| author | paulson | 
| Thu, 30 Jan 2003 10:35:56 +0100 | |
| changeset 13796 | 19f50fa807ae | 
| parent 12484 | 7ad150f5fc10 | 
| child 14981 | e73f8140af78 | 
| permissions | -rw-r--r-- | 
| 9169 | 1  | 
(* Title: HOLCF/Pcpo.ML  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
2  | 
ID: $Id$  | 
| 1461 | 3  | 
Author: Franz Regensburger  | 
| 12030 | 4  | 
License: GPL (GNU GENERAL PUBLIC LICENSE)  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
5  | 
|
| 9169 | 6  | 
introduction of the classes cpo and pcpo  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
7  | 
*)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
8  | 
|
| 2640 | 9  | 
|
10  | 
(* ------------------------------------------------------------------------ *)  | 
|
11  | 
(* derive the old rule minimal *)  | 
|
12  | 
(* ------------------------------------------------------------------------ *)  | 
|
| 9169 | 13  | 
|
14  | 
Goalw [UU_def] "ALL z. UU << z";  | 
|
| 9969 | 15  | 
by (rtac (some_eq_ex RS iffD2) 1);  | 
| 9169 | 16  | 
by (rtac least 1);  | 
17  | 
qed "UU_least";  | 
|
| 2640 | 18  | 
|
| 9169 | 19  | 
bind_thm("minimal", UU_least RS spec);
 | 
| 2640 | 20  | 
|
| 
9248
 
e1dee89de037
massive tidy-up: goal -> Goal, remove use of prems, etc.
 
paulson 
parents: 
9169 
diff
changeset
 | 
21  | 
AddIffs [minimal];  | 
| 
 
e1dee89de037
massive tidy-up: goal -> Goal, remove use of prems, etc.
 
paulson 
parents: 
9169 
diff
changeset
 | 
22  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
23  | 
(* ------------------------------------------------------------------------ *)  | 
| 2839 | 24  | 
(* in cpo's everthing equal to THE lub has lub properties for every chain *)  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
25  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
26  | 
|
| 
9248
 
e1dee89de037
massive tidy-up: goal -> Goal, remove use of prems, etc.
 
paulson 
parents: 
9169 
diff
changeset
 | 
27  | 
Goal "[| chain(S); lub(range(S)) = (l::'a::cpo) |] ==> range(S) <<| l ";  | 
| 
 
e1dee89de037
massive tidy-up: goal -> Goal, remove use of prems, etc.
 
paulson 
parents: 
9169 
diff
changeset
 | 
28  | 
by (blast_tac (claset() addDs [cpo] addIs [lubI]) 1);  | 
| 9169 | 29  | 
qed "thelubE";  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
30  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
31  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
32  | 
(* Properties of the lub *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
33  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
34  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
35  | 
|
| 
9248
 
e1dee89de037
massive tidy-up: goal -> Goal, remove use of prems, etc.
 
paulson 
parents: 
9169 
diff
changeset
 | 
36  | 
Goal "chain (S::nat => 'a::cpo) ==> S(x) << lub(range(S))";  | 
| 
 
e1dee89de037
massive tidy-up: goal -> Goal, remove use of prems, etc.
 
paulson 
parents: 
9169 
diff
changeset
 | 
37  | 
by (blast_tac (claset() addDs [cpo] addIs [lubI RS is_ub_lub]) 1);  | 
| 
 
e1dee89de037
massive tidy-up: goal -> Goal, remove use of prems, etc.
 
paulson 
parents: 
9169 
diff
changeset
 | 
38  | 
qed "is_ub_thelub";  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
39  | 
|
| 
9248
 
e1dee89de037
massive tidy-up: goal -> Goal, remove use of prems, etc.
 
paulson 
parents: 
9169 
diff
changeset
 | 
40  | 
Goal "[| chain (S::nat => 'a::cpo); range(S) <| x |] ==> lub(range S) << x";  | 
| 
 
e1dee89de037
massive tidy-up: goal -> Goal, remove use of prems, etc.
 
paulson 
parents: 
9169 
diff
changeset
 | 
41  | 
by (blast_tac (claset() addDs [cpo] addIs [lubI RS is_lub_lub]) 1);  | 
| 
 
e1dee89de037
massive tidy-up: goal -> Goal, remove use of prems, etc.
 
