author | berghofe |
Fri, 28 Apr 2006 17:56:20 +0200 | |
changeset 19499 | 1a082c1257d7 |
parent 16924 | 04246269386e |
child 19765 | dfe940911617 |
permissions | -rw-r--r-- |
15944 | 1 |
(* ID : $Id$ |
12224 | 2 |
Author : Jacques D. Fleuriot |
3 |
Copyright : 2001 University of Edinburgh |
|
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
4 |
Conversion to Isar and new proofs by Lawrence C Paulson, 2004 |
12224 | 5 |
*) |
6 |
||
15944 | 7 |
header{*MacLaurin Series*} |
8 |
||
15131 | 9 |
theory MacLaurin |
15140 | 10 |
imports Log |
15131 | 11 |
begin |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
12 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
13 |
subsection{*Maclaurin's Theorem with Lagrange Form of Remainder*} |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
14 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
15 |
text{*This is a very long, messy proof even now that it's been broken down |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
16 |
into lemmas.*} |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
17 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
18 |
lemma Maclaurin_lemma: |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
19 |
"0 < h ==> |
15539 | 20 |
\<exists>B. f h = (\<Sum>m=0..<n. (j m / real (fact m)) * (h^m)) + |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
21 |
(B * ((h^n) / real(fact n)))" |
15539 | 22 |
apply (rule_tac x = "(f h - (\<Sum>m=0..<n. (j m / real (fact m)) * h^m)) * |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
23 |
real(fact n) / (h^n)" |
15234
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
24 |
in exI) |
15539 | 25 |
apply (simp) |
15234
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
26 |
done |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
27 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
28 |
lemma eq_diff_eq': "(x = y - z) = (y = x + (z::real))" |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
29 |
by arith |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
30 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
31 |
text{*A crude tactic to differentiate by proof.*} |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
32 |
ML |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
33 |
{* |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
34 |
exception DERIV_name; |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
35 |
fun get_fun_name (_ $ (Const ("Lim.deriv",_) $ Abs(_,_, Const (f,_) $ _) $ _ $ _)) = f |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
36 |
| get_fun_name (_ $ (_ $ (Const ("Lim.deriv",_) $ Abs(_,_, Const (f,_) $ _) $ _ $ _))) = f |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
37 |
| get_fun_name _ = raise DERIV_name; |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
38 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
39 |
val deriv_rulesI = [DERIV_Id,DERIV_const,DERIV_cos,DERIV_cmult, |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
40 |
DERIV_sin, DERIV_exp, DERIV_inverse,DERIV_pow, |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
41 |
DERIV_add, DERIV_diff, DERIV_mult, DERIV_minus, |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
42 |
DERIV_inverse_fun,DERIV_quotient,DERIV_fun_pow, |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
43 |
DERIV_fun_exp,DERIV_fun_sin,DERIV_fun_cos, |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
44 |
DERIV_Id,DERIV_const,DERIV_cos]; |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
45 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
46 |
val deriv_tac = |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
47 |
SUBGOAL (fn (prem,i) => |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
48 |
(resolve_tac deriv_rulesI i) ORELSE |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
49 |
((rtac (read_instantiate [("f",get_fun_name prem)] |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
50 |
DERIV_chain2) i) handle DERIV_name => no_tac));; |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
51 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
52 |
val DERIV_tac = ALLGOALS(fn i => REPEAT(deriv_tac i)); |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
53 |
*} |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
54 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
55 |
lemma Maclaurin_lemma2: |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
56 |
"[| \<forall>m t. m < n \<and> 0\<le>t \<and> t\<le>h \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t; |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
57 |
n = Suc k; |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
58 |
difg = |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
59 |
(\<lambda>m t. diff m t - |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
60 |
((\<Sum>p = 0..<n - m. diff (m + p) 0 / real (fact p) * t ^ p) + |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
61 |
B * (t ^ (n - m) / real (fact (n - m)))))|] ==> |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
62 |
\<forall>m t. m < n & 0 \<le> t & t \<le> h --> |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
63 |
DERIV (difg m) t :> difg (Suc m) t" |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
64 |
apply clarify |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
65 |
apply (rule DERIV_diff) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
66 |
apply (simp (no_asm_simp)) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
67 |
apply (tactic DERIV_tac) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
68 |
apply (tactic DERIV_tac) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
69 |
apply (rule_tac [2] lemma_DERIV_subst) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
70 |
apply (rule_tac [2] DERIV_quotient) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
71 |
apply (rule_tac [3] DERIV_const) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
72 |
apply (rule_tac [2] DERIV_pow) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
73 |
prefer 3 apply (simp add: fact_diff_Suc) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
74 |
