| author | wenzelm | 
| Thu, 28 Oct 2010 15:10:34 +0200 | |
| changeset 40228 | 19cd739f4b0a | 
| parent 40122 | 1d8ad2ff3e01 | 
| child 40603 | 963ee2331d20 | 
| permissions | -rw-r--r-- | 
| 35303 | 1 | (* Author: Florian Haftmann, TU Muenchen *) | 
| 2 | ||
| 3 | header {* Lists with elements distinct as canonical example for datatype invariants *}
 | |
| 4 | ||
| 5 | theory Dlist | |
| 37473 | 6 | imports Main Fset | 
| 35303 | 7 | begin | 
| 8 | ||
| 9 | section {* The type of distinct lists *}
 | |
| 10 | ||
| 11 | typedef (open) 'a dlist = "{xs::'a list. distinct xs}"
 | |
| 12 | morphisms list_of_dlist Abs_dlist | |
| 13 | proof | |
| 14 | show "[] \<in> ?dlist" by simp | |
| 15 | qed | |
| 16 | ||
| 39380 
5a2662c1e44a
established emerging canonical names *_eqI and *_eq_iff
 haftmann parents: 
38857diff
changeset | 17 | lemma dlist_eq_iff: | 
| 
5a2662c1e44a
established emerging canonical names *_eqI and *_eq_iff
 haftmann parents: 
38857diff
changeset | 18 | "dxs = dys \<longleftrightarrow> list_of_dlist dxs = list_of_dlist dys" | 
| 
5a2662c1e44a
established emerging canonical names *_eqI and *_eq_iff
 haftmann parents: 
38857diff
changeset | 19 | by (simp add: list_of_dlist_inject) | 
| 36274 | 20 | |
| 39380 
5a2662c1e44a
established emerging canonical names *_eqI and *_eq_iff
 haftmann parents: 
38857diff
changeset | 21 | lemma dlist_eqI: | 
| 
5a2662c1e44a
established emerging canonical names *_eqI and *_eq_iff
 haftmann parents: 
38857diff
changeset | 22 | "list_of_dlist dxs = list_of_dlist dys \<Longrightarrow> dxs = dys" | 
| 
5a2662c1e44a
established emerging canonical names *_eqI and *_eq_iff
 haftmann parents: 
38857diff
changeset | 23 | by (simp add: dlist_eq_iff) | 
| 36112 
7fa17a225852
user interface for abstract datatypes is an attribute, not a command
 haftmann parents: 
35688diff
changeset | 24 | |
| 35303 | 25 | text {* Formal, totalized constructor for @{typ "'a dlist"}: *}
 | 
| 26 | ||
| 27 | definition Dlist :: "'a list \<Rightarrow> 'a dlist" where | |
| 37765 | 28 | "Dlist xs = Abs_dlist (remdups xs)" | 
| 35303 | 29 | |
| 39380 
5a2662c1e44a
established emerging canonical names *_eqI and *_eq_iff
 haftmann parents: 
38857diff
changeset | 30 | lemma distinct_list_of_dlist [simp, intro]: | 
| 35303 | 31 | "distinct (list_of_dlist dxs)" | 
| 32 | using list_of_dlist [of dxs] by simp | |
| 33 | ||
| 34 | lemma list_of_dlist_Dlist [simp]: | |
| 35 | "list_of_dlist (Dlist xs) = remdups xs" | |
| 36 | by (simp add: Dlist_def Abs_dlist_inverse) | |
| 37 | ||
| 39727 | 38 | lemma remdups_list_of_dlist [simp]: | 
| 39 | "remdups (list_of_dlist dxs) = list_of_dlist dxs" | |
| 40 | by simp | |
| 41 | ||
| 36112 
7fa17a225852
user interface for abstract datatypes is an attribute, not a command
 haftmann parents: 
35688diff
changeset | 42 | lemma Dlist_list_of_dlist [simp, code abstype]: | 
| 35303 | 43 | "Dlist (list_of_dlist dxs) = dxs" | 
| 44 | by (simp add: Dlist_def list_of_dlist_inverse distinct_remdups_id) | |
| 45 | ||
| 46 | ||
| 47 | text {* Fundamental operations: *}
 | |
| 48 | ||
| 49 | definition empty :: "'a dlist" where | |
| 50 | "empty = Dlist []" | |
| 51 | ||
| 52 | definition insert :: "'a \<Rightarrow> 'a dlist \<Rightarrow> 'a dlist" where | |
| 53 | "insert x dxs = Dlist (List.insert x (list_of_dlist dxs))" | |
| 54 | ||