paulson 
parents: 
9169 
diff
changeset
 | 
42  | 
qed "is_lub_thelub";  | 
| 
 
e1dee89de037
massive tidy-up: goal -> Goal, remove use of prems, etc.
 
paulson 
parents: 
9169 
diff
changeset
 | 
43  | 
|
| 11342 | 44  | 
Goal "[| range X <= range Y; chain Y; chain (X::nat=>'a::cpo) |] ==> lub(range X) << lub(range Y)";  | 
45  | 
by (etac is_lub_thelub 1);  | 
|
46  | 
by (rtac ub_rangeI 1);  | 
|
47  | 
by (subgoal_tac "? j. X i = Y j" 1);  | 
|
48  | 
by (Clarsimp_tac 1);  | 
|
49  | 
by (etac is_ub_thelub 1);  | 
|
50  | 
by Auto_tac;  | 
|
51  | 
qed "lub_range_mono";  | 
|
52  | 
||
53  | 
Goal "chain (Y::nat=>'a::cpo) ==> lub(range (%i. Y(i + j))) = lub(range Y)";  | 
|
54  | 
by (rtac antisym_less 1);  | 
|
| 12484 | 55  | 
by (rtac lub_range_mono 1);  | 
| 11342 | 56  | 
by (Fast_tac 1);  | 
57  | 
by (atac 1);  | 
|
| 12484 | 58  | 
by (etac chain_shift 1);  | 
59  | 
by (rtac is_lub_thelub 1);  | 
|
60  | 
by (assume_tac 1);  | 
|
61  | 
by (rtac ub_rangeI 1);  | 
|
62  | 
by (rtac trans_less 1);  | 
|
63  | 
by (rtac is_ub_thelub 2);  | 
|
64  | 
by (etac chain_shift 2);  | 
|
65  | 
by (etac chain_mono3 1);  | 
|
66  | 
by (rtac le_add1 1);  | 
|
| 11342 | 67  | 
qed "lub_range_shift";  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
68  | 
|
| 9169 | 69  | 
Goal "chain Y ==> max_in_chain i Y = (lub(range(Y)) = ((Y i)::'a::cpo))";  | 
70  | 
by (rtac iffI 1);  | 
|
71  | 
by (fast_tac (HOL_cs addSIs [thelubI,lub_finch1]) 1);  | 
|
72  | 
by (rewtac max_in_chain_def);  | 
|
73  | 
by (safe_tac (HOL_cs addSIs [antisym_less]));  | 
|
74  | 
by (fast_tac (HOL_cs addSEs [chain_mono3]) 1);  | 
|
75  | 
by (dtac sym 1);  | 
|
76  | 
by (force_tac (HOL_cs addSEs [is_ub_thelub], simpset()) 1);  | 
|
77  | 
qed "maxinch_is_thelub";  | 
|
| 2354 | 78  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
79  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
80  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
81  | 
(* the << relation between two chains is preserved by their lubs *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
82  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
83  | 
|
| 9169 | 84  | 
Goal "[|chain(C1::(nat=>'a::cpo));chain(C2); ALL k. C1(k) << C2(k)|]\  | 
85  | 
\ ==> lub(range(C1)) << lub(range(C2))";  | 
|
86  | 
by (etac is_lub_thelub 1);  | 
|
87  | 
by (rtac ub_rangeI 1);  | 
|
88  | 
by (rtac trans_less 1);  | 
|
89  | 
by (etac spec 1);  | 
|
90  | 
by (etac is_ub_thelub 1);  | 
|
91  | 
qed "lub_mono";  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
92  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
93  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
94  | 
(* the = relation between two chains is preserved by their lubs *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
95  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
96  | 
|
| 9169 | 97  | 
Goal "[| chain(C1::(nat=>'a::cpo));chain(C2);ALL k. C1(k)=C2(k)|]\  | 
98  | 
\ ==> lub(range(C1))=lub(range(C2))";  | 
|
99  | 
by (rtac antisym_less 1);  | 
|
100  | 
by (rtac lub_mono 1);  | 
|
101  | 
by (atac 1);  | 
|
102  | 
by (atac 1);  | 
|
103  | 
by (strip_tac 1);  | 
|
104  | 
by (rtac (antisym_less_inverse RS conjunct1) 1);  | 
|
105  | 
by (etac spec 1);  | 
|
106  | 
by (rtac lub_mono 1);  | 
|
107  | 
by (atac 1);  | 
|
108  | 
by (atac 1);  | 
|
109  | 
by (strip_tac 1);  | 
|
110  | 
by (rtac (antisym_less_inverse RS conjunct2) 1);  | 
|
111  | 
by (etac spec 1);  | 
|
112  | 
qed "lub_equal";  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
113  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
114  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
115  | 
(* more results about mono and = of lubs of chains *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
116  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
117  | 
|
| 9169 | 118  | 
Goal "[|EX j. ALL i. j<i --> X(i::nat)=Y(i);chain(X::nat=>'a::cpo);chain(Y)|]\  | 
119  | 
\ ==> lub(range(X))<<lub(range(Y))";  | 
|
120  | 
by (etac exE 1);  | 
|
121  | 
by (rtac is_lub_thelub 1);  | 
|
122  | 
by (assume_tac 1);  | 
|
123  | 
by (rtac ub_rangeI 1);  | 
|
124  | 
by (strip_tac 1);  | 
|
125  | 
by (case_tac "j<i" 1);  | 
|
126  | 
by (res_inst_tac [("s","Y(i)"),("t","X(i)")] subst 1);
 | 
|
127  | 
by (rtac sym 1);  | 
|
128  | 
by (Fast_tac 1);  | 
|
129  | 
by (rtac is_ub_thelub 1);  | 
|
130  | 
by (assume_tac 1);  | 
|
131  | 
by (res_inst_tac [("y","X(Suc(j))")] trans_less 1);
 | 
|
| 
9248
 