prefer 2 apply simp |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
75 |
apply (frule_tac m = m in less_add_one, clarify) |
15561 | 76 |
apply (simp del: setsum_op_ivl_Suc) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
77 |
apply (insert sumr_offset4 [of 1]) |
15561 | 78 |
apply (simp del: setsum_op_ivl_Suc fact_Suc realpow_Suc) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
79 |
apply (rule lemma_DERIV_subst) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
80 |
apply (rule DERIV_add) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
81 |
apply (rule_tac [2] DERIV_const) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
82 |
apply (rule DERIV_sumr, clarify) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
83 |
prefer 2 apply simp |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
84 |
apply (simp (no_asm) add: divide_inverse mult_assoc del: fact_Suc realpow_Suc) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
85 |
apply (rule DERIV_cmult) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
86 |
apply (rule lemma_DERIV_subst) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
87 |
apply (best intro: DERIV_chain2 intro!: DERIV_intros) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
88 |
apply (subst fact_Suc) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
89 |
apply (subst real_of_nat_mult) |
15539 | 90 |
apply (simp add: mult_ac) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
91 |
done |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
92 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
93 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
94 |
lemma Maclaurin_lemma3: |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
95 |
"[|\<forall>k t. k < Suc m \<and> 0\<le>t & t\<le>h \<longrightarrow> DERIV (difg k) t :> difg (Suc k) t; |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
96 |
\<forall>k<Suc m. difg k 0 = 0; DERIV (difg n) t :> 0; n < m; 0 < t; |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
97 |
t < h|] |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
98 |
==> \<exists>ta. 0 < ta & ta < t & DERIV (difg (Suc n)) ta :> 0" |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
99 |
apply (rule Rolle, assumption, simp) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
100 |
apply (drule_tac x = n and P="%k. k<Suc m --> difg k 0 = 0" in spec) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
101 |
apply (rule DERIV_unique) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
102 |
prefer 2 apply assumption |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
103 |
apply force |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
104 |
apply (subgoal_tac "\<forall>ta. 0 \<le> ta & ta \<le> t --> (difg (Suc n)) differentiable ta") |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
105 |
apply (simp add: differentiable_def) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
106 |
apply (blast dest!: DERIV_isCont) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
107 |
apply (simp add: differentiable_def, clarify) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
108 |
apply (rule_tac x = "difg (Suc (Suc n)) ta" in exI) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
109 |
apply force |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
110 |
apply (simp add: differentiable_def, clarify) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
111 |
apply (rule_tac x = "difg (Suc (Suc n)) x" in exI) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
112 |
apply force |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
113 |
done |
14738 | 114 |
|
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
115 |
lemma Maclaurin: |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
116 |
"[| 0 < h; 0 < n; diff 0 = f; |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
117 |
\<forall>m t. m < n & 0 \<le> t & t \<le> h --> DERIV (diff m) t :> diff (Suc m) t |] |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
118 |
==> \<exists>t. 0 < t & |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
119 |
t < h & |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
120 |
f h = |
15539 | 121 |
setsum (%m. (diff m 0 / real (fact m)) * h ^ m) {0..<n} + |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
122 |
(diff n t / real (fact n)) * h ^ n" |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
123 |
apply (case_tac "n = 0", force) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
124 |
apply (drule not0_implies_Suc) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
125 |
apply (erule exE) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
126 |
apply (frule_tac f=f and n=n and j="%m. diff m 0" in Maclaurin_lemma) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
127 |
apply (erule exE) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
128 |
apply (subgoal_tac "\<exists>g. |
15539 | 129 |
g = (%t. f t - (setsum (%m. (diff m 0 / real(fact m)) * t^m) {0..<n} + (B * (t^n / real(fact n)))))") |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
130 |
prefer 2 apply blast |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
131 |
apply (erule exE) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
132 |
apply (subgoal_tac "g 0 = 0 & g h =0") |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
133 |
prefer 2 |
15561 | 134 |
apply (simp del: setsum_op_ivl_Suc) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
135 |
apply (cut_tac n = m and k = 1 in sumr_offset2) |
15561 | 136 |
apply (simp add: eq_diff_eq' del: setsum_op_ivl_Suc) |
15539 | 137 |
apply (subgoal_tac "\<exists>difg. difg = (%m t. diff m t - (setsum (%p. (diff (m + p) 0 / real (fact p)) * (t ^ p)) {0..<n-m} + (B * ((t ^ (n - m)) / real (fact (n - m))))))") |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
138 |
prefer 2 apply blast |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
139 |
apply (erule exE) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
140 |
apply (subgoal_tac "difg 0 = g") |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
141 |
prefer 2 apply simp |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
142 |