| 55 | definition remove :: "'a \<Rightarrow> 'a dlist \<Rightarrow> 'a dlist" where | |
| 56 | "remove x dxs = Dlist (remove1 x (list_of_dlist dxs))" | |
| 57 | ||
| 58 | definition map :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a dlist \<Rightarrow> 'b dlist" where
 | |
| 59 | "map f dxs = Dlist (remdups (List.map f (list_of_dlist dxs)))" | |
| 60 | ||
| 61 | definition filter :: "('a \<Rightarrow> bool) \<Rightarrow> 'a dlist \<Rightarrow> 'a dlist" where
 | |
| 62 | "filter P dxs = Dlist (List.filter P (list_of_dlist dxs))" | |
| 63 | ||
| 64 | ||
| 65 | text {* Derived operations: *}
 | |
| 66 | ||
| 67 | definition null :: "'a dlist \<Rightarrow> bool" where | |
| 68 | "null dxs = List.null (list_of_dlist dxs)" | |
| 69 | ||
| 70 | definition member :: "'a dlist \<Rightarrow> 'a \<Rightarrow> bool" where | |
| 71 | "member dxs = List.member (list_of_dlist dxs)" | |
| 72 | ||
| 73 | definition length :: "'a dlist \<Rightarrow> nat" where | |
| 74 | "length dxs = List.length (list_of_dlist dxs)" | |
| 75 | ||
| 76 | definition fold :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a dlist \<Rightarrow> 'b \<Rightarrow> 'b" where
 | |
| 37022 
f9681d9d1d56
moved generic List operations to theory More_List
 haftmann parents: 
36980diff
changeset | 77 | "fold f dxs = More_List.fold f (list_of_dlist dxs)" | 
| 
f9681d9d1d56
moved generic List operations to theory More_List
 haftmann parents: 
36980diff
changeset | 78 | |
| 
f9681d9d1d56
moved generic List operations to theory More_List
 haftmann parents: 
36980diff
changeset | 79 | definition foldr :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a dlist \<Rightarrow> 'b \<Rightarrow> 'b" where
 | 
| 
f9681d9d1d56
moved generic List operations to theory More_List
 haftmann parents: 
36980diff
changeset | 80 | "foldr f dxs = List.foldr f (list_of_dlist dxs)" | 
| 35303 | 81 | |
| 82 | ||
| 83 | section {* Executable version obeying invariant *}
 | |
| 84 | ||
| 85 | lemma list_of_dlist_empty [simp, code abstract]: | |
| 86 | "list_of_dlist empty = []" | |
| 87 | by (simp add: empty_def) | |
| 88 | ||
| 89 | lemma list_of_dlist_insert [simp, code abstract]: | |
| 90 | "list_of_dlist (insert x dxs) = List.insert x (list_of_dlist dxs)" | |
| 91 | by (simp add: insert_def) | |
| 92 | ||
| 93 | lemma list_of_dlist_remove [simp, code abstract]: | |
| 94 | "list_of_dlist (remove x dxs) = remove1 x (list_of_dlist dxs)" | |
| 95 | by (simp add: remove_def) | |
| 96 | ||
| 97 | lemma list_of_dlist_map [simp, code abstract]: | |
| 98 | "list_of_dlist (map f dxs) = remdups (List.map f (list_of_dlist dxs))" | |
| 99 | by (simp add: map_def) | |
| 100 | ||
| 101 | lemma list_of_dlist_filter [simp, code abstract]: | |
| 102 | "list_of_dlist (filter P dxs) = List.filter P (list_of_dlist dxs)" | |
| 103 | by (simp add: filter_def) | |
| 104 | ||
| 105 | ||
| 36980 
1a4cc941171a
added implementations of Fset.Set, Fset.Coset; do not delete code equations for relational operators on fsets
 haftmann parents: 
36274diff
changeset | 106 | text {* Explicit executable conversion *}
 | 
| 
1a4cc941171a
added implementations of Fset.Set, Fset.Coset; do not delete code equations for relational operators on fsets
 haftmann parents: 
36274diff
changeset | 107 | |
| 
1a4cc941171a
added implementations of Fset.Set, Fset.Coset; do not delete code equations for relational operators on fsets
 haftmann parents: 