e1dee89de037
massive tidy-up: goal -> Goal, remove use of prems, etc.
 
paulson 
parents: 
9169 
diff
changeset
 | 
132  | 
by (rtac chain_mono 1);  | 
| 9169 | 133  | 
by (assume_tac 1);  | 
134  | 
by (rtac (not_less_eq RS subst) 1);  | 
|
135  | 
by (atac 1);  | 
|
136  | 
by (res_inst_tac [("s","Y(Suc(j))"),("t","X(Suc(j))")] subst 1);
 | 
|
137  | 
by (Asm_simp_tac 1);  | 
|
138  | 
by (etac is_ub_thelub 1);  | 
|
139  | 
qed "lub_mono2";  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
140  | 
|
| 9169 | 141  | 
Goal "[|EX j. ALL i. j<i --> X(i)=Y(i); chain(X::nat=>'a::cpo); chain(Y)|]\  | 
142  | 
\ ==> lub(range(X))=lub(range(Y))";  | 
|
143  | 
by (blast_tac (claset() addIs [antisym_less, lub_mono2, sym]) 1);  | 
|
144  | 
qed "lub_equal2";  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
145  | 
|
| 9169 | 146  | 
Goal "[|chain(Y::nat=>'a::cpo);chain(X);\  | 
147  | 
\ALL i. EX j. Y(i)<< X(j)|]==> lub(range(Y))<<lub(range(X))";  | 
|
148  | 
by (rtac is_lub_thelub 1);  | 
|
149  | 
by (atac 1);  | 
|
150  | 
by (rtac ub_rangeI 1);  | 
|
151  | 
by (strip_tac 1);  | 
|
152  | 
by (etac allE 1);  | 
|
153  | 
by (etac exE 1);  | 
|
154  | 
by (rtac trans_less 1);  | 
|
155  | 
by (rtac is_ub_thelub 2);  | 
|
156  | 
by (atac 2);  | 
|
157  | 
by (atac 1);  | 
|
158  | 
qed "lub_mono3";  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
159  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
160  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
161  | 
(* usefull lemmas about UU *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
162  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
163  | 
|
| 9169 | 164  | 
Goal "(x=UU)=(x<<UU)";  | 
165  | 
by (rtac iffI 1);  | 
|
166  | 
by (hyp_subst_tac 1);  | 
|
167  | 
by (rtac refl_less 1);  | 
|
168  | 
by (rtac antisym_less 1);  | 
|
169  | 
by (atac 1);  | 
|
170  | 
by (rtac minimal 1);  | 
|
171  | 
qed "eq_UU_iff";  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
172  | 
|
| 9169 | 173  | 
Goal "x << UU ==> x = UU";  | 
174  | 
by (stac eq_UU_iff 1);  | 
|
175  | 
by (assume_tac 1);  | 
|
176  | 
qed "UU_I";  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
177  | 
|
| 9169 | 178  | 
Goal "~(x::'a::po)<<y ==> ~x=y";  | 
179  | 
by Auto_tac;  | 
|
180  | 
qed "not_less2not_eq";  | 
|
181  | 
||
182  | 
Goal "[|chain(Y);lub(range(Y))=UU|] ==> ALL i. Y(i)=UU";  | 
|
183  | 
by (rtac allI 1);  | 
|
184  | 
by (rtac antisym_less 1);  | 
|
185  | 
by (rtac minimal 2);  | 
|
186  | 
by (etac subst 1);  | 
|
187  | 
by (etac is_ub_thelub 1);  | 
|
188  | 
qed "chain_UU_I";  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
189  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
190  | 
|
| 9169 | 191  | 
Goal "ALL i. Y(i::nat)=UU ==> lub(range(Y::(nat=>'a::pcpo)))=UU";  | 
192  | 
by (rtac lub_chain_maxelem 1);  | 
|
193  | 
by (etac spec 1);  | 
|
194  | 
by (rtac allI 1);  | 
|
195  | 
by (rtac (antisym_less_inverse RS conjunct1) 1);  | 
|
196  | 
by (etac spec 1);  | 
|
197  | 
qed "chain_UU_I_inverse";  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
198  | 
|
| 9169 | 199  | 
Goal "~lub(range(Y::(nat=>'a::pcpo)))=UU ==> EX i.~ Y(i)=UU";  | 
200  | 
by (blast_tac (claset() addIs [chain_UU_I_inverse]) 1);  | 
|
201  | 
qed "chain_UU_I_inverse2";  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
202  | 
|
| 9169 | 203  | 
Goal "[| x<<y; ~x=UU |] ==> ~y=UU";  | 
204  | 
by (blast_tac (claset() addIs [UU_I]) 1);  | 
|
205  | 
qed "notUU_I";  | 
|
206  | 
||
207  | 
Goal  | 
|
208  | 
"[|EX j. ~Y(j)=UU;chain(Y::nat=>'a::pcpo)|] ==> EX j. ALL i. j<i-->~Y(i)=UU";  | 
|
| 
9248
 
