates_omega_increasing: | |
| 366 | "[| Normal(F); Ord(a) |] ==> a \<le> F^\<omega> (a)" | |
| 367 | apply (unfold iterates_omega_def) | |
| 368 | apply (rule UN_upper_le [of 0], simp_all) | |
| 369 | done | |
| 370 | ||
| 371 | lemma Normal_imp_fp_Unbounded: "Normal(F) ==> Unbounded(\<lambda>i. F(i) = i)" | |
| 372 | apply (unfold Unbounded_def, clarify) | |
| 373 | apply (rule_tac x="F^\<omega> (succ(i))" in exI) | |
| 374 | apply (simp add: iterates_omega_fixedpoint) | |
| 375 | apply (blast intro: lt_trans2 [OF _ iterates_omega_increasing]) | |
| 376 | done | |
| 377 | ||
| 378 | ||
| 379 | theorem Normal_imp_fp_Closed_Unbounded: | |
| 380 | "Normal(F) ==> Closed_Unbounded(\<lambda>i. F(i) = i)" | |
| 381 | by (simp add: Closed_Unbounded_def Normal_imp_fp_Closed | |
| 382 | Normal_imp_fp_Unbounded) | |
| 383 | ||
| 384 | ||
| 385 | subsubsection{*Function @{text normalize}*}
 | |
| 386 | ||
| 387 | text{*Function @{text normalize} maps a function @{text F} to a 
 | |
| 388 | normal function that bounds it above. The result is normal if and | |
| 389 |       only if @{text F} is continuous: succ is not bounded above by any 
 | |
| 390 |       normal function, by @{thm [source] Normal_imp_fp_Unbounded}.
 | |
| 391 | *} | |
| 21233 | 392 | definition | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21233diff
changeset | 393 | normalize :: "[i=>i, i] => i" where | 
| 46823 | 394 | "normalize(F,a) == transrec2(a, F(0), \<lambda>x r. F(succ(x)) \<union> succ(r))" | 
| 13223 | 395 | |
| 396 | ||
| 397 | lemma Ord_normalize [simp, intro]: | |
| 398 | "[| Ord(a); !!x. Ord(x) ==> Ord(F(x)) |] ==> Ord(normalize(F, a))" | |
| 46927 | 399 | apply (induct a rule: trans_induct3) | 
| 13223 | 400 | apply (simp_all add: ltD def_transrec2 [OF normalize_def]) | 
| 401 | done | |
| 402 | ||
| 403 | lemma normalize_increasing: | |
| 46963 | 404 | assumes ab: "a < b" and F: "!!x. Ord(x) ==> Ord(F(x))" | 
| 405 | shows "normalize(F,a) < normalize(F,b)" | |
| 406 | proof - | |
| 407 |   { fix x
 | |
| 408 | have "Ord(b)" using ab by (blast intro: lt_Ord2) | |
| 409 | hence "x < b \<Longrightarrow> normalize(F,x) < normalize(F,b)" | |
| 410 | proof (induct b arbitrary: x rule: trans_induct3) | |
| 411 | case 0 thus ?case by simp | |
| 412 | next | |
| 413 | case (succ b) | |
| 414 | thus ?case | |
| 415 | by (auto simp add: le_iff def_transrec2 [OF normalize_def] intro: Un_upper2_lt F) | |
| 416 | next | |
| 417 | case (limit l) | |
| 418 | hence sc: "succ(x) < l" | |
| 419 | by (blast intro: Limit_has_succ) | |
| 420 | hence "normalize(F,x) < normalize(F,succ(x))" | |
| 421 | by (blast intro: limit elim: ltE) | |
| 422 | hence "normalize(F,x) < (\<Union>j<l. normalize(F,j))" | |
| 423 | by (blast intro: OUN_upper_lt lt_Ord F sc) | |
| 424 | thus ?case using limit | |
| 425 | by (simp add: def_transrec2 [OF normalize_def]) | |
| 426 | qed | |
| 427 | } thus ?thesis using ab . | |
| 428 | qed | |
| 13223 | 429 | |