36274diff
changeset | 108 | definition dlist_of_list [simp]: | 
| 
1a4cc941171a
added implementations of Fset.Set, Fset.Coset; do not delete code equations for relational operators on fsets
 haftmann parents: 
36274diff
changeset | 109 | "dlist_of_list = Dlist" | 
| 
1a4cc941171a
added implementations of Fset.Set, Fset.Coset; do not delete code equations for relational operators on fsets
 haftmann parents: 
36274diff
changeset | 110 | |
| 
1a4cc941171a
added implementations of Fset.Set, Fset.Coset; do not delete code equations for relational operators on fsets
 haftmann parents: 
36274diff
changeset | 111 | lemma [code abstract]: | 
| 
1a4cc941171a
added implementations of Fset.Set, Fset.Coset; do not delete code equations for relational operators on fsets
 haftmann parents: 
36274diff
changeset | 112 | "list_of_dlist (dlist_of_list xs) = remdups xs" | 
| 
1a4cc941171a
added implementations of Fset.Set, Fset.Coset; do not delete code equations for relational operators on fsets
 haftmann parents: 
36274diff
changeset | 113 | by simp | 
| 
1a4cc941171a
added implementations of Fset.Set, Fset.Coset; do not delete code equations for relational operators on fsets
 haftmann parents: 
36274diff
changeset | 114 | |
| 
1a4cc941171a
added implementations of Fset.Set, Fset.Coset; do not delete code equations for relational operators on fsets
 haftmann parents: 
36274diff
changeset | 115 | |
| 38512 | 116 | text {* Equality *}
 | 
| 117 | ||
| 38857 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38512diff
changeset | 118 | instantiation dlist :: (equal) equal | 
| 38512 | 119 | begin | 
| 120 | ||
| 38857 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38512diff
changeset | 121 | definition "HOL.equal dxs dys \<longleftrightarrow> HOL.equal (list_of_dlist dxs) (list_of_dlist dys)" | 
| 38512 | 122 | |
| 123 | instance proof | |
| 38857 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38512diff
changeset | 124 | qed (simp add: equal_dlist_def equal list_of_dlist_inject) | 
| 38512 | 125 | |
| 126 | end | |
| 127 | ||
| 38857 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38512diff
changeset | 128 | lemma [code nbe]: | 
| 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38512diff
changeset | 129 | "HOL.equal (dxs :: 'a::equal dlist) dxs \<longleftrightarrow> True" | 
| 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38512diff
changeset | 130 | by (fact equal_refl) | 
| 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38512diff
changeset | 131 | |
| 38512 | 132 | |
| 37106 | 133 | section {* Induction principle and case distinction *}
 | 
| 134 | ||
| 135 | lemma dlist_induct [case_names empty insert, induct type: dlist]: | |
| 136 | assumes empty: "P empty" | |
| 137 | assumes insrt: "\<And>x dxs. \<not> member dxs x \<Longrightarrow> P dxs \<Longrightarrow> P (insert x dxs)" | |
| 138 | shows "P dxs" | |
| 139 | proof (cases dxs) | |
| 140 | case (Abs_dlist xs) | |
| 141 | then have "distinct xs" and dxs: "dxs = Dlist xs" by (simp_all add: Dlist_def distinct_remdups_id) | |
| 142 | from `distinct xs` have "P (Dlist xs)" | |
| 39915 
ecf97cf3d248
turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
 haftmann parents: 
39727diff
changeset | 143 | proof (induct xs) | 
| 37106 | 144 | case Nil from empty show ?case by (simp add: empty_def) | 
| 145 | next | |
| 40122 
1d8ad2ff3e01