e1dee89de037
massive tidy-up: goal -> Goal, remove use of prems, etc.
 
paulson 
parents: 
9169 
diff
changeset
 | 
209  | 
by (blast_tac (claset() addDs [notUU_I, chain_mono]) 1);  | 
| 9169 | 210  | 
qed "chain_mono2";  | 
| 3326 | 211  | 
|
212  | 
(**************************************)  | 
|
213  | 
(* some properties for chfin and flat *)  | 
|
214  | 
(**************************************)  | 
|
215  | 
||
216  | 
(* ------------------------------------------------------------------------ *)  | 
|
| 
4721
 
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
 
oheimb 
parents: 
4098 
diff
changeset
 | 
217  | 
(* flat types are chfin *)  | 
| 3326 | 218  | 
(* ------------------------------------------------------------------------ *)  | 
219  | 
||
| 
9248
 
e1dee89de037
massive tidy-up: goal -> Goal, remove use of prems, etc.
 
paulson 
parents: 
9169 
diff
changeset
 | 
220  | 
(*Used only in an "instance" declaration (Fun1.thy)*)  | 
| 9169 | 221  | 
Goalw [max_in_chain_def]  | 
| 
9248
 
e1dee89de037
massive tidy-up: goal -> Goal, remove use of prems, etc.
 
paulson 
parents: 
9169 
diff
changeset
 | 
222  | 
"ALL Y::nat=>'a::flat. chain Y --> (EX n. max_in_chain n Y)";  | 
| 
 
e1dee89de037
massive tidy-up: goal -> Goal, remove use of prems, etc.
 