apply (frule Maclaurin_lemma2, assumption+) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
143 |
apply (subgoal_tac "\<forall>ma. ma < n --> (\<exists>t. 0 < t & t < h & difg (Suc ma) t = 0) ") |
15234
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
144 |
apply (drule_tac x = m and P="%m. m<n --> (\<exists>t. ?QQ m t)" in spec) |
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
145 |
apply (erule impE) |
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
146 |
apply (simp (no_asm_simp)) |
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
147 |
apply (erule exE) |
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
148 |
apply (rule_tac x = t in exI) |
15539 | 149 |
apply (simp del: realpow_Suc fact_Suc) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
150 |
apply (subgoal_tac "\<forall>m. m < n --> difg m 0 = 0") |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
151 |
prefer 2 |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
152 |
apply clarify |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
153 |
apply simp |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
154 |
apply (frule_tac m = ma in less_add_one, clarify) |
15561 | 155 |
apply (simp del: setsum_op_ivl_Suc) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
156 |
apply (insert sumr_offset4 [of 1]) |
15561 | 157 |
apply (simp del: setsum_op_ivl_Suc fact_Suc realpow_Suc) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
158 |
apply (subgoal_tac "\<forall>m. m < n --> (\<exists>t. 0 < t & t < h & DERIV (difg m) t :> 0) ") |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
159 |
apply (rule allI, rule impI) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
160 |
apply (drule_tac x = ma and P="%m. m<n --> (\<exists>t. ?QQ m t)" in spec) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
161 |
apply (erule impE, assumption) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
162 |
apply (erule exE) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
163 |
apply (rule_tac x = t in exI) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
164 |
(* do some tidying up *) |
15539 | 165 |
apply (erule_tac [!] V= "difg = (%m t. diff m t - (setsum (%p. diff (m + p) 0 / real (fact p) * t ^ p) {0..<n-m} + B * (t ^ (n - m) / real (fact (n - m)))))" |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
166 |
in thin_rl) |
15539 | 167 |
apply (erule_tac [!] V="g = (%t. f t - (setsum (%m. diff m 0 / real (fact m) * t ^ m) {0..<n} + B * (t ^ n / real (fact n))))" |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
168 |
in thin_rl) |
15539 | 169 |
apply (erule_tac [!] V="f h = setsum (%m. diff m 0 / real (fact m) * h ^ m) {0..<n} + B * (h ^ n / real (fact n))" |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
170 |
in thin_rl) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
171 |
(* back to business *) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
172 |
apply (simp (no_asm_simp)) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
173 |
apply (rule DERIV_unique) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
174 |
prefer 2 apply blast |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
175 |
apply force |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
176 |
apply (rule allI, induct_tac "ma") |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
177 |
apply (rule impI, rule Rolle, assumption, simp, simp) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
178 |
apply (subgoal_tac "\<forall>t. 0 \<le> t & t \<le> h --> g differentiable t") |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
179 |
apply (simp add: differentiable_def) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
180 |
apply (blast dest: DERIV_isCont) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
181 |
apply (simp add: differentiable_def, clarify) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
182 |
apply (rule_tac x = "difg (Suc 0) t" in exI) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
183 |
apply force |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
184 |
apply (simp add: differentiable_def, clarify) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
185 |
apply (rule_tac x = "difg (Suc 0) x" in exI) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
186 |
apply force |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
187 |
apply safe |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
188 |
apply force |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
189 |
apply (frule Maclaurin_lemma3, assumption+, safe) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
190 |
apply (rule_tac x = ta in exI, force) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
191 |
done |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
192 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
193 |
lemma Maclaurin_objl: |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
194 |
"0 < h & 0 < n & diff 0 = f & |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
195 |
(\<forall>m t. m < n & 0 \<le> t & t \<le> h --> DERIV (diff m) t :> diff (Suc m) t) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
196 |
--> (\<exists>t. 0 < t & |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
197 |
t < h & |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
198 |
f h = |
15539 | 199 |
(\<Sum>m=0..<n. diff m 0 / real (fact m) * h ^ m) + |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
200 |
diff n t / real (fact n) * h ^ n)" |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
201 |
by (blast intro: Maclaurin) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
202 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
203 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
204 |
lemma Maclaurin2: |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
205 |
"[| 0 < h; diff 0 = f; |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
206 |
\<forall>m t. |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
207 |
m < n & 0 \<le> t & t \<le> h --> DERIV (diff m) t :> diff (Suc m) t |] |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
208 |
==> \<exists>t. 0 < t & |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