dropped (almost) redundant distinct.induct rule; distinct_simps again named distinct.simps
 haftmann parents: 
39915diff
changeset | 146 | case (Cons x xs) | 
| 37106 | 147 | then have "\<not> member (Dlist xs) x" and "P (Dlist xs)" | 
| 37595 
9591362629e3
dropped ancient infix mem; refined code generation operations in List.thy
 haftmann parents: 
37473diff
changeset | 148 | by (simp_all add: member_def List.member_def) | 
| 37106 | 149 | with insrt have "P (insert x (Dlist xs))" . | 
| 40122 
1d8ad2ff3e01
dropped (almost) redundant distinct.induct rule; distinct_simps again named distinct.simps
 haftmann parents: 
39915diff
changeset | 150 | with Cons show ?case by (simp add: insert_def distinct_remdups_id) | 
| 37106 | 151 | qed | 
| 152 | with dxs show "P dxs" by simp | |
| 153 | qed | |
| 154 | ||
| 155 | lemma dlist_case [case_names empty insert, cases type: dlist]: | |
| 156 | assumes empty: "dxs = empty \<Longrightarrow> P" | |
| 157 | assumes insert: "\<And>x dys. \<not> member dys x \<Longrightarrow> dxs = insert x dys \<Longrightarrow> P" | |
| 158 | shows P | |
| 159 | proof (cases dxs) | |
| 160 | case (Abs_dlist xs) | |
| 161 | then have dxs: "dxs = Dlist xs" and distinct: "distinct xs" | |
| 162 | by (simp_all add: Dlist_def distinct_remdups_id) | |
| 163 | show P proof (cases xs) | |
| 164 | case Nil with dxs have "dxs = empty" by (simp add: empty_def) | |
| 165 | with empty show P . | |
| 166 | next | |
| 167 | case (Cons x xs) | |
| 168 | with dxs distinct have "\<not> member (Dlist xs) x" | |
| 169 | and "dxs = insert x (Dlist xs)" | |
| 37595 
9591362629e3
dropped ancient infix mem; refined code generation operations in List.thy
 haftmann parents: 
37473diff
changeset | 170 | by (simp_all add: member_def List.member_def insert_def distinct_remdups_id) | 
| 37106 | 171 | with insert show P . | 
| 172 | qed | |
| 173 | qed | |
| 174 | ||
| 175 | ||
| 35303 | 176 | section {* Implementation of sets by distinct lists -- canonical! *}
 | 
| 177 | ||
| 178 | definition Set :: "'a dlist \<Rightarrow> 'a fset" where | |
| 179 | "Set dxs = Fset.Set (list_of_dlist dxs)" | |
| 180 | ||
| 181 | definition Coset :: "'a dlist \<Rightarrow> 'a fset" where | |
| 182 | "Coset dxs = Fset.Coset (list_of_dlist dxs)" | |
| 183 | ||
| 184 | code_datatype Set Coset | |
| 185 | ||
| 186 | declare member_code [code del] | |
| 187 | declare is_empty_Set [code del] | |
| 188 | declare empty_Set [code del] | |
| 189 | declare UNIV_Set [code del] | |
| 190 | declare insert_Set [code del] | |
| 191 | declare remove_Set [code del] | |
| 37029 | 192 | declare compl_Set [code del] | 
| 193 | declare compl_Coset [code del] | |
| 35303 | 194 | declare map_Set [code del] | 
| 195 | declare filter_Set [code del] | |
| 196 | declare forall_Set [code del] | |
| 197 | declare exists_Set [code del] | |
| 198 | declare card_Set [code del] | |
| 199 | declare inter_project [code del] | |
| 200 | declare subtract_remove [code del] | |
| 201 | declare union_insert [code del] | |
| 202 | declare Infimum_inf [code del] | |
| 203 | declare Supremum_sup [code del] | |
| 204 | ||
| 205 | lemma Set_Dlist [simp]: | |
| 206 | "Set (Dlist xs) = Fset (set xs)" | |
| 37473 | 207 | by (rule fset_eqI) (simp add: Set_def) | 
| 35303 | 208 | |
| 209 | lemma Coset_Dlist [simp]: | |
| 210 | "Coset (Dlist xs) = Fset (- set xs)" | |