paulson 
parents: 
9169 
diff
changeset
 | 
223  | 
by (Clarify_tac 1);  | 
| 9169 | 224  | 
by (case_tac "ALL i. Y(i)=UU" 1);  | 
225  | 
by (res_inst_tac [("x","0")] exI 1);
 | 
|
226  | 
by (Asm_simp_tac 1);  | 
|
227  | 
by (Asm_full_simp_tac 1);  | 
|
228  | 
by (etac exE 1);  | 
|
229  | 
by (res_inst_tac [("x","i")] exI 1);
 | 
|
230  | 
by (strip_tac 1);  | 
|
231  | 
by (etac (le_imp_less_or_eq RS disjE) 1);  | 
|
232  | 
by Safe_tac;  | 
|
| 
9248
 
e1dee89de037
massive tidy-up: goal -> Goal, remove use of prems, etc.
 
paulson 
parents: 
9169 
diff
changeset
 | 
233  | 
by (blast_tac (claset() addDs [chain_mono, ax_flat RS spec RS spec RS mp]) 1);  | 
| 9169 | 234  | 
qed "flat_imp_chfin";  | 
| 3326 | 235  | 
|
236  | 
(* flat subclass of chfin --> adm_flat not needed *)  | 
|
237  | 
||
| 9169 | 238  | 
Goal "(a::'a::flat) ~= UU ==> a << b = (a = b)";  | 
239  | 
by (safe_tac (HOL_cs addSIs [refl_less]));  | 
|
240  | 
by (dtac (ax_flat RS spec RS spec RS mp) 1);  | 
|
241  | 
by (fast_tac (HOL_cs addSIs [refl_less,ax_flat RS spec RS spec RS mp]) 1);  | 
|
242  | 
qed "flat_eq";  | 
|
| 3326 | 243  | 
|
| 9169 | 244  | 
Goal "chain (Y::nat=>'a::chfin) ==> finite_chain Y";  | 
245  | 
by (force_tac (HOL_cs, simpset() addsimps [chfin,finite_chain_def]) 1);  | 
|
246  | 
qed "chfin2finch";  | 
|
| 3326 | 247  | 
|
248  | 
(* ------------------------------------------------------------------------ *)  | 
|
249  | 
(* lemmata for improved admissibility introdution rule *)  | 
|
250  | 
(* ------------------------------------------------------------------------ *)  | 
|
251  | 
||
| 9169 | 252  | 
val prems = Goal  | 
253  | 
"[|chain Y; ALL i. P (Y i); \  | 
|
254  | 
\ (!!Y. [| chain Y; ALL i. P (Y i); ~ finite_chain Y |] ==> P (lub(range Y)))\  | 
|
255  | 
\ |] ==> P (lub (range Y))";  | 
|
256  | 
by (cut_facts_tac prems 1);  | 
|
257  | 
by (case_tac "finite_chain Y" 1);  | 
|
258  | 
by (eresolve_tac prems 2);  | 
|
259  | 
by (atac 2);  | 
|
260  | 
by (atac 2);  | 
|
261  | 
by (rewtac finite_chain_def);  | 
|
262  | 
by (safe_tac HOL_cs);  | 
|
263  | 
by (etac (lub_finch1 RS thelubI RS ssubst) 1);  | 
|
264  | 
by (atac 1);  | 
|
265  | 
by (etac spec 1);  | 
|
266  | 
qed "infinite_chain_adm_lemma";  | 
|
| 3326 | 267  | 
|
| 9169 | 268  | 
val prems = Goal  | 
269  | 
"[|chain Y; ALL i. P (Y i); \  | 
|
270  | 
\ (!!Y. [| chain Y; ALL i. P (Y i); \  | 
|
271  | 
\ ALL i. EX j. i < j & Y i ~= Y j & Y i << Y j|]\  | 
|
272  | 
\ ==> P (lub (range Y))) |] ==> P (lub (range Y))";  | 
|
273  | 
by (cut_facts_tac prems 1);  | 
|
274  | 
by (etac infinite_chain_adm_lemma 1);  | 
|
275  | 
by (atac 1);  | 
|
276  | 
by (etac thin_rl 1);  | 
|
277  | 
by (rewtac finite_chain_def);  | 
|
278  | 
by (rewtac max_in_chain_def);  | 
|
279  | 
by (fast_tac (HOL_cs addIs prems  | 
|
| 
9248
 
e1dee89de037
massive tidy-up: goal -> Goal, remove use of prems, etc.
 
paulson 
parents: 
9169 
diff
changeset
 | 
280  | 
addDs [le_imp_less_or_eq] addEs [chain_mono]) 1);  | 
| 9169 | 281  | 
qed "increasing_chain_adm_lemma";  |