209 |
t \<le> h & |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
210 |
f h = |
15539 | 211 |
(\<Sum>m=0..<n. diff m 0 / real (fact m) * h ^ m) + |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
212 |
diff n t / real (fact n) * h ^ n" |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
213 |
apply (case_tac "n", auto) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
214 |
apply (drule Maclaurin, auto) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
215 |
done |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
216 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
217 |
lemma Maclaurin2_objl: |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
218 |
"0 < h & diff 0 = f & |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
219 |
(\<forall>m t. |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
220 |
m < n & 0 \<le> t & t \<le> h --> DERIV (diff m) t :> diff (Suc m) t) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
221 |
--> (\<exists>t. 0 < t & |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
222 |
t \<le> h & |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
223 |
f h = |
15539 | 224 |
(\<Sum>m=0..<n. diff m 0 / real (fact m) * h ^ m) + |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
225 |
diff n t / real (fact n) * h ^ n)" |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
226 |
by (blast intro: Maclaurin2) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
227 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
228 |
lemma Maclaurin_minus: |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
229 |
"[| h < 0; 0 < n; diff 0 = f; |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
230 |
\<forall>m t. m < n & h \<le> t & t \<le> 0 --> DERIV (diff m) t :> diff (Suc m) t |] |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
231 |
==> \<exists>t. h < t & |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
232 |
t < 0 & |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
233 |
f h = |
15539 | 234 |
(\<Sum>m=0..<n. diff m 0 / real (fact m) * h ^ m) + |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
235 |
diff n t / real (fact n) * h ^ n" |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
236 |
apply (cut_tac f = "%x. f (-x)" |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
237 |
and diff = "%n x. ((- 1) ^ n) * diff n (-x)" |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
238 |
and h = "-h" and n = n in Maclaurin_objl) |
15539 | 239 |
apply (simp) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
240 |
apply safe |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
241 |
apply (subst minus_mult_right) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
242 |
apply (rule DERIV_cmult) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
243 |
apply (rule lemma_DERIV_subst) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
244 |
apply (rule DERIV_chain2 [where g=uminus]) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
245 |
apply (rule_tac [2] DERIV_minus, rule_tac [2] DERIV_Id) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
246 |
prefer 2 apply force |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
247 |
apply force |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
248 |
apply (rule_tac x = "-t" in exI, auto) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
249 |
apply (subgoal_tac "(\<Sum>m = 0..<n. -1 ^ m * diff m 0 * (-h)^m / real(fact m)) = |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
250 |
(\<Sum>m = 0..<n. diff m 0 * h ^ m / real(fact m))") |
15536 | 251 |
apply (rule_tac [2] setsum_cong[OF refl]) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
252 |
apply (auto simp add: divide_inverse power_mult_distrib [symmetric]) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
253 |
done |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
254 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
255 |
lemma Maclaurin_minus_objl: |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
256 |
"(h < 0 & 0 < n & diff 0 = f & |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
257 |
(\<forall>m t. |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
258 |
m < n & h \<le> t & t \<le> 0 --> DERIV (diff m) t :> diff (Suc m) t)) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
259 |
--> (\<exists>t. h < t & |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
260 |
t < 0 & |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
261 |
f h = |
15539 | 262 |
(\<Sum>m=0..<n. diff m 0 / real (fact m) * h ^ m) + |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
263 |
diff n t / real (fact n) * h ^ n)" |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
264 |
by (blast intro: Maclaurin_minus) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
265 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
266 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
267 |
subsection{*More Convenient "Bidirectional" Version.*} |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
268 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
269 |
(* not good for PVS sin_approx, cos_approx *) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
270 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
271 |
lemma Maclaurin_bi_le_lemma [rule_format]: |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
272 |
"0 < n \<longrightarrow> |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
273 |
diff 0 0 = |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
274 |
(\<Sum>m = 0..<n. diff m 0 * 0 ^ m / real (fact m)) + |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
275 |
diff n 0 * 0 ^ n / real (fact n)" |
15251 | 276 |
by (induct "n", auto) |
14738 | 277 |
|
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
278 |
lemma Maclaurin_bi_le: |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
279 |
"[| diff 0 = f; |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
280 |
\<forall>m t. m < n & abs t \<le> abs x --> DERIV (diff m) t :> diff (Suc m) t |] |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
281 |
==> \<exists>t. abs t \<le> abs x & |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