| 37473 | 211 | by (rule fset_eqI) (simp add: Coset_def) | 
| 35303 | 212 | |
| 213 | lemma member_Set [simp]: | |
| 214 | "Fset.member (Set dxs) = List.member (list_of_dlist dxs)" | |
| 215 | by (simp add: Set_def member_set) | |
| 216 | ||
| 217 | lemma member_Coset [simp]: | |
| 218 | "Fset.member (Coset dxs) = Not \<circ> List.member (list_of_dlist dxs)" | |
| 219 | by (simp add: Coset_def member_set not_set_compl) | |
| 220 | ||
| 36980 
1a4cc941171a
added implementations of Fset.Set, Fset.Coset; do not delete code equations for relational operators on fsets
 haftmann parents: 
36274diff
changeset | 221 | lemma Set_dlist_of_list [code]: | 
| 
1a4cc941171a
added implementations of Fset.Set, Fset.Coset; do not delete code equations for relational operators on fsets
 haftmann parents: 
36274diff
changeset | 222 | "Fset.Set xs = Set (dlist_of_list xs)" | 
| 37473 | 223 | by (rule fset_eqI) simp | 
| 36980 
1a4cc941171a
added implementations of Fset.Set, Fset.Coset; do not delete code equations for relational operators on fsets
 haftmann parents: 
36274diff
changeset | 224 | |
| 
1a4cc941171a
added implementations of Fset.Set, Fset.Coset; do not delete code equations for relational operators on fsets
 haftmann parents: 
36274diff
changeset | 225 | lemma Coset_dlist_of_list [code]: | 
| 
1a4cc941171a
added implementations of Fset.Set, Fset.Coset; do not delete code equations for relational operators on fsets
 haftmann parents: 
36274diff
changeset | 226 | "Fset.Coset xs = Coset (dlist_of_list xs)" | 
| 37473 | 227 | by (rule fset_eqI) simp | 
| 36980 
1a4cc941171a
added implementations of Fset.Set, Fset.Coset; do not delete code equations for relational operators on fsets
 haftmann parents: 
36274diff
changeset | 228 | |
| 35303 | 229 | lemma is_empty_Set [code]: | 
| 230 | "Fset.is_empty (Set dxs) \<longleftrightarrow> null dxs" | |
| 37595 
9591362629e3
dropped ancient infix mem; refined code generation operations in List.thy
 haftmann parents: 
37473diff
changeset | 231 | by (simp add: null_def List.null_def member_set) | 
| 35303 | 232 | |
| 233 | lemma bot_code [code]: | |
| 234 | "bot = Set empty" | |
| 235 | by (simp add: empty_def) | |
| 236 | ||
| 237 | lemma top_code [code]: | |
| 238 | "top = Coset empty" | |
| 239 | by (simp add: empty_def) | |
| 240 | ||
| 241 | lemma insert_code [code]: | |
| 242 | "Fset.insert x (Set dxs) = Set (insert x dxs)" | |
| 243 | "Fset.insert x (Coset dxs) = Coset (remove x dxs)" | |
| 244 | by (simp_all add: insert_def remove_def member_set not_set_compl) | |
| 245 | ||
| 246 | lemma remove_code [code]: | |
| 247 | "Fset.remove x (Set dxs) = Set (remove x dxs)" | |
| 248 | "Fset.remove x (Coset dxs) = Coset (insert x dxs)" | |
| 249 | by (auto simp add: insert_def remove_def member_set not_set_compl) | |
| 250 | ||
| 251 | lemma member_code [code]: | |
| 252 | "Fset.member (Set dxs) = member dxs" | |
| 253 | "Fset.member (Coset dxs) = Not \<circ> member dxs" | |
| 254 | by (simp_all add: member_def) | |
| 255 | ||
| 37029 | 256 | lemma compl_code [code]: | 
| 257 | "- Set dxs = Coset dxs" | |
| 258 | "- Coset dxs = Set dxs" | |
| 37473 | 259 | by (rule fset_eqI, simp add: member_set not_set_compl)+ | 
| 37029 | 260 | |
| 35303 | 261 | lemma map_code [code]: | 
| 262 | "Fset.map f (Set dxs) = Set (map f dxs)" | |
| 37473 | 263 | by (rule fset_eqI) (simp add: member_set) | 