| 430 | theorem Normal_normalize: | |
| 431 | "(!!x. Ord(x) ==> Ord(F(x))) ==> Normal(normalize(F))" | |
| 432 | apply (rule NormalI) | |
| 433 | apply (blast intro!: normalize_increasing) | |
| 434 | apply (simp add: def_transrec2 [OF normalize_def]) | |
| 435 | done | |
| 436 | ||
| 437 | theorem le_normalize: | |
| 46963 | 438 | assumes a: "Ord(a)" and coF: "cont_Ord(F)" and F: "!!x. Ord(x) ==> Ord(F(x))" | 
| 439 | shows "F(a) \<le> normalize(F,a)" | |
| 440 | using a | |
| 441 | proof (induct a rule: trans_induct3) | |
| 442 | case 0 thus ?case by (simp add: F def_transrec2 [OF normalize_def]) | |
| 443 | next | |
| 444 | case (succ a) | |
| 445 | thus ?case | |
| 446 | by (simp add: def_transrec2 [OF normalize_def] Un_upper1_le F ) | |
| 447 | next | |
| 448 | case (limit l) | |
| 449 | thus ?case using F coF [unfolded cont_Ord_def] | |
| 450 | by (simp add: def_transrec2 [OF normalize_def] le_implies_OUN_le_OUN ltD) | |
| 451 | qed | |
| 13223 | 452 | |
| 453 | ||
| 454 | subsection {*The Alephs*}
 | |
| 455 | text {*This is the well-known transfinite enumeration of the cardinal 
 | |
| 456 | numbers.*} | |
| 457 | ||
| 21233 | 458 | definition | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21233diff
changeset | 459 | Aleph :: "i => i" where | 
| 13223 | 460 | "Aleph(a) == transrec2(a, nat, \<lambda>x r. csucc(r))" | 
| 461 | ||
| 21233 | 462 | notation (xsymbols) | 
| 463 |   Aleph  ("\<aleph>_" [90] 90)
 | |
| 13223 | 464 | |
| 465 | lemma Card_Aleph [simp, intro]: | |
| 466 | "Ord(a) ==> Card(Aleph(a))" | |
| 467 | apply (erule trans_induct3) | |
| 468 | apply (simp_all add: Card_csucc Card_nat Card_is_Ord | |
| 469 | def_transrec2 [OF Aleph_def]) | |
| 470 | done | |
| 471 | ||
| 472 | lemma Aleph_increasing: | |
| 46963 | 473 | assumes ab: "a < b" shows "Aleph(a) < Aleph(b)" | 
| 474 | proof - | |
| 475 |   { fix x
 | |
| 476 | have "Ord(b)" using ab by (blast intro: lt_Ord2) | |
| 477 | hence "x < b \<Longrightarrow> Aleph(x) < Aleph(b)" | |
| 478 | proof (induct b arbitrary: x rule: trans_induct3) | |
| 479 | case 0 thus ?case by simp | |
| 480 | next | |
| 481 | case (succ b) | |
| 482 | thus ?case | |
| 483 | by (force simp add: le_iff def_transrec2 [OF Aleph_def] | |
| 484 | intro: lt_trans lt_csucc Card_is_Ord) | |
| 485 | next | |
| 486 | case (limit l) | |
| 487 | hence sc: "succ(x) < l" | |
| 488 | by (blast intro: Limit_has_succ) | |
| 489 | hence "\<aleph> x < (\<Union>j<l. \<aleph>j)" using limit | |
| 490 | by (blast intro: OUN_upper_lt Card_is_Ord ltD lt_Ord) | |
| 491 | thus ?case using limit | |
| 492 | by (simp add: def_transrec2 [OF Aleph_def]) | |
| 493 | qed | |
| 494 | } thus ?thesis using ab . | |
| 495 | qed | |
| 13223 | 496 | |
| 497 | theorem Normal_Aleph: "Normal(Aleph)" | |
| 498 | apply (rule NormalI) | |
| 499 | apply (blast intro!: Aleph_increasing) | |
| 500 | apply (simp add: def_transrec2 [OF Aleph_def]) | |
| 501 | done | |
| 502 | ||
| 503 | end |