282 |
f x = |
15539 | 283 |
(\<Sum>m=0..<n. diff m 0 / real (fact m) * x ^ m) + |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
284 |
diff n t / real (fact n) * x ^ n" |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
285 |
apply (case_tac "n = 0", force) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
286 |
apply (case_tac "x = 0") |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
287 |
apply (rule_tac x = 0 in exI) |
15539 | 288 |
apply (force simp add: Maclaurin_bi_le_lemma) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
289 |
apply (cut_tac x = x and y = 0 in linorder_less_linear, auto) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
290 |
txt{*Case 1, where @{term "x < 0"}*} |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
291 |
apply (cut_tac f = "diff 0" and diff = diff and h = x and n = n in Maclaurin_minus_objl, safe) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
292 |
apply (simp add: abs_if) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
293 |
apply (rule_tac x = t in exI) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
294 |
apply (simp add: abs_if) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
295 |
txt{*Case 2, where @{term "0 < x"}*} |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
296 |
apply (cut_tac f = "diff 0" and diff = diff and h = x and n = n in Maclaurin_objl, safe) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
297 |
apply (simp add: abs_if) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
298 |
apply (rule_tac x = t in exI) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
299 |
apply (simp add: abs_if) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
300 |
done |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
301 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
302 |
lemma Maclaurin_all_lt: |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
303 |
"[| diff 0 = f; |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
304 |
\<forall>m x. DERIV (diff m) x :> diff(Suc m) x; |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
305 |
x ~= 0; 0 < n |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
306 |
|] ==> \<exists>t. 0 < abs t & abs t < abs x & |
15539 | 307 |
f x = (\<Sum>m=0..<n. (diff m 0 / real (fact m)) * x ^ m) + |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
308 |
(diff n t / real (fact n)) * x ^ n" |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
309 |
apply (rule_tac x = x and y = 0 in linorder_cases) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
310 |
prefer 2 apply blast |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
311 |
apply (drule_tac [2] diff=diff in Maclaurin) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
312 |
apply (drule_tac diff=diff in Maclaurin_minus, simp_all, safe) |
15229 | 313 |
apply (rule_tac [!] x = t in exI, auto) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
314 |
done |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
315 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
316 |
lemma Maclaurin_all_lt_objl: |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
317 |
"diff 0 = f & |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
318 |
(\<forall>m x. DERIV (diff m) x :> diff(Suc m) x) & |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
319 |
x ~= 0 & 0 < n |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
320 |
--> (\<exists>t. 0 < abs t & abs t < abs x & |
15539 | 321 |
f x = (\<Sum>m=0..<n. (diff m 0 / real (fact m)) * x ^ m) + |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
322 |
(diff n t / real (fact n)) * x ^ n)" |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
323 |
by (blast intro: Maclaurin_all_lt) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
324 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
325 |
lemma Maclaurin_zero [rule_format]: |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
326 |
"x = (0::real) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
327 |
==> 0 < n --> |
15539 | 328 |
(\<Sum>m=0..<n. (diff m (0::real) / real (fact m)) * x ^ m) = |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
329 |
diff 0 0" |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
330 |
by (induct n, auto) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
331 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
332 |
lemma Maclaurin_all_le: "[| diff 0 = f; |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
333 |
\<forall>m x. DERIV (diff m) x :> diff (Suc m) x |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
334 |
|] ==> \<exists>t. abs t \<le> abs x & |
15539 | 335 |
f x = (\<Sum>m=0..<n. (diff m 0 / real (fact m)) * x ^ m) + |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
336 |
(diff n t / real (fact n)) * x ^ n" |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
337 |
apply (insert linorder_le_less_linear [of n 0]) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
338 |
apply (erule disjE, force) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
339 |
apply (case_tac "x = 0") |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
340 |
apply (frule_tac diff = diff and n = n in Maclaurin_zero, assumption) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
341 |
apply (drule gr_implies_not0 [THEN not0_implies_Suc]) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
342 |
apply (rule_tac x = 0 in exI, force) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
343 |
apply (frule_tac diff = diff and n = n in Maclaurin_all_lt, auto) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
344 |
apply (rule_tac x = t in exI, auto) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
345 |
done |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
346 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
347 |
lemma Maclaurin_all_le_objl: "diff 0 = f & |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
348 |
(\<forall>m x. DERIV (diff m) x :> diff (Suc m) x) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
349 |
--> (\<exists>t. abs t \<le> abs x & |
15539 | 350 |
f x = (\<Sum>m=0..<n. (diff m 0 / real (fact m)) * x ^ m) + |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