| 35303 | 264 | |
| 265 | lemma filter_code [code]: | |
| 266 | "Fset.filter f (Set dxs) = Set (filter f dxs)" | |
| 37473 | 267 | by (rule fset_eqI) (simp add: member_set) | 
| 35303 | 268 | |
| 269 | lemma forall_Set [code]: | |
| 270 | "Fset.forall P (Set xs) \<longleftrightarrow> list_all P (list_of_dlist xs)" | |
| 271 | by (simp add: member_set list_all_iff) | |
| 272 | ||
| 273 | lemma exists_Set [code]: | |
| 274 | "Fset.exists P (Set xs) \<longleftrightarrow> list_ex P (list_of_dlist xs)" | |
| 275 | by (simp add: member_set list_ex_iff) | |
| 276 | ||
| 277 | lemma card_code [code]: | |
| 278 | "Fset.card (Set dxs) = length dxs" | |
| 279 | by (simp add: length_def member_set distinct_card) | |
| 280 | ||
| 281 | lemma inter_code [code]: | |
| 282 | "inf A (Set xs) = Set (filter (Fset.member A) xs)" | |
| 37022 
f9681d9d1d56
moved generic List operations to theory More_List
 haftmann parents: 
36980diff
changeset | 283 | "inf A (Coset xs) = foldr Fset.remove xs A" | 
| 
f9681d9d1d56
moved generic List operations to theory More_List
 haftmann parents: 
36980diff
changeset | 284 | by (simp_all only: Set_def Coset_def foldr_def inter_project list_of_dlist_filter) | 
| 35303 | 285 | |
| 286 | lemma subtract_code [code]: | |
| 37022 
f9681d9d1d56
moved generic List operations to theory More_List
 haftmann parents: 
36980diff
changeset | 287 | "A - Set xs = foldr Fset.remove xs A" | 
| 35303 | 288 | "A - Coset xs = Set (filter (Fset.member A) xs)" | 
| 37022 
f9681d9d1d56
moved generic List operations to theory More_List
 haftmann parents: 
36980diff
changeset | 289 | by (simp_all only: Set_def Coset_def foldr_def subtract_remove list_of_dlist_filter) | 
| 35303 | 290 | |
| 291 | lemma union_code [code]: | |
| 37022 
f9681d9d1d56
moved generic List operations to theory More_List
 haftmann parents: 
36980diff
changeset | 292 | "sup (Set xs) A = foldr Fset.insert xs A" | 
| 35303 | 293 | "sup (Coset xs) A = Coset (filter (Not \<circ> Fset.member A) xs)" | 
| 37022 
f9681d9d1d56
moved generic List operations to theory More_List
 haftmann parents: 
36980diff
changeset | 294 | by (simp_all only: Set_def Coset_def foldr_def union_insert list_of_dlist_filter) | 
| 35303 | 295 | |
| 296 | context complete_lattice | |
| 297 | begin | |
| 298 | ||
| 299 | lemma Infimum_code [code]: | |
| 37022 
f9681d9d1d56
moved generic List operations to theory More_List
 haftmann parents: 
36980diff
changeset | 300 | "Infimum (Set As) = foldr inf As top" | 
| 
f9681d9d1d56
moved generic List operations to theory More_List
 haftmann parents: 
36980diff
changeset | 301 | by (simp only: Set_def Infimum_inf foldr_def inf.commute) | 
| 35303 | 302 | |
| 303 | lemma Supremum_code [code]: | |
| 37022 
f9681d9d1d56
moved generic List operations to theory More_List
 haftmann parents: 
36980diff
changeset | 304 | "Supremum (Set As) = foldr sup As bot" | 
| 
f9681d9d1d56
moved generic List operations to theory More_List
 haftmann parents: 
36980diff
changeset | 305 | by (simp only: Set_def Supremum_sup foldr_def sup.commute) | 
| 35303 | 306 | |
| 307 | end | |
| 308 | ||
| 38512 | 309 | |
| 37022 
f9681d9d1d56
moved generic List operations to theory More_List
 haftmann parents: 
36980diff
changeset | 310 | hide_const (open) member fold foldr empty insert remove map filter null member length fold | 
| 35303 | 311 | |
| 312 | end |