351 |
(diff n t / real (fact n)) * x ^ n)" |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
352 |
by (blast intro: Maclaurin_all_le) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
353 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
354 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
355 |
subsection{*Version for Exponential Function*} |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
356 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
357 |
lemma Maclaurin_exp_lt: "[| x ~= 0; 0 < n |] |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
358 |
==> (\<exists>t. 0 < abs t & |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
359 |
abs t < abs x & |
15539 | 360 |
exp x = (\<Sum>m=0..<n. (x ^ m) / real (fact m)) + |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
361 |
(exp t / real (fact n)) * x ^ n)" |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
362 |
by (cut_tac diff = "%n. exp" and f = exp and x = x and n = n in Maclaurin_all_lt_objl, auto) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
363 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
364 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
365 |
lemma Maclaurin_exp_le: |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
366 |
"\<exists>t. abs t \<le> abs x & |
15539 | 367 |
exp x = (\<Sum>m=0..<n. (x ^ m) / real (fact m)) + |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
368 |
(exp t / real (fact n)) * x ^ n" |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
369 |
by (cut_tac diff = "%n. exp" and f = exp and x = x and n = n in Maclaurin_all_le_objl, auto) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
370 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
371 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
372 |
subsection{*Version for Sine Function*} |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
373 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
374 |
lemma MVT2: |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
375 |
"[| a < b; \<forall>x. a \<le> x & x \<le> b --> DERIV f x :> f'(x) |] |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
376 |
==> \<exists>z. a < z & z < b & (f b - f a = (b - a) * f'(z))" |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
377 |
apply (drule MVT) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
378 |
apply (blast intro: DERIV_isCont) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
379 |
apply (force dest: order_less_imp_le simp add: differentiable_def) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
380 |
apply (blast dest: DERIV_unique order_less_imp_le) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
381 |
done |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
382 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
383 |
lemma mod_exhaust_less_4: |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
384 |
"m mod 4 = 0 | m mod 4 = 1 | m mod 4 = 2 | m mod 4 = (3::nat)" |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
385 |
by (case_tac "m mod 4", auto, arith) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
386 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
387 |
lemma Suc_Suc_mult_two_diff_two [rule_format, simp]: |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
388 |
"0 < n --> Suc (Suc (2 * n - 2)) = 2*n" |
15251 | 389 |
by (induct "n", auto) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
390 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
391 |
lemma lemma_Suc_Suc_4n_diff_2 [rule_format, simp]: |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
392 |
"0 < n --> Suc (Suc (4*n - 2)) = 4*n" |
15251 | 393 |
by (induct "n", auto) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
394 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
395 |
lemma Suc_mult_two_diff_one [rule_format, simp]: |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
396 |
"0 < n --> Suc (2 * n - 1) = 2*n" |
15251 | 397 |
by (induct "n", auto) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
398 |
|
15234
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
399 |
|
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
400 |
text{*It is unclear why so many variant results are needed.*} |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
401 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
402 |
lemma Maclaurin_sin_expansion2: |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
403 |
"\<exists>t. abs t \<le> abs x & |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
404 |
sin x = |
15539 | 405 |
(\<Sum>m=0..<n. (if even m then 0 |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
406 |
else ((- 1) ^ ((m - (Suc 0)) div 2)) / real (fact m)) * |
15539 | 407 |
x ^ m) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
408 |
+ ((sin(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)" |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
409 |
apply (cut_tac f = sin and n = n and x = x |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
410 |
and diff = "%n x. sin (x + 1/2*real n * pi)" in Maclaurin_all_lt_objl) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
411 |
apply safe |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
412 |
apply (simp (no_asm)) |
15539 | 413 |
apply (simp (no_asm)) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
414 |
apply (case_tac "n", clarify, simp, simp) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
415 |
apply (rule ccontr, simp) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
416 |
apply (drule_tac x = x in spec, simp) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
417 |
apply (erule ssubst) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
418 |
apply (rule_tac x = t in exI, simp) |
15536 | 419 |
apply (rule setsum_cong[OF refl]) |
15539 | 420 |
apply (auto simp add: sin_zero_iff odd_Suc_mult_two_ex) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
421 |
done |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
422 |
|
15234
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
423 |
lemma Maclaurin_sin_expansion: |
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
424 |
"\<exists>t. sin x = |
15539 | 425 |
(\<Sum>m=0..<n. (if even m then 0 |
15234
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
426 |
else ((- 1) ^ ((m - (Suc 0)) div 2)) / real (fact m)) * |
15539 | 427 |
x ^ m) |
15234
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
428 |
+ ((sin(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)" |
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
429 |
apply (insert Maclaurin_sin_expansion2 [of x n]) |
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
430 |
apply (blast intro: elim:); |
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
431 |
done |
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
432 |
|
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
433 |
|
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
434 |
|
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
435 |
lemma Maclaurin_sin_expansion3: |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
436 |
"[| 0 < n; 0 < x |] ==> |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
437 |
\<exists>t. 0 < t & t < x & |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
438 |
sin x = |
15539 | 439 |
(\<Sum>m=0..<n. (if even m then 0 |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
440 |
else ((- 1) ^ ((m - (Suc 0)) div 2)) / real (fact m)) * |
15539 | 441 |
x ^ m) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
442 |
+ ((sin(t + 1/2 * real(n) *pi) / real (fact n)) * x ^ n)" |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
443 |
apply (cut_tac f = sin and n = n and h = x and diff = "%n x. sin (x + 1/2*real (n) *pi)" in Maclaurin_objl) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
444 |
apply safe |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
445 |
apply simp |
15539 | 446 |
apply (simp (no_asm)) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
447 |
apply (erule ssubst) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
448 |
apply (rule_tac x = t in exI, simp) |
15536 | 449 |
apply (rule setsum_cong[OF refl]) |
15539 | 450 |
apply (auto simp add: sin_zero_iff odd_Suc_mult_two_ex) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
451 |
done |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
452 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
453 |
lemma Maclaurin_sin_expansion4: |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
454 |
"0 < x ==> |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
455 |
\<exists>t. 0 < t & t \<le> x & |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
456 |
sin x = |
15539 | 457 |
(\<Sum>m=0..<n. (if even m then 0 |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
458 |
else ((- 1) ^ ((m - (Suc 0)) div 2)) / real (fact m)) * |
15539 | 459 |
x ^ m) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
460 |
+ ((sin(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)" |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
461 |
apply (cut_tac f = sin and n = n and h = x and diff = "%n x. sin (x + 1/2*real (n) *pi)" in Maclaurin2_objl) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
462 |
apply safe |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
463 |
apply simp |
15539 | 464 |
apply (simp (no_asm)) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
465 |
apply (erule ssubst) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
466 |
apply (rule_tac x = t in exI, simp) |
15536 | 467 |
apply (rule setsum_cong[OF refl]) |
15539 | 468 |
apply (auto simp add: sin_zero_iff odd_Suc_mult_two_ex) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
469 |
done |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
470 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
471 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
472 |
subsection{*Maclaurin Expansion for Cosine Function*} |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
473 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
474 |
lemma sumr_cos_zero_one [simp]: |
15539 | 475 |
"(\<Sum>m=0..<(Suc n). |
476 |
(if even m then (- 1) ^ (m div 2)/(real (fact m)) else 0) * 0 ^ m) = 1" |
|
15251 | 477 |
by (induct "n", auto) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
478 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
479 |
lemma Maclaurin_cos_expansion: |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
480 |
"\<exists>t. abs t \<le> abs x & |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
481 |
cos x = |
15539 | 482 |
(\<Sum>m=0..<n. (if even m |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
483 |
then (- 1) ^ (m div 2)/(real (fact m)) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
484 |
else 0) * |
15539 | 485 |
x ^ m) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
486 |
+ ((cos(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)" |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
487 |
apply (cut_tac f = cos and n = n and x = x and diff = "%n x. cos (x + 1/2*real (n) *pi)" in Maclaurin_all_lt_objl) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
488 |
apply safe |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
489 |
apply (simp (no_asm)) |
15539 | 490 |
apply (simp (no_asm)) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
491 |
apply (case_tac "n", simp) |
15561 | 492 |
apply (simp del: setsum_op_ivl_Suc) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
493 |
apply (rule ccontr, simp) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
494 |
apply (drule_tac x = x in spec, simp) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
495 |
apply (erule ssubst) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
496 |
apply (rule_tac x = t in exI, simp) |
15536 | 497 |
apply (rule setsum_cong[OF refl]) |
15234
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
498 |
apply (auto simp add: cos_zero_iff even_mult_two_ex) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
499 |
done |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
500 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
501 |
lemma Maclaurin_cos_expansion2: |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
502 |
"[| 0 < x; 0 < n |] ==> |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
503 |
\<exists>t. 0 < t & t < x & |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
504 |
cos x = |
15539 | 505 |
(\<Sum>m=0..<n. (if even m |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
506 |
then (- 1) ^ (m div 2)/(real (fact m)) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
507 |
else 0) * |
15539 | 508 |
x ^ m) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
509 |
+ ((cos(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)" |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
510 |
apply (cut_tac f = cos and n = n and h = x and diff = "%n x. cos (x + 1/2*real (n) *pi)" in Maclaurin_objl) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
511 |
apply safe |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
512 |
apply simp |
15539 | 513 |
apply (simp (no_asm)) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
514 |
apply (erule ssubst) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
515 |
apply (rule_tac x = t in exI, simp) |
15536 | 516 |
apply (rule setsum_cong[OF refl]) |
15234
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
517 |
apply (auto simp add: cos_zero_iff even_mult_two_ex) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
518 |
done |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
519 |
|
15234
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
520 |
lemma Maclaurin_minus_cos_expansion: |
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
521 |
"[| x < 0; 0 < n |] ==> |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
522 |
\<exists>t. x < t & t < 0 & |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
523 |
cos x = |
15539 | 524 |
(\<Sum>m=0..<n. (if even m |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
525 |
then (- 1) ^ (m div 2)/(real (fact m)) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
526 |
else 0) * |
15539 | 527 |
x ^ m) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
528 |
+ ((cos(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)" |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
529 |
apply (cut_tac f = cos and n = n and h = x and diff = "%n x. cos (x + 1/2*real (n) *pi)" in Maclaurin_minus_objl) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
530 |
apply safe |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
531 |
apply simp |
15539 | 532 |
apply (simp (no_asm)) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
533 |
apply (erule ssubst) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
534 |
apply (rule_tac x = t in exI, simp) |
15536 | 535 |
apply (rule setsum_cong[OF refl]) |
15234
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
536 |
apply (auto simp add: cos_zero_iff even_mult_two_ex) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
537 |
done |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
538 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
539 |
(* ------------------------------------------------------------------------- *) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
540 |
(* Version for ln(1 +/- x). Where is it?? *) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
541 |
(* ------------------------------------------------------------------------- *) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
542 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
543 |
lemma sin_bound_lemma: |
15081 | 544 |
"[|x = y; abs u \<le> (v::real) |] ==> \<bar>(x + u) - y\<bar> \<le> v" |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
545 |
by auto |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
546 |
|
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
547 |
lemma Maclaurin_sin_bound: |
15539 | 548 |
"abs(sin x - (\<Sum>m=0..<n. (if even m then 0 else ((- 1) ^ ((m - (Suc 0)) div 2)) / real (fact m)) * |
15081 | 549 |
x ^ m)) \<le> inverse(real (fact n)) * \<bar>x\<bar> ^ n" |
14738 | 550 |
proof - |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
551 |
have "!! x (y::real). x \<le> 1 \<Longrightarrow> 0 \<le> y \<Longrightarrow> x * y \<le> 1 * y" |
14738 | 552 |
by (rule_tac mult_right_mono,simp_all) |
553 |
note est = this[simplified] |
|
554 |
show ?thesis |
|
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
555 |
apply (cut_tac f=sin and n=n and x=x and |
14738 | 556 |
diff = "%n x. if n mod 4 = 0 then sin(x) else if n mod 4 = 1 then cos(x) else if n mod 4 = 2 then -sin(x) else -cos(x)" |
557 |
in Maclaurin_all_le_objl) |
|
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
558 |
apply safe |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
559 |
apply simp |
15944 | 560 |
apply (subst (1 2 3) mod_Suc_eq_Suc_mod) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
561 |
apply (cut_tac m=m in mod_exhaust_less_4, safe, simp+) |
14738 | 562 |
apply (rule DERIV_minus, simp+) |
563 |
apply (rule lemma_DERIV_subst, rule DERIV_minus, rule DERIV_cos, simp) |
|
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
564 |
apply (erule ssubst) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
565 |
apply (rule sin_bound_lemma) |
15536 | 566 |
apply (rule setsum_cong[OF refl]) |
567 |
apply (rule_tac f = "%u. u * (x^xa)" in arg_cong) |
|
14738 | 568 |
apply (subst even_even_mod_4_iff) |
15536 | 569 |
apply (cut_tac m=xa in mod_exhaust_less_4, simp, safe) |
14738 | 570 |
apply (simp_all add:even_num_iff) |
571 |
apply (drule lemma_even_mod_4_div_2[simplified]) |
|
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
572 |
apply(simp add: numeral_2_eq_2 divide_inverse) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
573 |
apply (drule lemma_odd_mod_4_div_2) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
574 |
apply (simp add: numeral_2_eq_2 divide_inverse) |
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
575 |
apply (auto intro: mult_right_mono [where b=1, simplified] mult_right_mono |
16775
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents:
15944
diff
changeset
|
576 |
simp add: est mult_nonneg_nonneg mult_ac divide_inverse |
16924 | 577 |
power_abs [symmetric] abs_mult) |
14738 | 578 |
done |
579 |
qed |
|
580 |
||
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
14738
diff
changeset
|
581 |
end |